Course 18.327 and 1.130 Wavelets and Filter Banks

Multiresolution Analysis (MRA): Requirements for MRA; Nested Spaces and Complementary Spaces; Scaling Functions and Wavelets

Scaling Functions and Wavelets

For this example:

$$\phi(t) = \phi(2t) + \phi(2t - 1)$$

More generally:

$$\phi(t) = 2\sum_{k=0}^{N} h_0[k]\phi(2t-k)$$

Refinement equation or Two-scale difference equation

$\phi(t)$ is called a scaling function

The refinement equation couples the representations of a continuous-time function at two time scales. The continuous-time function is determined by a discrete-time filter, $h_0[n]$! For the above (Haar) example:

 $h_0[0] = h_0[1] = \frac{1}{2}$ (a lowpass filter)

Note: (i) Solution to refinement equation may not always exist. If it does... (ii) $\phi(t)$ has compact support i.e. $\phi(t) = 0$ outside $0 \le t < N$ (comes from the FIR filter, h₀[n]) (iii) $\phi(t)$ often has no closed form solution. (iv) $\phi(t)$ is unlikely to be smooth. Constraint on h₀[n]: $\int \phi(t)dt = 2 \sum_{k=0}^{N} h_0[k] \int \phi(2t - k)dt$ = $2\sum_{k=0}^{N} h_0[k] \cdot \frac{1}{2} \int \phi(\tau) d\tau$

So

$$\sum_{k=0}^{N} h_0[k] = 1 \quad \text{Assumes } \int \phi(t) dt \neq 0$$

More generally:

$$w(t) = 2\sum_{k=0}^{N} h_1[k] \phi(2t - k)$$

Wavelet equation

For the Haar wavelet example:

$$h_1[0] = \frac{1}{2}$$
 $h_1[1] = -\frac{1}{2}$ (a highpass filter)

Some observations for Haar scaling function and wavelet 1. Orthogonality of integer shifts (translates):

2. Scaling function is orthogonal to wavelet: $1 + \phi(t) + \frac{1}{t} + \frac{1}{t$

 $\int \phi(t) w(t) dt = 0$ Reason: +ve and -ve areas cancel each other.

3. Wavelet is orthogonal across scales:

 $\int w(t) w(2t) dt = 0$, $\int w(t) w(2t-1) dt = 0$

Reason: finer scale versions change sign while coarse scale version remains constant.

Wavelet Bases

Our goal is to use w(t), its scaled versions (dilations) and their shifts (translates) as building blocks for continuous-time functions, f(t). Specifically, we are interested in the class of functions for which we can define the inner product:

 $\langle f(t), g(t) \rangle = \int_{-\infty}^{\infty} f(t) g^{*}(t) dt < \infty$

Such functions f(t) must have finite energy: $\|f(t)\|^2 = \int_{-\infty}^{\infty} |f(t)|^2 dt < \infty$

and they are said to belong to the Hilbert space, $L^2(\Re)$.

Consider all dilations and translates of the Haar wavelet: $w_{j,k}(t) = 2^{j/2} w(2^{j}t - k) ; -\infty \le j \le \infty$ $-\infty \le k \le \infty$ Normalization factor so that $||w_{j,k}(t)|| = 1$

$$\int w_{j,k}(t) w_{J,K}(t) dt = \int 2^{j/2} w(2^{j}t - k) \cdot 2^{J/2} w(2^{J}t - K) dt$$
$$= \begin{cases} 1 \text{ if } j = J \text{ and } k = K \\ 0 \text{ otherwise} \end{cases}$$
$$= \delta[j - J] \delta[k - K]$$

 $w_{ik}(t)$ form an orthonormal basis for L²(\Re).

 $f(t) = \sum_{j,k} b_{jk} w_{jk}(t) ; \qquad w_{jk}(t) = 2^{j/2} w(2^{j}t - k)$ $b_{jk} = \int_{\infty}^{\infty} f(t) w_{jk}(t) dt$

Multiresolution Analysis

Key ingredients:

1. A sequence of embedded subspaces:

 $\{0\} \subset ... \subset V_{-1} \subset V_0 \subset V_1 \subset ... \subset V_j \subset V_{j+1} \subset ... \subset L^2(\Re)$ $L^2(\Re) = all functions with finite energy$ $= \{f(t): \int_{-\infty}^{\infty} |f(t)|^2 dt < \infty\}$ Hilbert space Requirements:

• Completeness as $j \to \infty$. If f(t) belongs to L²(\Re) and $f_j(t)$ is the portion of f(t) that lies in V_j, then $\lim_{j\to\infty} f_j(t) = f(t)$

Restated as a condition on the subspaces:

 $\bigcup_{j=-\infty}^{\infty} V_j = L^2(\mathfrak{R})$

• Emptiness as $j \rightarrow -\infty$

 $\lim_{j \to -\infty} \|f_j(t)\| = 0$

Restated as a condition on the subspaces:

$$\bigcap_{j=-\infty}^{\infty} V_j = \{0\}$$

- 2. A sequence of complementary subspaces, W_j , such that $V_j + W_j = V_{j+1}$
 - and $V_j \cap W_j = \{0\}$ (no overlap)

This is written as

 $V_j \oplus W_j = V_{j+1}$ (Direct sum)

Note: An orthogonal multiresolution will have W_j orthogonal to V_j : $W_j \ 2 \ V_j$. So orthogonality will ensure that $V_i \cap W_i = \{0\}$

We thus have

 $V_{1} = V_{0} \oplus W_{0}$ $V_{2} = V_{1} \oplus W_{1} = V_{0} \oplus W_{0} \oplus W_{1}$ $V_{3} = V_{2} \oplus W_{2} = V_{0} \oplus W_{0} \oplus W_{1} \oplus W_{2}$ \bigvee $V_{J} = V_{J-1} \oplus W_{J-1} = V_{0} \oplus \sum_{j=0}^{J-1} W_{j}$ \bigvee $L^{2}(\Re) = V_{0} \oplus \sum_{j=0}^{\infty} W_{j}$

 A scaling (dilation) law: If f(t) ∈ V_j then f(2t) ∈ V_{j+1}

 A shift (translation) law: If f(t) ∈ V_j then f(t-k) ∈ V_j k integer

 V₀ has a shift-invariant basis, {φ(t-k) : -∞ ≤ k ≤ ∞} W₀ has a shift-invariant basis, {w(t-k) : -∞ ≤ k ≤ ∞}

We expect that $V_1 = V_0 + W_0$ will have twice as many basis functions as V_0 alone. First possibility: { $\phi(t-k)$, w(t-k) : - $\infty \le k \le \infty$ } Second possibility: use the scaling law i.e. if $\phi(t-k) \in V_0$, then $\phi(2t-k) \in V_1$

So

 V_1 has a shift-invariant basis, { $\sqrt{2} \phi$ (2t-k): - $\infty \le k \le \infty$ }

Can we relate this basis for V₁ to the basis for V₀? We know that

$$V_0 \subset V_1$$

So any function in V_0 can be written as a combination of the basic functions for V_1 .

In particular, since $\phi(t) \in V_0$, we can write

 $\phi(t) = 2\sum_{k} h_0[k] \phi(2t - k)$

This is the Refinement Equation (a.k.a. the Two-Scale Difference Equation or the Dilation Equation). We also know that $W_0 = V_1 - V_0$ So $W_0 \subset V_1$

This means that any function in W_0 can also be written as a combination of the basic functions for V_1 . Since w(t) $\in W_0$, we can write

$$w(t) = 2\sum_{k} h_1[k] \phi(2t - k)$$
 Wavelet
Equation

Multiresolution Representations

Multiresolution Representations Geometry:

