
3 Dimensionless groups

A formal justification of the dimensional analysis approach in the previous section comes
from Buckingham’s Pi Theorem. Consider a physical problem in which the dependent
parameter is a function of n − 1 independent parameters, so that we may express the
relationship among the variables in functional form as

q1 = g(q2, q3, ..., qn), (35a)

where q1 is the dependent parameter, and q2, ..., qn are the n− 1 independent parameters.
Mathematically, we can rewrite the functional relationship in the equivalent form

0 = f(q1, q2, ..., qn). (35b)

where f = q1 − g(q2, q3, ..., qn). For example, for the period of a pendulum we wrote
τ = τ(l, g,m), but we could just as well have written f(τ, l, g,m) = 0. The Buckingham Pi
theorem states that given a relation of the form (35), the n parameters may be grouped into
n−d independent dimensionless ratios, or dimensionless groups Πi, expressible in functional
form by

Π1 = G(Π2,Π3, ...,Πn−d), (36a)

or, equivalently,
0 = F (Π1,Π2, ...,Πn−d), (36b)

where d is the number of independent dimensions (mass, length, time...). The formal
proof can be found in the book Scaling, Self Similarity and Intermediate Asymptotics by
Barenblatt. The Pi theorem does not predict the functional form of F or G, and this must
be determined experimentally. The n − d dimensionless groups Πi are independent. A
dimensionless group Πi is not independent if it can be formed from a product or quotient
of other dimensionless groups in the problem.

3.1 The pendulum

To develop an understanding of how to use Buckingham’s Pi theorem, let’s first apply it
to the problem of a swinging pendulum, which we considered in the previous lecture. We
argued that the period of the pendulum τ depends on the length l and gravity g. It cannot
depend on the mass m since we cannot form a dimensionless parameter including m in our
list of physical variables. Thus

τ = τ(l, g), (37a)

or alternatively
0 = f(τ, l, g). (37b)

We have n = 3 and d = 2, so the problem has one dimensionless group

Π1 = τ lαgβ. (38)

The relevant dimensions are [τ ] = T, [l] = L, [g] = LT−2, so for Π1 to be dimensionless
equate the exponents of the dimension to find

1− 2β = 0,

α+ β = 0,
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which are satisfied if α = −1
2 and β = 1

2 . Thus

Π1 = τ
√
g/l. (39)

We thus see Π1 is just the constant of proportionality c from above. Thus we have√
c = τ g/l (40)

where c is a constant to be determined from an experiment.

3.2 Taylor’s blast

This is a famous example, of some historical and fluid mechanical importance. The story
goes something like this. In the early 1940’s there appeared a picture of an atomic blast on
the cover of Life magazine. GI Taylor, a fluid mechanician at Cambridge, wondered what
the energy of the blast was. When he called his colleagues at Los Alamos and asked, they
informed him that it was classified information, so he resorted to dimensional analysis. In a
nuclear explosion there is an essentially instantaneous release of energy E in a small region
of space. This produces a spherical shock wave, with the pressure inside the shock wave
several thousands of times greater than the initial air pressure, that can be neglected. How
does the radius R of this shock wave grow with time t? The relevant parameters are E, the
density of air ρ and time t. Thus

R = R(E, ρ, t) (41a)

or
0 = f(R,E, ρ, t). (41b)

The dimensions of the physical variables are [E] = ML2T−2, [t] = T, [R] = L and [ρ] =
ML−3. We have n = 4 physical variables and d = 3 dimensions, so the Pi theorem tells us
there is one dimensionless group, Π1. To form a dimensionless combination of parameters
we assume

Π1 = EtαρβRγ (42)

and equating the exponents of dimensions in the problem requires that

1 + β = 0,

α− 2 = 0,

2− 3β + γ = 0.

It follows that α = 2, β = −1 and γ = −5, giving

Et2
Π1 = . (43)

ρR5

Assuming that Π1 is constant gives (
E

R = c
ρ

) 1
5

t
2
5 . (44)
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The relation shows that if one measures the radius of the shock wave at various instants in
time, the slope of the line on a log-log plot should be 2/5. The intercept of the graph would
provide information about the energy E released in the explosion, if the constant c could
be determined. Since information about the development of blast with time was provided
by the sequence of photos on the cover of Life magazine, Taylor was able to determine the
energy of the blast to be 1014 Joules (he estimated c to be about 1 by solving a model
shock-wave problem), causing much embarrassment.

3.3 The drag on a sphere

Now what happens if you have two dimensionless groups in a problem? Let’s consider the
problem of the drag on a sphere. We reason that the drag on a sphere D will depend on
the relative velocity, U , the sphere radius, R, the fluid density ρ and the fluid viscosity µ.
Thus

D = D(U,R, ρ, µ) (45a)

or
0 = f(D,U,R, ρ, µ). (45b)

Since the physical variables are all expressible in terms of dimensions M,L and T , we have
n = 5 and d = 3, so there are two dimensionless groups. There is now a certain amount
of arbitrariness in determining these, however we look for combinations that make some
physical sense. For our first dimensionless group, we choose the Reynolds number

ρUR
Π1 = , (46)

µ

as we know that it arises naturally when you nondimensionalise the Navier-Stokes equations.
For the second we choose the combination

Π = DραUβ2 Rγ , (47)

which, if we replaced D with µ, would just give the Reynolds number. Equating the
exponents of mass length and time gives, α = −1, β = −2 and γ = −2. Thus

D
Π2 = , (48)

ρU2R2

and this is called the dimensionless drag force. Buckingham’s Pi theorem tells us that we
must have the functional relationship

Π2 = G(Π1) (49)

or alternatively
D

= G(Re). (50)
ρU2R2

The functional dependence is determined by experiments. It is found that at high Reynolds
numbers G(Re) = 1, so that

D = ρU2R2. (51)
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This is known as form drag, in which resistance to motion is created by inertial forces on
the sphere. At low Reynolds numbers G(Re) ∝ 1/Re so that

D ∝ µUR. (52)

This is Stokes drag, caused by the viscosity of the fluid.
The power of taking this approach can now be seen. Without dimensional analysis, to

determine the functional dependence of the drag on the relevant physical variables would
have required four sets of experiments to determine the functional dependence of D on
velocity, radius, viscosity and density. Now we need only perform one set of experiments
using our dimensionless parameters and we have all the information we need.
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