18.319, Fall 2005.

Open problems are marked with \mathfrak{B} ; hard (but feasible) problems are marked with \star . Problems from Matoušek's textbook on Discrete Geometry are marked with \mathfrak{B} .

- 1. (Asano et al., 1999) You are given a finite set S of pairwise disjoint line segments in the plane and a curve γ that intersects every segment in S. Consider a point p outside of the convex hull of γ . Show that there is a point $q \in \gamma$ such that the line segment pq is disjoint from all segments of S.
- 2. You are given a set P of n noncollinear points in the plane.
 (a) (Ungar) Show that there is a line l such that P determines at least one but at most (n 1)/2 line segments parallel to l.
 (b) (Burton & Purdy) Show that there are two points p, q ∈ P such that the number of distinct distances of the points of P from the line pq is at least .4n O(1).
- 3. Suppose that for every n ∈ N, n even, you can find an n-element point set in the plane with f(n) halving edges. (a) Show that for every k, n ∈ N, k ≤ n/2, there are n points in the plane such that the number of k-edges is at least Ω(⌊n/2k⌋f(2k)).
 (b) Show that for infinitely many n ∈ N, there are n points in ℝ³ with Ω(nf(n)) halving triangles. As
- 4. (Lovász) You are given a set P of 2n points in the plane in general position, and a vertical line ℓ having exactly k points on the left and exactly 2n k points on the right. Prove that ℓ crosses exactly $\min(k, 2n k)$ halving edges of P.
- 5. (Welzl) Let t(n) denote the maximum number of halving triangles for a set of n points in \mathbb{R}^3 . Show that for every $n \in \mathbb{N}$, there is a set P_n of n points in convex position in \mathbb{R}^3 that has t(n) halving triangles. \star
- 6. (Pach & Pinchasi) R is a set of n red points, and B is a set of n blue points in the plane such that $B \cap R = \emptyset$ and $R \cup B$ is in general position. A line ℓ is called *balanced* if ℓ passes through a red point and a blue point, and each open half-plane bounded by ℓ contains the same number of blue points as red points. Show that there are at least n balanced lines.
- 7. Consider an arrangement of n circles in the plane and a parameter $r \in \mathbb{N}$, $1 \le r \le n/2$. Show that there is a partition of the plane into $O(r^2 \log^2 r)$ regions, each bounded by a finite number of straight line segments and circular arcs, such that the interior of each region intersects at most n/r circles.
- 8. (a) Determine the VC-dimension of the range space (\mathbb{R}^2, T) , where T is the set of all triangles in the plane. \mathfrak{H}

(b) (Kalai & Matoušek) Let S be a simply connected compact set in the plane. For every point $s \in S$, let $V(s) = \{p \in S : \text{the segment } ps \text{ lies in } S\}$ be the visibility range of s. Show that the range space $(S, \{V(s) : s \in S\})$ has finite VC-dimension.