
18.310 lecture notes September 25, 2013

Counting, Coding, Sampling

Lecturer: Michel Goemans

In these notes we discuss techniques for counting, coding and sampling some classes of objects.
We start by presenting several classes of objects counted by the Catalan sequence Cn = 1 2n .n+1 n
This is an occasion to present several bijective techniques for counting, and simply beautiful math-

()

ematics. We then discuss some algorithmic application of (bijective) counting: some coding and
random sampling algorithms.

1 Some Catalan families

We start by defining three classes of objects, and then discuss the relation between them.
A plane tree (a.k.a. ordered tree) is a rooted tree in which the order of the children matters.

Let Tn be set of plane trees with n edges. The set T3 is represented in Figure 1. A binary tree is a
plane tree in which vertices have either 0 or 2 children. Vertices with 2 children are called nodes,
while vertices with 0 children are called leaves. Let Bn be the set of binary trees with n nodes. The
set B3 is represented in Figure 2. A Dyck path is a lattice path (sequence of steps) made of steps
+1 (up steps) and steps -1 (down steps) starting and ending at level 0 and remaining non-negative.
Since the final level of a Dyck path is 0 the number of up steps and down steps are the same, and
its length is even. Let Dn be the set of Dyck paths with 2n steps. The set D3 is represented in
Figure 3.

Figure 1: The set T3 of plane trees.

Figure 2: The set B3 of binary trees.

Figure 3: The set D3 of Dyck paths.

Count-1

Observe that there is the same number of elements in T3, B3 and D3. This is no coincidence, as
we will now prove that for all n, the sets Tn, Bn, Dn have the same number of elements. We now
use the notation |S| to denote the cardinality of a set S. We will now prove that

1|Tn| = |Bn| = |Dn| =
n+ 1

(
2n

n

)
.

The number 1
(
2n
)
is the so-called nth Catalan number.n+1 n

1.1 Counting Dyck paths

(0)
We first compute the number of Dyck paths. Let Pn be the set of paths of length 2n made of steps
+1 steps and -1 steps starting and ending at level 0. Ending at level 0 is the same as having the
same number of up steps and down steps, and any choice of order of such steps is allowed. Hence

P(0)
n =

(
2n

n

)
.

Now D (0)
n is a subset of Pn . It seems hard to find |Dn| because of the non-negativity constraint,

but actually a trick will now allow us to compute the cardinality of the complement subset

Dn ≡ P(0)
n \ Dn.

(
2n

)
(

Indeed we claim that |Dn| 2)
= . To prove this claim we consider the set

n
Pn

−
of paths

1
of length 2n made of steps +1 s

−
teps and -1 steps starting at level 0 and ending at level −2.

These paths have n − 1 up steps and n + 1 down steps, and any order of steps is possible, hence

(2)

(
2n|Pn

− | (2)
=

)
. So it suffices to give a bijection f between

n− 1
Dn and Pn

−
. This bijection is

defined as follows: take a path D in Dn consider the first time t it reaches level −1. The path
f(D) is obtained from D by flipping all the steps after time t with respect to the line y = −1. An

(2)
example is shown in Figure 4. We let the reader check that f is a bijection between Dn and Pn

−
.

(2)
Since f is a bijection we have |Dn| = |Pn

− | =
(

2n .n−1

)

D

f(D)

Figure 4: The bijection f : the path D ∈ D (2)
in red, the path f(D) ∈ Pn

−
in black.

By the preceding, we have

(0)

(
2n|Dn| = |Pn | − |Dn| =
n

)
−

(
2n (2n)! (2n)!

= .
n 1

)
− n!n!

−
(n+ 1)!(n− 1)!

Count-2

And by reducing to the same denominator we find

(2n)! 1 2n|Dn| = =
n+ 1!n! n+ 1

(
n

)
,

as wanted.

1.2 Bijection between plane trees, binary trees and Dyck paths

We now present bijections between the sets Tn, Bn and Dn.
We first present a bijection Φ between plane trees and Dyck paths as follows: given any tree

T in Tn, perform a depth-first search of the tree T (as illustrated in Figure 5) and define Φ(T) as
the sequence of up and down steps performed during the search. A Dyke path is obtained from
T because Φ(T) has n up steps and n down steps (one step in each direction for each edge of T),
starts and end at level 0 and remains non-negative. Because Φ is a bijection between Tn and Dn,
we conclude

1 2|Tn| = |Dn| =
n+ 1

(
n

n

)
.

T Φ(T)

Figure 5: A plane tree T and the associated Dyck path Φ(T). The depth-first search of the tree T
is represented graphically by a tour around the tree (drawn in orange).

We now present a bijection Ψ between binary trees and Dyck paths. Let B be a binary tree in
Bn. The tree B has n nodes. It can be shown that it has n+ 1 leaves (do it!). We can perform a
depth-first search of the tree B and make a up step the first time we encounter each node and a
down step each time we encounter a leaf. This makes a path with n up steps and n+1 down steps.
The last step is a down step and we ignore it. We denote by Ψ(B) the sequence of n up steps and
n down steps obtained in this way. An example is represented in Figure 6. It is actually true that
Ψ(B) is always a Dyck path and that Ψ is a bijection between Bn and Dn. We omit the proof of
these facts. Since the sets Bn and Dn are in bijection we conclude

1 2n|Bn| = |Dn| =
n+ 1

(
n

)
.

2 Coding

Let S be a finite set of objects. A coding function for the set S is a function which associate a
distinct binary sequence f(s) to each element s in S. The binary sequence f(S) is called code of
S. Here are lower bounds for the length of codes.

Count-3

- -

- +

- + B
-

+ - -

- - + Ψ(B)
+

- + +-
++

+

Figure 6: A binary tree B and the associated Dyck path Ψ(B). The depth-first search of the tree
B is represented graphically by a tour around the tree (drawn in orange).

Lemma 1. If S contains N elements then at least one of the codes has length greater or equal to
�log2(N)�. If one consider the uniform distribution for elements in S then the codes have length at
least log2(N)− 2 in average.

Exercise: Prove Lemma 1 for N = 2k − 1.

Example 1: coding permutations. Let Sn be the set of permutations of {1, 2, . . . , n}. We
now discuss a possible coding function f for the set Sn. Recall that for any integer i, the binary
representation of i is �log2(i+1)�. Thus each number i ∈ {1, 2, . . . , n} can be represented uniquely
by binary sequences of length exactly �log2(n+ 1)�: it suffice to take their binary representations
and add a few 0 in front if necessary to get this length. Let π ∈ Sn be a permutation seen as
a sequence of distinct numbers π = π1π2 . . . πn. One can define f(π) as the concatenation of the
binary sequences (of length �log2(n)�) corresponding to each number π1π2 . . . πn. Then the length
of the code f(π) is n�log2(n + 1)� ∼ n log2(n). We can recover the permutation from the code:
if one has the code, it can cut it in subsequences of length log2(n + 1) each and then recover the
numbers π1π2 . . . πn making the permutation. Is it an efficient coding? Well according to Lemma
1 we cannot achieve codes shorter than log2(n!) − 2 in average. Moreover, log2(n!) ∼ n log2(n).
Therefore our coding function f has length as short as possible asymptotically.

Example 2: coding Dyck paths. Consider the set Dn of Dyck path of length 2n. There is an
easy way of coding a Dyck path D ∈ Dn by a binary sequence of length 2n. Simply encode down
steps by “0” and up steps by “1” this give a binary sequence f(D) of length 2n. Could we hope
for shorter codes? Certainly it would be possible to get a code of length 2n − 2 because the first
step is an up step and the last step is a down step, so these could be ignored. But could we do
better than 2n + o(n) (where the “little o” notation means that the expression divided by n goes
to zero as n goes to infinity)? We have seen that the set Dn has cardinality N = 2n! . Usingn!(n+1)!
the Stirling formula

n n
n!

√
∼ 2nπ

(
e

)

one gets log2(n!) = n log2(n)− n log2(e) + o(n). Hence one can compute

log2(N) = log2(2n!)− log2(n!)− log2((n+ 1)!) = 2n+ o(n).

Therefore, by Lemma 1 one cannot encode Dyck paths by codes of length less than 2n + o(n) on
average. So our naive coding is asymptotically optimal. Observe that this also gives a way of
coding plane trees or binary trees optimally.

Count-4

3 Random sampling

Let S be a finite set of objects. A (uniformly random) sampling algorithm for the set S is an al-
gorithm which outputs an element in S uniformly at random from S. Here we suppose we dispose
of a perfect random generator for integers. More precisely, let us suppose that one can generate a
uniformly random integer in {1, 2, . . . , n} for any integer n.

Example 1: sampling permutations. How to sample a permutation in Sn? Here is a solution
written in pseudo-code.

Input an integer n.
• Initialize an array V of size n with value i at position i for i = 1 . . . n.
• For i = 1 to n do

Choose a integer r uniformly at random in {i, i+ 1, . . . , n}.
Swap the values at position i and r in V .

Output the array V .

The output of the above algorithm is an array of number which corresponds to a uniformly
random permutation. Indeed, the first number of the array is chosen uniformly in {1, 2, . . . , n}, the
second number in the array is chosen uniformly randomly from the remaining numbers etc. Thus
the above algorithm is indeed a sampling algorithm for the set Sn.

Example 2: sampling Dyck paths. Sampling Dyck paths is a bit more difficult. We will need

to first define an algorithm for sampling paths from another set. Let P(−1)
n be the set of paths

of length 2n + 1 with steps +1 and −1 starting at level 0 end ending at level −1. Hence a path

P ∈ P(−1)
n has steps “+1” and n+ 1 steps ”-1” in any order. Here is a sampling algorithm for the

set P(−1)
n .
Input an integer n.
• Initialize an array V of length 2n+ 1 with value 1 in the first n entries and
value −1 in the remaining n+ 1 entries.
• For i = 1 to 2n+ 1 do

Choose an integer r uniformly at random in {i, i+ 1, . . . , 2n+ 1}.
Swap the values at position i and r in V .

Output the array V .

Because the algorithm randomly permutes the steps +1 and −1, it indeed outputs a uniformly

random path in P(−1)
n .

(1)
Now we will show how to obtain an Dyck path D ∈ Dn from a path P ∈ Pn

−
. The trick we

(1)
will use is known as the cycle lemma. Let P ∈ Pn

−
. Let � ≤ 0 be the lowest level of the path P ,

and let t be the first time the level � is reached. This decomposes P as P1P2 where P1 is the path
before time t and P2 is the path after time t. Now consider the path P2P1. This path is ending
with a -1 step. Then we define g(P) as the path obtained from P2P1 by ignoring the last step. The
mapping g is illustrated in Figure 7. The path g(P) has n up steps and n down steps so it ends at
level 0. In fact we claim that it is a Dyck path. Here is an even stronger claim.

Lemma 2. For any path P is P ∈ P(−1) (1)
n , the path g(P) is a Dyck path. So g maps the set Pn

−

to the set D (1)
n. Moreover, any Dyck path in Dn is the image of exactly 2n+ 1 paths in Pn

−
.

Count-5

D = g(P)
P t

g

P1 P2

Figure 7: A path P ∈ P(−1)
n and the resulting g(P).

We will not prove this Lemma. However we argue that this gives a way of sampling Dyck paths.
(1)

Indeed, by the above algorithm, one can sample a path P in
(1)

Pn
−

, and then apply the mapping g

to obtain a Dyck path g(P). Since every path in Pn
−

has the same probability of being sampled
and every Dyck path in Dn has the same number of preimages, every Dyck path in Dn has the same
probability of being sampled. We have thus found a sampling algorithm for Dyck paths. Observe
that this also gives a way of sampling plane trees or binary trees.

Count-6

MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

