18.319, Fall 2005.

Instructions: Solve your favourite problems from the list below. Open problems are marked with \mathbf{x} ; hard (but feasible) problems are marked with \star .

- 1. Find all planar point configurations with n points that determine exactly n distinct lines for $n \in \mathbb{N}$, $n \geq 4$.
- 2. (Motzkin, 1951)

(a) For every $n \in \mathbb{N}$, $n \ge 6$, find n points in \mathbb{R}^3 , not all in a plane, such that the plane determined by any three noncollinear points contains at least four points.

(b) Find a finite point set in the complex plane \mathbb{C}^2 that does not lie in a complex line and the complex line determined by any two points contains at least three points. \star

- 3. (Motzkin, 1951) Given a point set P in \mathbb{R}^d , $d \ge 2$, we say that a hyperplane h is ordinary if all but at most one points of $h \cap P$ lie in a (d-2) dimensional affine subspace. Show that there is an ordinary hyperplane for any finite set of points in \mathbb{R}^d , $d \ge 2$.
- 4. (Kelly-Moser, 1958) Find 7 points in the plane with exactly 3 ordinary lines. (McKee, 1968) Find 13 points in the plane with exactly 6 ordinary lines.
- 5. (Jamison, 1986) Given a set V of n points in the plane, not all on a line, show that
- 5. (Jamison, 1986) Given a set V of n points in the plane, not all on a line, show that there is a connected graph drawn in the plane with straight line edges such that its vertex set is V and its edges have pairwise different slopes.
- 6. (Jamison, 1987) Given a set V of $n \in \mathbb{N}$ points in the plane, no three of which are collinear, and an (abstract) graph G with n vertices. Is there a straight line embedding of G into the plane such that the vertices of G are mapped onto V and the edges of G are pairwise nonparallel if

(a) G is a path and V forms a regular n -gon;	(b) G is a path; \star
(c) G is a tree and V is in convex position; \mathbf{A}	(d) G is a tree? \mathbf{A}

- 7. (Hopf-Pannwitz, 1934) Show that any n points in the plane, no three of which are collinear, determine at most n pairwise intersecting (closed) line segments.
- 8. Given a set P of 2n noncollinear points in the plane, let h(P) denote the number of its halving lines (i.e., lines spanned by P such that either of their open halfplanes contains less than n points). Let $d_1, d_2, \ldots, d_{h(P)}$ be the number of points on each of these halving lines. Give a lower bound for the number of distinct slopes determined by P in terms of $d_1, d_2, \ldots, d_{h(P)}$.
- 9. How many distinct slopes are determined by the point set $\{(a, b) \in \mathbb{N}^2 : 1 \le a, b \le n\}$ (i.e., the $n \times n$ integer lattice section)? How is it about $\{(a, b, c) \in \mathbb{N}^3 : 1 \le a, b, c \le n\}$ in three dimensions?

Brush up exercise on point-line duality in the plane. The point-line duality is a bijection between points and nonvertical lines in the Euclidean plane defined by

$$p(a,b) \iff p^* : y + ax + b = 0,$$

$$\ell : y + ax + b = 0 \iff \ell^*(a,b).$$

- Show that point p is incident to line ℓ if and only if point ℓ^* is incident to line p^* .
- Show that point p lies above line ℓ if and only if line p^* passes below point ℓ^* .
- What is the dual of a line segment p_1p_2 ?
- Formulate the dual statement for "The closed line segments p_1p_2 and q_1q_2 intersect."
- Formulate the dual statement for "Point sets A and B are separated by a vertical line."
- What is the dual of the inner diagonals of two point sets, A and B, separated by a vertical line?