18.330 Problem Set 6

Firmly due in class: Mon 29 Mar 04

Calculate the **<u>roof area</u>** of Kresge auditorium, working from the theory that this familiar object is shaped like a paraboloid of revolution

$$z = (a^2 - x^2 - y^2) / 2a$$
,

truncated by vertical cylinders of radius $\sqrt{3}$ a centered on the opposite vertices.

In the spirit of Gaussian quadrature:

(a) determine **polynomials** $p_0(x)$, $p_1(x)$ and $p_2(x)$ such that

$$\int_0^1 \sqrt{x} p_m(x) p_n(x) dx = 0 \quad \text{for } m \neq n ,$$

(b) find weights w_1 and w_2 such that the estimate

$$\int_{0}^{1} \sqrt{x} f(x) dx = w_{1} f(x_{1}) + w_{2} f(x_{2})$$

based on the roots x_1 and x_2 of $p_2(x)$ becomes exact for all <u>cubic</u> polynomials, and

(c) finally test this fancy folderol on the integral $\int_0^1 \sqrt{\sin x} \, dx$.

18

$$S = \sum_{k=1}^{\infty} (1/x_k)^2 ,$$

where x_k is the k-th positive root of x = tan x.

Work carefully here, and employ sensible extrapolations or some other finesse like $1 \, + \, 1/9 \, + \, 1/25 \, + \, 1/49 \, + \, 1/81 \, + \, \ldots \, = \, \pi^2/8 \ .$

Then you should find that this sum S equals a very simple fraction!