
20 Classical aerofoil theory

We now know that through conformal mapping it is possible to transform a circular wing into
a more realistic shape, with the bonus of also getting the corresponding inviscid, irrotational
flow field. Let’s consider some more realistic shapes and see what we get.

20.1 An elliptical wing

First let’s rotate our cylinder by an angle α. The complex potential becomes(
2

w(z) = u0 e−iα
R

z +
z
eiα
)
− iΓ

ln z. (486)
2π

Now, using the Joukowski transformation we want to turn our circular wing into an elliptical
wing. The transformation stipulates that Z = z + c2/z, so that

Z
z±(Z) =

2
±
√
Z2

− c2. (487)
4
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Considering z+(Z) [
w(z) = u0 z+(Z)e−iα

R2

+
z+(Z)

eiα
]
− iΓ

ln z+(Z). (488)
2π

If we choose c = R, then the ellipse collapses to a flat plate. The velocity components in
the Z plane are

dW
U − iV =

dZ
= u0 cosα− i(Γ + 2πu0Z sinα)

2π
√ , (489)
Z2 − 4R2

which can also be written as

dw/dz
U − iV =

dZ/dz
=
u0

(
e−iα − eiαR2

z2

)
− iΓ

2πz
(490)

1−R2/z2

On the surface of the body we have z = Reiθ, so the velocities become( )
u0 e−iα − e−2iθeiα − iΓe−iθ

U − iV = 2πR . (491)
1− e−2iθ

At θ = 0 and θ = π we are in trouble because the velocities are infinite. Notably, however,
this problem can be removed at θ = 0 if the circulation is chosen so that the numerator
vanishes [

e−iθ u (ei(θ−α)
0 − e−i(θ−α))− iΓ

U − iV = 2πR

]
. (492)

1− e−2iθ

Thus for a finite velocity at θ = 0 we require

u0(e−iα − eiα iΓ
)− = 0, (493)

2πR

giving
Γ = −4πu0R sinα. (494)

In this case flow leaves the trailing edge smoothly and parallel to the plate. Note that it is
not possible to cancel out singularities at both ends simultaneously, as we have to rotate in
the opposite direction to cancel out the singularity at θ = π.

20.2 Flow past an aerofoil

What if we could now construct a mapping with a singularity just on one side ? This we
can do by considering a shifted circle, that passes through z = R but encloses z = −R. In
this case we obtain an aerofoil with a rounded nose but a sharp trailing edge. The boundary
of the appropriate circle is prescribed by

z = −λ+ (a+ λ)eiθ, (495)

where θ is a parameter. First we must modify the complex potential for flow past a cylinder
to take account of this new geometry. We have that[

2

w(z) = u0 (z + λ)e−iα
(R+ λ)

+
(z + λ)2

eiα
]
− iΓ

ln(z + λ). (496)
2π
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T√o find the complex potential for the aerofoil one must then substitute in z = Z/2 +
Z2/4−R2. Determining the velocities as before we find that

u− iv =
dW

dZ
=
dw/dz

dZ/dz
= u0

e−iα −
(
R+λ
z+λ

)2
− iΓ

2π(z+λ)

1− R2 . (497)
z2

The value of Γ that makes the numerator zero at the trailing edge is

Γ = −4πu0(R+ λ) sinα. (498)

The flow is then smooth and free of singularities everywhere (because we have successfully
trapped the rogue singularity inside the wing), and this is an example of the Kutta-Joukowski
condition at work.

Our goal in the reminder of this part is to show that our earlier results FL = ρ`u0Γ and
FD = 0 are unaffected by the wing shape. To this end, we first derive Blasius’ lemma and
then the Kutta-Joukowski theorem.

20.3 Blasius’ lemma

To derive Blasius’ lemma, we consider the force acting per unit length on the wing, f =
F /` = (fx, fy), which is obtained by integrating the pressure over the (now arbitrary)
surface contour ∂S ∮

f = − pn ds (499)
∂S

where n is the outward surface normal vector and ds the arc length. Denote by dz = dx+idy
a small change along the curve ∂S. In complex notation, the normal element n ds can then
be expressed as

−idz = dy − idx, (500)

and Eq. (499) can be rewritten as ∮
f := fx + ify = i p dz. (501)

From Bernoulli we have that p = p 2
0 − ρ|v| /2, where

dw
v = vx − ivy =

dz
, |v|2 = vv̄ = v2

x + v2
y =

∣∣∣∣dwdz
∣∣∣∣2 . (502)

Thus, we find

f = i

∮ (
p0 −

ρ

2
|v|2
)
dz = −i ρ

∮
|v|2 dz (503)

2

Taking the complex conjugate, we have

ρ
f̄ = fx − ify = i

∮
|v|2 dz̄. (504)

2
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Furthermore, since v is parallel to z on boundary (which is a stream line), we may use

0 = vxdy − vydx (505)

to rewrite

v2 dz = (vx − ivy)2(dx+ idy)

= (v2
x − v2

y − 2ivxvy)(dx+ idy)

= v2dx− v2 2
x ydx− 2ivxvydx+ vxidy − v2

yidy + 2vxvydy

= v2
xdx− v2

ydx− 2iv2
xdy + v2

xidy − v2
yidy + 2v2

ydx

= v2
xdx+ v2

ydx− v2
xidy − v2

yidy

= (v2
x + v2

y)dx− (v2
x + v2

y)idy

= (v2 2
x + vy)(dx− idy)

= |v|2 dz̄ (506)

Hence,

ρ
f̄ = i

2

∮
v2 dz = i

ρ

2

∮ (
dw
)2

dz (507)
dz

which is the statement of the Blasius lemma.

20.4 Kutta-Joukowski theorem

We now use Blasius’ lemma to prove the Kutta-Joukowski lift theorem. For flow around a
plane wing we can expand the complex potential in a Laurent series, and it must be of the
form

dw

dz
= a0 +

a−1

z
+
a−2

+ ... (508)
z2

Higher powers of z cannot appear if the flow remains finite at |z| → ∞ and, in this case,
we can identify

a0 = vx(∞)− ivy(∞). (509)

In particular, if the wing moves along the x-axis and surrounding gas is at rest, then simply
a0 = vx(∞).

To obtain the physical meaning of a−1, we note that by virtue of the residues theorem26

1
a−1 =

2πi

∮
dw

dz
dz (510)

26Let’s assume some otherwise analytic∑ function f(z) has a pole at z = 0. The residue is the coefficient
a−1 of the Laurent series f(z) = ∞ k

k=−∞ akz . The residue theorem states that for a positively oriented
simple closed curve γ around z = 0 ∮

f(z)dz = 2πi a−1.
γ
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Computing the integral on the rhs. gives∮
dw

∮
dz = (vx − ivy)(dx+ idy)

dz ∮ ∮
= (vxdx+ vydy) + i (vxdy − vydx) (511)

The last integral vanishes as the boundary is stream line, see Eq. (505), so that

1
a−1 =

2πi

∮
v · dx =

Γ
. (512)

2πi

where Γ is the circulation defined above.
To evaluate the rhs. in Eq. (507), we note that to leading order(

dw

dz

)2

' a0 + 2
a0a−1

z
= a0 +

a0Γ

πiz
(513)

Thus, using the residue theorem, we find

f̄ = fx − ify = i
ρ

2

(
2πi

a0Γ
)

= iρΓa0 = ρΓvy(∞) + iρΓvx(∞). (514)
πi

Recall that FD = `fx and FL = `fy, this is indeed the generalization of our earlier results
for drag and lift on a cylinder, if we identify vy(∞) = 0 and vx(∞) = −u0. Note that the
results FD = 0 is again a manifestation of d’Alembert’s paradox (now for arbitrarily shaped
wings), which can be traced back to the fact that we neglected the viscosity terms in the
Navier-Stokes equations.

98



MIT OpenCourseWare
http://ocw.mit.edu

18.354J / 1.062J / 12.207J Nonlinear Dynamics II: Continuum Systems
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/
http://ocw.mit.edu/terms



