
18.354J Nonlinear Dynamics II: Continuum Systems  

14 Low-Reynolds number limit

In this section, we look at the limit of Re → 0 which is relevant to the construction of
microfluidic devices and also governs the world of swimming microbes.
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Bacteria and eukaryotic cells achieve locomotion in a fluid through a self-induced change
of shape: Escherichia coli propel themselves by rotating a helically shaped bundle of flagella,
much like a corkscrew penetrating into a cork. Sperm cells move by inducing a wave-like
deformation in a thin flagellum or cilium, whereas algae and other organisms move by
beating two or more cilia in a synchronized manner (see slides).

Because of their tiny size, these microswimmers operate at very low Reynolds number,
i.e., inertial and turbulent effects are negligible15. In this regime, swimming mechanisms
are very different from employed by humans and other animals. In particular, any micro-
bial swimming strategy must involve time-irreversible motion. Whilst moving through the
liquid, a swimmer modifies the flow of the surrounding liquid. This can lead to an effective
hydrodynamic interactions between nearby organisms, which can be attractive or repulsive
depending on the details of the swimming mechanism. In reality, such deterministic forces
are usually perturbed by a considerable amount of thermal or intrinsic noise, but we will
neglect such Brownian motion effects here.

14.1 Stokes equations

If the Reynolds number is very small, Re � 1, the nonlinear NSEs (354) can be approxi-
mated by the linear Stokes equations16

0 = ∇ · u, (359a)

0 = µ∇2u−∇p+ f . (359b)

The four equations (359) determine the four unknown functions (u, p). However, to uniquely
identify such solutions, these equations must still be endowed with appropriate initial and
boundary conditions, such as for example{

u(t,x) = 0,
as |x| → ∞. (360)

p(t,x) = p ,∞

Note that, by neglecting the explicit time-dependent inertial terms in NSEs, the time-
dependence of the flow is determined exclusively and instantaneously by the motion of the
boundaries and/or time-dependent forces as generated by the swimming objects.

14.2 Oseen’s solution

Consider the Stokes equations (359) for a point-force

f(x) = F δ(x). (361)

15This is equivalent to larger animals swimming through a bath of treacle.
16More precisely, by replacing Eq. (354) with Eq. (359), it is assumed that for small Reynolds numbers

R̃e(t,x) := |%(u · ∇)u|/(µ∇2u) ' UL(%/µ)� 1 one can approximate

% [∂tu + (u · ∇)u]− µ∇2u ' −µ∇2u

The consistency of this approximation can be checked a posteriori by inserting the solution for u into the
lhs. of Eq. (354) .
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In this case, the solution with standard boundary conditions (360) reads17

Fjxj
ui(x) = Gij(x) Fj , p(x) = + p , (362a)

4π|x|3 ∞

where the Greens function Gij is given by the Oseen tensor

1
Gij(x) =

8πµ |x|

(
δij +

xixj
|

)
, (362b)

x|2

which has the inverse

−1

(
x| | − jxk

G (x) = 8πµ x δjk jk
2

)
, (363)

|x|2

as can be seen from

GijG
−1

(
xixj

= δjk ij +
|x|2

)(
δjk −

xjxk
2|x|2

x

)
= δik −

ixk
2|x|2

+
xixk xixj−
|x|2 |x|2

xjxk
2|x|2

= δik −
xixk
2|x|2

+
xixk
2|x|2

= δik. (364)

14.3 Stokes’s solution (1851)

Consider a sphere of radius a, which at time t is located at the origin, X(t) = 0, and
moves at velocity U(t). The corresponding solution of the Stokes equation with standard
boundary conditions (360) reads18

3
ui(t,x) = Uj

[
4

a

|x|

(
δji +

xjxi
|x|2

)
+

1

4

a3

|x|3

(
δji − 3

xjxi
,

|x|2

)]
(365a)

3
p(t,x) =

2
µa
Ujxj

+ p . (365b)
|x|3 ∞

If the particle is located atX(t), one has to replace xi by xi−Xi(t) on the rhs. of Eqs. (365).
Parameterizing the surface of the sphere by

a = a sin θ cosφ ex + a sin θ sinφ ey + a cos θ ez = aiei

where θ ∈ [0, π], φ ∈ [0, 2π), one finds that on this boundary

u(t,a(θ, φ)) = U , (366a)

3
p(t,a(θ, φ)) =

2

µ

a2
Uj aj(θ, φ) + p∞, (366b)

17Proof by insertion.
18Proof by insertion.
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corresponding to a no-slip boundary condition on the sphere’s surface. The O(a/|x|)-
contribution in (365a) coincides with the Oseen result (362), if we identify

F = 6π µaU . (367)

The prefactor γ = 6π µa is the well-known Stokes drag coefficient for a sphere.
The O[(a/|x|)3]-part in (365a) corresponds to the finite-size correction, and defining the

Stokes tensor by

1
Sij = Gij +

24πµ

a2

|x|3

(
δji − 3

xjxi
2

)
, (368)

|x|

we may rewrite (365a) as19

ui(t,x) = SijFj . (369)

14.4 Dimensionality

We saw above that, in 3D, the fundamental solution to the Stokes equations for a point
force at the origin is given by the Oseen solution

Fjxj
ui(x) = Gij(x) Fj , p(x) = + p , (370a)

4π|x|3 ∞

where

1
Gij(x) =

8πµ |x|

(
δij +

xixj
|

)
, (370b)

x|2

It is interesting to compare this result with corresponding 2D solution

Fjxj
ui(x) = Jij(x)Fj , p = + p , x = (x, y) (371a)

2π|x|2 ∞

where

1
Jij(x) =

4πµ

[
−δij ln

(
|x|
a

)
+
xixj
|

]
(371b)

x|2

with a being an arbitrary constant fixed by some intermediate flow normalization condi-
tion. Note that (371) decays much more slowly than (370), implying that hydrodynamic
interactions in 2D freestanding films are much stronger than in 3D bulk solutions.

To verify that (371) is indeed a solution of the 2D Stokes equations, we first note that
generally

x
∂j |x| x 1/2 − /2 j

= ∂j(
1

ixi) = xj(xixi) = (372a)
|x|

∂ |x|−n = ∂ (x x )−n/2 = −nx (x x )−(n+2)/2 xj
j j i i j i i = −n

|x|n+2
. (372b)

19For arbitrary sphere positions X(t), replace x→ x−X(t).

73



From this, we find

Fi
∂ip =

2π|x|2
− 2

Fjxjxi
2π|x|4

=
Fj

2π|x|2

(
δij − 2

xjxi
|

)
(373)

x|2

and

1
∂kJij =

4πµ
∂k

[
−δij ln

(
|x|
a

)
+
xixj
|x|2

1

]
=

[
1−δij

4πµ |x|
∂k|x|+ ∂k

(
xixj
|x|2

)]
=

1 x
δ

4πµ

[
− k

ij |x|2
+

(
δik

xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|

)]
. (374)

x|4

To check the incompressibility condition, note that

1
∂iJij =

4πµ

[
−δij

xi
|x|2

+

(
δii

xj
|x|2

+ δji
xi
|x|2
− xixjxi

2|x|4

)]
=

1 x

4πµ

(
− j

|x|2
+ 2

xj
|x|2

+
xj
|x|2
− 2

xj
|x|2

= 0,

)
(375)

which confirms that the solution (371) satisfies the incompressibility condition ∇ · u = 0.
Moreover, we find for the Laplacian

∂k
∂k∂kJij =

4πµ

[
−δij

xk
|x|2

+ δik
xj
|x|2

+ δjk
xi
|x|2
− 2
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|x|4

]
=

1

4
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δij∂k
πµ |x|2

)
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|x|2

)
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|x|2
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− 2∂k

(
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=
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[
− ij

(
|x|2
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− 2

xjxi
|x|4

)
+
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|x|2
− 2
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2
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1 δ

2πµ
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|x|2
− 2
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|

)
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x|4

Hence, by comparing with (373), we see that indeed

−∂ip+ µ∂k∂kui = −∂ip+ µ∂k∂kJijFj = 0. (377)

The difference between 3D and 2D hydrodynamics has been confirmed experimentally
for Chlamydomonas algae.

74



14.5 Force dipoles

In the absence of external forces, microswimmers must satisfy the force-free constraint. This
simplest realization is a force-dipole flow, which provides a very good approximation for the
mean flow field generated by an individual bacterium but not so much for a biflagellate
alga.

To construct a force dipole, consider two opposite point-forces F+ = −F− = Fex
located at positions x+ = ±`ex. Due to linearity of the Stokes equations the total flow at
some point x is given by

ui(x) = Γ (x− x+)F+
j + Γij(x− x−[ ij ] )Fj

−

= Γij(x− x+)− Γij(x− x−) F+
j

= [Γij(x− `ex) − Γij(x+ `ex)]F+
j (378)

where Γij = Jij in 2D and Γij = Gij in 3D. If |x| � `, we can Taylor expand Γij near ` = 0,
and find to leading order

ui(x) '
{

[Γ ij

[
+

ij(x) − Γ (x)]− x ∂kΓ (x) − x−∂ Γ (x) F+
k ij k k ij j

= −2x+ [∂kΓij(x)]F+
k j

]}
(379)

2D case Using our above result for ∂kJ
+

ij , and writing x = `n and F+ = Fn with
|n| = 1, we find in 2D

x+

ui(x) = − k

2πµ

[
−δij

xk
|x|2

+

(
δik

xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|x|4

)]
F+
j

= − F` x
n

2πµ

(
− knk

i |x|2
+ ni

xjnj xi
+ nknk|x|2 |x|2

− 2
nkxixjxknj
|x|4

)
and, hence,

F`
u(x) =

2

[
2(n · x̂)2 − 1

]
x̂ (380)

πµ|x|

where x̂ = x/|x|.

3D case To compute the dipole flow field in 3D, we need to compute the partial derivatives
of the Oseen tensor

1
Gij(x) =

8πµ|x|
(1 + x̂ix̂j) , x̂k =

xk
. (381)

|x|

Defining the orthogonal projector (Πik) for x̂k by

Πik := δik − x̂ix̂k, (382)
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we have

xk
∂k|x| = = x̂k, (383a)

|x|
δik xkxi Πik

∂kx̂i = − = , (383b)
|x| |x|3 |x|

1
∂nΠik = − (x̂iΠnk + x̂kΠni) , (383c)

|x|

and from this we find

x̂k κ
∂kGij = − G

| | ij + (Π
| | ikx̂j + Πjkx̂i)

x x 2

κ
=

(
−x̂kδij + x̂jδik + x̂iδjk − 3x̂kx̂ix̂j

)
. (384)

|x|2

Inserting this expression into (379), we obtain the far-field dipole flow in 3D

F`
u(x) = 3(n · x̂)2 − 1 x̂. (385)

4πµ x 2

[ ]
| |

Experiments show that Eq. (385) agrees well with the mean flow-field of a bacterium.
Upon comparing Eqs. (380) and (385), it becomes evident that hydrodynamic interac-

tions between bacteria in a free-standing 2D film are much longer-ranged than in a 3D bulk
solution. This is a nice illustration of the fact that the number of available space dimensions
can have profound effects on physical processes and interactions in biological systems.

14.6 Boundary effects

The results in the previous section assumed an quasi-infinte fluid. Yet, many swimming cells
and microorganisms operate in the vicinity of solid boundaries that can substantially affect
the self-propulsion and the hydrodynamic interactions of the organisms. Before tackling
finite boundaries geometries it is useful to recall how the terms in the HD equations can
be rewritten in cylindrical coordinates. The full Navier-Stokes equations are written out
completely in Acheson’s textbook for various coordinate systems. In the next part, we will
summarize those terms that are most important for our further discussion of cylindrical
confinements.

14.6.1 Reminder: Cartesian vs. cylindrical corodinates

Cartesian coordinates In a global orthornormal Cartesian frame {ex, ey, ez}, the po-
sition vector is given by x = xex + yey + zez, and accordingly the flow field u(x) can be
represented in the form

u(x) = ux(x, y, z) ex + uy(x, y, z) ey + uz(x, y, z) ez. (386a)

The gradient vector is given by

∇ = ex∂x + ey∂y + ez∂z, (386b)
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and, using the orthonormality ej · ek = δjk, the Laplacian is obtained as

∆ = ∇ · ∇ = ∂2 + ∂2
x y + ∂2

z . (386c)

One therefore finds for the vector-field divergence

∇ · u = ∂iui = ∂xux + ∂yuy + ∂zuz (386d)

and the vector-Laplacian 
∂2 xu

2
x + ∂yux + ∂2

zux
∆u = ∂i∂iu = ∂2 2 2

xuy + ∂yuy + ∂zuy

 . (386e)
∂2
xu + ∂2

z yuz + ∂2
zuz

Cylindrical coordinates The local cylindrical basis vectors {er, eφ, ez} are defined by

er = cosφex + sinφey , eφ = − sinφex + cosφey , φ ∈ [0, 2π) (387a)

and they form a orthonormal system ej · ek = δjk, where now i, j = r, φ, z. The volume
element is given by

dV = r sinφdr dφ dz. (387b)

In terms of cylindrical basis system, the position vector x can be expressed as

x = rer + ze 2
z , r =

√
x + y2 (387c)

and the flow field u(x) can be decomposed in the form

u(x) = ur(r, φ, z) er + uφ(r, φ, z) eφ + uz(r, φ, z) ez. (387d)

The gradient vector takes the form

1∇ = er∂r + eφ ∂φ + ez∂z, (387e)
r

yielding the divergence

1 1∇ · u = ∂r(rur) + ∂φuφ + ∂zuz. (387f)
r r

The Laplacian of a scalar function f(r, φ, z) is given by

∇2 1 1
f = ∂r(r∂rf) + ∂2 +

r 2 φf ∂2
zf (387g)

r

and the Laplacian of a vector field u(r, φ, z) by

∇2u = Lrer + Lφeφ + Lzez (387h)
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where

1 1 2 2 2 1
Lr = ∂r(r∂rur) + ∂φur + ∂

r 2 zur − ∂φuφ ur (387i)
r r2

−
r2

1 1
Lφ = ∂ 2

r(r∂ruφ) + ∂φu
2 2 1

φ + ∂
r zuφ + ∂φur uφ (387j)

r 2 r2
−
r2

1 1
Lz = ∂r(r∂ruz) + ∂2u

r 2 φ z + ∂2
zuz (387k)

r

Compared with the scalar Laplacian, the additional terms in the vector Laplacian arise
from the coordinate dependence of the basis vectors.

Similarly, one finds that, the r-component of (u·∇)u is not simply (u·∇)ur, but instead

1
er · [(u · ∇)u] = (u · ∇)u 2

r − u
r φ. (388)

Physically, the term u2
φ/r corresponds to the centrifugal force, and it arises because u =

urer + uφeφ + uzez and some of the unit vectors change with φ (e.g., ∂φeφ = −er).

14.6.2 Hagen-Poiseuille flow

To illustrate the effects of no-slip boundaries on the fluid motion, let us consider pressure
driven flow along a cylindrical pipe of radius R pointing along the z-axis. Assume that the
flow is rotationally√ symmetric about the z-axis and constant in z-direction, u = uz(r)ez,
where r = x2 + y2 is the distance from the center. For such a flow, the incompressibil-
ity condition ∇ · u = 0 is automatically satisfied, and the Stokes equation in cylindrical
coordinates (r, φ, z) reduces to

µ
0 = −∂zp+ ∂r(r∂ruz). (389)

r

Integrating twice over r, the general solution uz of this equation can be written as

1
uz(r) = (∂zp)r

2 + c1 ln r + c2, (390)
4µ

where c1 and c2 are constants to be determined by the boundary conditions. For a no-slip
boundary with uz(R) = 0 and finite flow speed at r = 0, one then finds

1
u (r) = − (∂ p)(R2 − r2
z z ). (391)

4µ

If we assume a linear pressure difference ∆P = P (L)− P (0) over a length L, then simply

z P (0) P
p(z = [P (L)− P (0)]

− (L)
)

L
⇒ ∂zp = − . (392)

L

The flow speed is maximal at center of the pipe

u+ P (0)− P (L)
z = R2 (393)

4µL
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and the average transport velocity is

1
uz =

∫ R

uz(r) 2πrdr = 0.5u+. (394)
πR2 z

0

Note that, for fixed pressure difference and channel length, the transport velocity uz de-
creases quadratically with the channel radius, signaling that the presence of boundaries can
substantially suppress hydrodynamic flows. To illustrate this further, we next consider a
useful approximation that can help to speed up numerical simulations through an effective
reduction from 3D to 2D flow.

14.6.3 Hele-Shaw flow

Consider two quasi-infinite parallel walls located at z = 0 and z = H. This setting is
commonly encountered in experiments that study microbial swimming in flat microfluidic
chambers. Looking for a 2D approximation of the Stokes equation, we may assume constant
pressure along the z-direction, p = P (x, y), and neglect possible flow components in the
vertical direction, uz = 0. Furthermore, using the above results for Hagen-Poiseuille flow
as guidance, we can make the ansatz

6z(H − z) 6z(H z)
u(x, y, z) = [Ux(x, y)ex + Ux(x, y)ey]

−≡ U(x, y), (395)
H2 H2

corresponding to a parabolic flow profile in the vertical direction that accounts for no-slip
boundaries at the walls; in particular, in the mid-plane

3
u(x, y,H/2) = U(x, y). (396)

2

We would like to obtain an effective equation for the effective 2D flow U(x, y). This can
be achieved by inserting ansatz (395) into the Stokes equations and subsequently averaging
along the z-direction20, yielding

0 = ∇ ·U , 0 = −∇P + µ∇2U − κU (397)

where κ = 12µ/H2 and ∇ is now the 2D gradient operator. Note that compared with
unconfined 2D flow in a free film, the appearance of the κ-term leads to an exponential
damping of hydrodynamic excitations. This is analogous to the exponential damping in the
Yukawa-potential (mediated by massive bosons) compared to a Coloumb potential (medi-
ated by massless photons). That ist, due to the presence of the no-slip boundaries, effective
2D hydrodynamic excitations acquire an effective mass ∝ 1/H2.

20 H
That is, by taking the integral (1/H)

∫
dz of both sides.

0
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