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10 Some basic differential geometry

In the next section, we will look more closely at the the mathematical description of elastic
materials. To prepare this discussion, it is useful to briefly recall a few basics of differential
geometry.

10.1 Differential geometry of curves

Consider a continuous curve r(t) € R?, where ¢ € [0, T]. The length of the curve is given by

T
L= [ il (222)
0
where 7(t) = dr/dt and || - || denotes the Euclidean norm. The local unit tangent vector is
defined by
/ia
[[7]

The unit normal vector, or unit curvature vector, is

(I—tt)-#

T &0 7 (224)

n —
Unit tangent vector £(¢) and unit normal vector 7(t) span the osculating (‘kissing’) plane
at point ¢. The unit binormal vector is defined by

(I—-tt)- (I —nn)- -7

(I =tt)- (I —mn)- 7| (225)

The orthonormal basis {t(t),n(t),b(t)} spans the local Frenet frame.
The local curvature x(t) and the associated radius of curvature p(t) = 1/k are defined
by

~-

K(t) = \TT\T (226)

and the local torsion 7(t) by

T(t) = T (227)



Plane curves satisfy, by definition, b = const. or, equivalently, 7 = 0.
Given ||7||, (t), 7(f) and the initial values {£(0),7(0),b(0)}, the Frenet frames along
the curve can be obtained by solving the Frenet-Serret system

1 t 0 w« O t
— n = —K 0 T n. (2283)
171\ % 0 -7 0/ \b
The above formulas simplify if ¢ is the arc length, for in this case ||7|| = 1.

As a simple example (which is equivalent to our shortest path problem) consider a
polymer confined in a plane. Assume the polymer’s end-points are fixed at (x,y) = (0,0)
and (z,y) = (0, L), respectively, and that the ground-state configuration corresponds to a
straight line connecting these two points. Denoting the tension? by ~, adopting the param-
eterization y = h(x) for the polymer and assuming that the bending energy is negligible,
the energy relative to the ground-state is given by

E:y[/odeW—L], (229)

where h, = h/(z). Restricting ourselves to small deformations, |h;| < 1, we may approxi-
mate

~ [E
E~ / dx hi. (230)
2 Jo

Minimizing this expression with respect to the polymer shape h yields the Euler-Lagrange
equation

hes = 0. (231)

10.2 Two-dimensional surfaces
We now consider an orientable surface in R3. Possible local parameterizations are
F(s1,589) € R (232)

where (s1,s2) € U C R2. Alternatively, if one chooses Cartesian coordinates (s1,s2) =
(z,y), then it suffices to specify

z = f(x,y) (233a)
or, equivalently, the implicit representation
O(x,y,2) =2z — f(z,y). (233b)
The vector representation (232) can be related to the ‘height’ representation (233a) by

F(z,y) = Y (234)
f(z,y)

9~ carries units of energy/length.
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Denoting derivatives by F; = 0,, F, we introduce the surface metric tensor g = (g;;) by
gij = Fi- Fj, (235a)

abbreviate its determinant by
|g| == det g, (235D)

and define the associated Laplace-Beltrami operator V? by

1 _
V2h = 78i(gij1\/\g|8jh), (235¢)

Vgl

for some function h(si,s2). For the Cartesian parameterization (234), one finds explicitly

1 0
fx fy

and, hence, the metric tensor

B _(F,-F, F,-F)\ [(14+f2 f.f
g—(gij)—<Fy_Fr Fy-Fz>_(fyfx 1+;§> (237a)

and its determinant
gl =1+ f7+ 1}, (237b)

where f, = 0,f and f, = 0,f. For later use, we still note that the inverse of the metric
tensor is given by

-1 _ =1\ _ 1 1+f2 _fxf
7 =6 = (O TR) (257

Assuming the surface is regular at (s1,s2), which just means that the tangent vectors Fy
and F'5 are linearly independent, the local unit normal vector is defined by
FiNFy

N=—_""_. 238
7\ A F (238)

In terms of the Cartesian parameterization, this can also be rewritten as

Vo 1 —Ja

IVl e\

Here, we have adopted the convention that {F;, F'2, N} form a right-handed system.

To formulate ‘geometric’ energy functionals for membranes, we still require the concept
of curvature, which quantifies the local bending of the membrane. We define a 2 x 2-
curvature tensor R = (R;;) by

N

(239)

Rij = N - (Fy) (240)
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and local mean curvature H and local Gauss curvature K by
1
H = tr (g'R), K =det(g ' R). (241)

Adopting the Cartesian representation (233a), we have

0 0 0
F,.=10 ) F,=F,=1]0 ) F,, =10 (242a)
fCE$ fxy fyy
yielding the curvature tensor
N-F N-F 1 for [ )
( J> (N'Fyar N'Fyy) (fyw fyy ( )

1. R by k1 and ko, we obtain for the mean

Denoting the eigenvalues of the matrix ¢~

curvature
]. 1 + 2 xxr — 2 x X + ]- + 2
1= L o+ vy = LI o0 = 2ehibn + (4 f) 13
2 20+ f2+ 1)
and for the Gauss curvature
2
K =Ky kg = Jootuy = Joy (244)

I+ f2+ 1%

An important result that relates curvature and topology is the Gauss-Bonnet theo-
rem, which states that any compact two-dimensional Riemannian manifold M with smooth
boundary OM, Gauss curvature K and geodesic curvature k, of OM satisfies the integral
equation

/ KdA+j{ kg ds =27 x(M). (245)
M oM

Here, dA is the area element on M, ds the line element along OM, and x(M) the Euler
characteristic of M. The latter is given by x(M) = 2 — 2g, where g is the genus (number of
handles) of M. For example, the 2-sphere M = S? has g = 0 handles and hence x(S?) = 2,
whereas a two-dimensional torus M = T? has g = 1 handle and therefore x(T?) = 0.

Equation (245) implies that, for any closed surface, the integral over K is always a
constant. That is, for closed membranes, the first integral in Eq. (245) represents just a
trivial (constant) energetic contribution.

10.3 Minimal surfaces

Minimal surfaces are surfaces that minimize the area within a given contour M,

A(M|OM) = /M dA = min! (246)
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Assuming a Cartesian parameterization z = f(z,y) and abbreviating f; = 0;f as before,
we have

dA = +/|g|dzdy = \/1+ fZ + f2 dvdy =: L dxdy, (247)

and the minimum condition (246) can be expressed in terms of the Euler-Lagrange equations

5A oL
=57 = _31'@7;‘ (248)

Inserting the Lagrangian £ = \/|g|, one finds

0

fr +a, fy
VIt R+ I+ 2+ 1

which may be recast in the form

(L4 f2) fox = 2fufyfoy + L+ D,
e by ) T (250)

0=— |0, (249)

Thus, minimal surfaces satisfy
H=0 =4 K1 = —K2, (251)

implying that each point of a minimal surface is a saddle point.

10.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich proposed in 1973 the following geometric curvature energy per unit area for a closed
membrane

€= %(2H — )’ + kg K, (252)

where constants k., kg are bending rigidities and ¢ is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

EC:/dAe—l—a/dA—i—Ap/dV, (253)

where o is the surface tension and Ap the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation®

Ap — 20H + ko(2H — ¢o)(2H? + coH — 2K) + k. V?*(2H — ¢p) = 0, (254)

10The full derivation can be found in Chapter 3 of Z.-C. Ou-Yang, Geometric Methods in the Elastic
Theory of Membranes in Liquid Crystal Phases(World Scientific,Singapore, 1999).
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where V2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (254) uses
our earlier result

SA

5 —2H, (255)
and the fact that the volume integral may be rewritten ast-
V:/dV:/dA;F-N, (256)
which gives
?Jf 1, (257)

corresponding to the first term on the rhs. of Eq. (254).
For open membranes with boundary M, there is no volume constraint and a plausible
energy functional reads

Eoz/dAe+a/dA—|—’y?{ ds, (258)
oM

where « is the line tension of the boundary. In this case, variation yields not only the
corresponding shape equation but also a non-trivial set of boundary conditions.

"Here, we made use of the volume formula dV = %h dA for a cone or pyramid of height h = F - N .
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