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1 Math basics

1.1 Derivatives and differential equations

In this course, we will mostly deal with ordinary differential equations (ODEs) and partial
differential equations (PDEs) real-valued scalar or vector fields. Usually, non-bold symbols
will be reserved for scalar objects f (e.g., mass density) and bold font f = (f1, f2, . . .)
for vector-valued objects, such as time-dependent position vectors x(t) or velocity fields
v(t,x) = (v1(t,x), v2(t,x), . . .).

ODEs are equations that contain derivatives of scalar or vector-valued or, more generally,
tensor-valued functions f(x) of a single variable x. Depending on context, we will denote
derivatives of such functions by

df ˙= f = f ′ = fx (1)
dt

PDEs are equations that contain derivatives of scalar or vector-valued functions f(x1, x2, . . .)
of more than one variable. Depending on context, we will denote partial derivatives by

∂f
= ∂x f = ∂if = fx = f,i (2)

∂x i i
i

In standard 3D Cartesian coordinates (x1, x2, x3) defined with respect to some global
orthonormal frame Σ, spanned by the basis vectors (e1, e2, e3), the gradient-operator ∇ is
defined by

∑3

∇ = ∂xe1 + ∂ye2 + ∂ze3 = ∂iei ≡ ∂iei, (3)
i=1

where we have introduced the Einstein summation convention on the rhs. Applying ∇ to a
scalar function f gives a vector

∇f = (∂1f, ∂2f, . . .) (4)

whereas application of ∇ to a tensorial quantity depends on the choice of the product: For
instance, in the case of a 3D vector field v(t,x), we can obtain a scalar field called divergence

∇ · v ≡ ∂ivi, (5a)

another (pseudo-)vector field called curl

∇∧ v ≡ (εijk∂jvk) (5b)

and the gradient matrix

∇v ≡ (∂ivj). (5c)

The (scalar) Laplacian operator 4 in Cartesian coordinates is defined by∑
4 ≡ ∇2 ≡ ∂i∂i = ∂ii. (6)

i

Please recall how these operators look in cylindrical and spherical coordinates.
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1.2 Linear and nonlinear objects

A mathematical operator - or, more generally, some property – P defined on vectors or
functions f, g, is said to be linear, if it satisfies

P(αf + βg) = αP(f) + βP(g) (7)

Important examples are derivatives, integrals and expectation values.
A famous linear ODE, is the simple harmonic oscillator equation

ẍ(t) = −ω2x(t) (8)

which has fundamental sin- and cos-solutions, that can be used to construct more general
solutions by superposition.

An important (homogeneous) linear PDE, is Laplace’s equation

∇2f(t,x) = 0. (9)

Functions f satisfying this equation are called harmonic.
Later on, we will often try to approximate nonlinear PDEs through linear PDEs.

1.3 Complex numbers and functions

Although we will mostly deal with real fields in this course, it is sometimes helpful to rewrite
equations in terms of complex quantities, especially, when dealing with 2D hydrodynamic
problems. Complex numbers are 2D extensions of real numbers,

z = x+ iy ∈ C , i2 = −1 (10)

with real part <z = x ∈ R and imaginary part =z = y ∈ R. The complex conjugate of a
real number is given by

z̄ = x− iy (11)

and corresponds to a reflection at the real axis or, equivalently, at the line =(z) = 0.
Addition of complex numbers is linear

z = z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) = x+ iy (12)

corresponding to the addition of the two 2D vectors (x1, y1) and (x2, y2). In contrast,
complex multiplication mixes real and imaginary parts

z = z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2) = x+ iy (13)

A complex function is a map

f : C→ C , f(z) = (u(x, y), v(x, y)) (14)

that can be interpreted as a map from R2 → R2. A function f is said to be complex
differentiable (or analytic or holomorphic) if it satisfies the Cauchy-Riemann equations

∂xu = ∂yv , ∂yu = −∂xv (15a)
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By differentiating again, we find

∂2
xu = ∂x∂yv = −∂2

yu = 0 (15b)

∂2
yv = ∂y∂xu = −∂2

xv = 0; (15c)

(15d)

this means that analytic functions f = (u, v) are harmonic

∇2f = 0. (15e)

An analytic function that we will frequently encounter is the exponential function∑∞ zn
exp(z) =

k=0
k!

= 1 + z +
z

+ . . . (16)
2!

Euler’s formula

eiφ = cosφ+ i sinφ , φ ∈ R (17)

relates exp to the trigonometric sin-and cos-functions.
When dealing with axisymmetric problems it is often advantageous to use the polar

representation of a complex number
√

z = reiφ , r = |z| = zz̄ ∈ R+
0 , , φ = arctan 2(y, x) ∈ [0, 2π) (18)

From the properties of the exp-function, it follows that the multiplication of complex num-
bers

z = z1z2 = r1e
iφ1r2e

iφ2 = r1r2e
i(φ1+φ2) (19)

corresponds to a combined rotation and dilatation.

1.4 Fourier transforms

The Fourier transform of a function f(t) is defined by

1
f̂(ω) = √

∫ ∞
dt eiωt f(t), (20a)

2π −∞

its the inverse is given by

1
f(t) = √

∫ ∞
dω e−iωt f̂(ω) (20b)

2π −∞

In particular, for the Dirac delta-function δ(t)

1
δ̂(ω) = √

∫ ∞
dt eiωt

1
δ(t) =

2π −∞
√

2π
, (21)

yielding the useful Fourier representation

δ(t) =
1
∫ ∞

dω e−iωt (22)
2π −∞

These definitions and properties extend directly to higher dimensions.
A main advantage of Fourier transformations is that they translate differential equations

into simpler algebraic equations.
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2 Dimensional analysis

Before moving on to more ‘sophisticated things’, let us think a little about dimensional
analysis and scaling. On the one hand these are trivial, and on the other they give a simple
method for getting answers to problems that might otherwise be intractable. The idea
behind dimensional analysis is very simple: Any physical law must be expressible in any
system of units that you use. There are two consequences of this:

• One can often guess the answer just by thinking about what the dimensions of the
answer should be, and then expressing the answer in terms of quantities that are
known to have those dimensions1.

• The scientifically interesting results are always expressible in terms of quantities that
are dimensionless, not depending on the system of units that you are using.

One example of a dimensionless number relevant for fluid dynamics that we have already
encountered in the introductory class is the Reynolds number, which quantifies the relative
strength of viscous and inertial forces. Another example of dimensional analysis that we will
study in detail is the solution to the diffusion equation for the spreading of a point source.
The only relevant physical parameter is the diffusion constant D, which has dimensions of
L2T−1. We denote this by writing [D] = L2T−1. Therefore the characteristic scale over√
which the solution varies after time t must be Dt. This might seem like a rather simple
result, but it expresses the essence of solutions to the diffusion equation. Of course, we will
be able to solve the diffusion equation exactly, so this argument wasn’t really necessary. In
practice, however, we will rarely find useful exact solutions to the Navier-Stokes equations,
and so dimensional analysis will often give us insight before diving into the mathematics
or numerical simulations. Before formalising our approach, let us consider a few examples
where simple dimensional arguments intuitively lead to interesting results.

2.1 The pendulum

This is a trivial problem that you know quite well. Consider a pendulum with length L and
mass m, hanging in a gravitational field of strength g. What is the period of the pendulum?
We need a way to construct a quantity with units of√time involving these numbers. The only
possible way to do this is with the combination L/g. Therefore, we know immediately
that

τ = c
√
L/g. (23)

This result might seem trivial to you, as you will probably remember (e.g., from a previous
course) that c = 2π, if one solves the full dynamical problem for for small amplitude
oscillations. However, the above formula works even for large amplitude oscillations.

2.2 Pythagorean theorem

Now we try to prove the Pythagorean theorem by dimensional analysis. Suppose you are
given a right triangle, with hypotenuse length L and smallest acute angle φ. The area of

1Be careful to distinguish between dimensions and units. For example mass (M), length (L) and time
(T ) are dimensions, and they can have different units of measurement (e. g. length may be in feet or meters)
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the triangle is clearly
A = A(L, φ). (24)

Since φ is dimensionless, it must be that

A = L2f(φ), (25)

where f is some function we don’t know.
Now the triangle can be divided into two little right triangles by dropping a line from

the right angle which is perpendicular to the hypotenuse. The two right triangles have
hypotenuses that happen to be the other two sides of our original right triangle, let’s call
them a and b. So we know that the areas of the two smaller triangles are a2f(φ) and b2f(φ)
(where elementary geometry shows that the acute angle φ is the same for the two little
triangles as the big triangle). Moreover, since these are all right triangles, the function f is
the same for each. Therefore, since the area of the big triangle is just the sum of the areas
of the little ones, we have

L2f = a2f + b2f,

or
L2 = a2 + b2. (26)

2.3 The gravitational oscillation of a star

It is known that the sun, and many other stars undergo some mode of oscillation. The
question we might ask is how does the frequency of oscillation ω depend on the properties
of that star? The first step is to identify the physically relevant variables. These are the
density ρ, the radius R and the gravitational constant G (as the oscillations are due to
gravitational forces). So we have

ω = ω(ρ,R,G). (27)

The dimensions of the variables are [ω] = T−1, [ρ] = ML−3, [R] = L and [G] = M−1L3T−2.
The only way we can combine these to give as a quantity with the dimensions of time, is
through the relation √

ω = c Gρ. (28)

Thus, we see that the frequency of oscillation is proportional to the square root of the density
and independent of the radius. The determination of c requires a real stellar observation, but
we have already determined a lot of interesting details from dimensional analysis alone. For
the sun, ρ = 1400kg/m3, giving ω ∼ 3×10−4s−1. The period of oscillation is approximately
1 hour, which is reasonable. However, for a neutron star (ρ = 7 × 1011kgm−3) we predict
ω ∼ 7000s−1, corresponding to a period in the milli-second range.

2.4 The oscillation of a droplet

What happens if instead of considering a large body of fluid, such as a star, we consider a
smaller body of fluid, such as a raindrop. Well, in this case we argue that surface tension γ
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provides the relevant restoring force and we can neglect gravity. γ has dimensions of en-
ergy/area, so that [γ] = MT−2. The only quantity we can now make with the dimensions
of T−1 using our physical variables is √

ω = c
γ
, (29)

ρR3

which is not independent of the radius. For water γ = 0.07Nm−1 giving us a characteristic
frequency of 3Hz for a raindrop.

One final question we might ask ourselves before moving on is how big does the droplet
have to be for gravity to have an effect? We reason that the crossover will occur when the
two models give the same frequency of oscillation. Thus, when√

ρG =

√
γ

ρR3
(30)

we find that

Rc ∼
(

γ

ρ2G

) 1
3

(31)

This gives a crossover radius of about 10m for water.

2.5 Water waves

This is a subject we will deal with in greater detail towards the end of the course, but for
now we look to obtain a basic understanding of the motion of waves on the surface of water.
For example, how does the frequency of the wave depend on the wavelength λ? This is
called the dispersion relation.

If the wavelength is long, we expect gravity to provide the restoring force, and the
relevant physical variables in determining the frequency would appear to be the mass density
ρ, the gravitational acceleration g and the wave number k = 2π/λ. The dimensions of these
quantities are [ρ] = ML−3, [g] = LT−2 and [k] = L−1. We can construct a quantity with
the dimensions of T−1 through the relation √

ω = c gk. (32)

We see that the frequency of water waves is proportional to the square root of the wavenum-
ber, in contrast to light waves for which the frequency is proportional to the wavenumber.

As with a droplet, we might worry about the effects of surface tension when the wave-
length gets small. In this case we replace g with γ in our list of physically relevant variables.
Given that [γ] = MT−2, the dispersion relation must be of the form√

ω = c γk3/ρ, (33)

which is very different to that for gravity waves. If we look for a crossover, we find that the
frequencies of gravity waves and capillary waves are equal when√

k ∼ ρg/γ. (34)

This gives a wavelength of 1cm for water waves.
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3 Dimensionless groups

A formal justification of the dimensional analysis approach in the previous section comes
from Buckingham’s Pi Theorem. Consider a physical problem in which the dependent
parameter is a function of n − 1 independent parameters, so that we may express the
relationship among the variables in functional form as

q1 = g(q2, q3, ..., qn), (35a)

where q1 is the dependent parameter, and q2, ..., qn are the n− 1 independent parameters.
Mathematically, we can rewrite the functional relationship in the equivalent form

0 = f(q1, q2, ..., qn). (35b)

where f = q1 − g(q2, q3, ..., qn). For example, for the period of a pendulum we wrote
τ = τ(l, g,m), but we could just as well have written f(τ, l, g,m) = 0. The Buckingham Pi
theorem states that given a relation of the form (35), the n parameters may be grouped into
n−d independent dimensionless ratios, or dimensionless groups Πi, expressible in functional
form by

Π1 = G(Π2,Π3, ...,Πn−d), (36a)

or, equivalently,
0 = F (Π1,Π2, ...,Πn−d), (36b)

where d is the number of independent dimensions (mass, length, time...). The formal
proof can be found in the book Scaling, Self Similarity and Intermediate Asymptotics by
Barenblatt. The Pi theorem does not predict the functional form of F or G, and this must
be determined experimentally. The n − d dimensionless groups Πi are independent. A
dimensionless group Πi is not independent if it can be formed from a product or quotient
of other dimensionless groups in the problem.

3.1 The pendulum

To develop an understanding of how to use Buckingham’s Pi theorem, let’s first apply it
to the problem of a swinging pendulum, which we considered in the previous lecture. We
argued that the period of the pendulum τ depends on the length l and gravity g. It cannot
depend on the mass m since we cannot form a dimensionless parameter including m in our
list of physical variables. Thus

τ = τ(l, g), (37a)

or alternatively
0 = f(τ, l, g). (37b)

We have n = 3 and d = 2, so the problem has one dimensionless group

Π1 = τ lαgβ. (38)

The relevant dimensions are [τ ] = T, [l] = L, [g] = LT−2, so for Π1 to be dimensionless
equate the exponents of the dimension to find

1− 2β = 0,

α+ β = 0,
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which are satisfied if α = −1
2 and β = 1

2 . Thus

Π1 = τ
√
g/l. (39)

We thus see Π1 is just the constant of proportionality c from above. Thus we have√
c = τ g/l (40)

where c is a constant to be determined from an experiment.

3.2 Taylor’s blast

This is a famous example, of some historical and fluid mechanical importance. The story
goes something like this. In the early 1940’s there appeared a picture of an atomic blast on
the cover of Life magazine. GI Taylor, a fluid mechanician at Cambridge, wondered what
the energy of the blast was. When he called his colleagues at Los Alamos and asked, they
informed him that it was classified information, so he resorted to dimensional analysis. In a
nuclear explosion there is an essentially instantaneous release of energy E in a small region
of space. This produces a spherical shock wave, with the pressure inside the shock wave
several thousands of times greater than the initial air pressure, that can be neglected. How
does the radius R of this shock wave grow with time t? The relevant parameters are E, the
density of air ρ and time t. Thus

R = R(E, ρ, t) (41a)

or
0 = f(R,E, ρ, t). (41b)

The dimensions of the physical variables are [E] = ML2T−2, [t] = T, [R] = L and [ρ] =
ML−3. We have n = 4 physical variables and d = 3 dimensions, so the Pi theorem tells us
there is one dimensionless group, Π1. To form a dimensionless combination of parameters
we assume

Π1 = EtαρβRγ (42)

and equating the exponents of dimensions in the problem requires that

1 + β = 0,

α− 2 = 0,

2− 3β + γ = 0.

It follows that α = 2, β = −1 and γ = −5, giving

Et2
Π1 = . (43)

ρR5

Assuming that Π1 is constant gives (
E

R = c
ρ

) 1
5

t
2
5 . (44)
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The relation shows that if one measures the radius of the shock wave at various instants in
time, the slope of the line on a log-log plot should be 2/5. The intercept of the graph would
provide information about the energy E released in the explosion, if the constant c could
be determined. Since information about the development of blast with time was provided
by the sequence of photos on the cover of Life magazine, Taylor was able to determine the
energy of the blast to be 1014 Joules (he estimated c to be about 1 by solving a model
shock-wave problem), causing much embarrassment.

3.3 The drag on a sphere

Now what happens if you have two dimensionless groups in a problem? Let’s consider the
problem of the drag on a sphere. We reason that the drag on a sphere D will depend on
the relative velocity, U , the sphere radius, R, the fluid density ρ and the fluid viscosity µ.
Thus

D = D(U,R, ρ, µ) (45a)

or
0 = f(D,U,R, ρ, µ). (45b)

Since the physical variables are all expressible in terms of dimensions M,L and T , we have
n = 5 and d = 3, so there are two dimensionless groups. There is now a certain amount
of arbitrariness in determining these, however we look for combinations that make some
physical sense. For our first dimensionless group, we choose the Reynolds number

ρUR
Π1 = , (46)

µ

as we know that it arises naturally when you nondimensionalise the Navier-Stokes equations.
For the second we choose the combination

Π = DραUβ2 Rγ , (47)

which, if we replaced D with µ, would just give the Reynolds number. Equating the
exponents of mass length and time gives, α = −1, β = −2 and γ = −2. Thus

D
Π2 = , (48)

ρU2R2

and this is called the dimensionless drag force. Buckingham’s Pi theorem tells us that we
must have the functional relationship

Π2 = G(Π1) (49)

or alternatively
D

= G(Re). (50)
ρU2R2

The functional dependence is determined by experiments. It is found that at high Reynolds
numbers G(Re) = 1, so that

D = ρU2R2. (51)
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This is known as form drag, in which resistance to motion is created by inertial forces on 
the sphere. At low Reynolds numbers G(Re) ∝ 1/Re so that 

D ∝ µUR. (52) 

This is Stokes drag, caused by the viscosity of the fluid. 
The power of taking this approach can now be seen. Without dimensional analysis, to 

determine the functional dependence of the drag on the relevant physical variables would 
have required four sets of experiments to determine the functional dependence of D on 
velocity, radius, viscosity and density. Now we need only perform one set of experiments 
using our dimensionless parameters and we have all the information we need. 

4 Kepler’s problem and Hamiltonian dynamics 

Why do we study applied mathematics? Aside from the intellectual challenge, it is reason­
able to argue that we do so to obtain an understanding of physical phenomena, and to be 
able to make predictions about them. Possibly the greatest example of this, and the origin 
of much of the mathematics we do, came from Newton’s desire to understand the motion 
of the planets, which were known to obey Kepler’s laws. 

4.1 Kepler’s laws of planetary motion 

In the early seventeenth century (1609-1619) Kepler proposed three laws of planetary motion 

(i) The orbits of the planets are ellipses, with the Sun’s centre of mass at one focus of 
the ellipse. 

(ii) The line joining a planet and the Sun describes equal areas in equal intervals of time. 

(iii) The squares of the periods of the planets are proportional to the cubes of their semi-
major axes. 

These laws were based on detailed observations made by Tycho Brahe, and put to rest 
any notion that planets move in perfectly circular orbits. However, it wasn’t until Newton 
proposed his law of gravitation in 1687 that the origins of this motion were understood. 
Newton proposed that 

“Every object in the Universe attracts every other object with a force directed along a line 
of centres for the two objects that is proportional to the product of their masses and 

inversely proportional to the square of the separation of the two objects.” 

Based on this one statement, it is possible to derive Kepler’s laws. 

4.1.1 Second law 

Keplers second law is the simplest to derive, and is a statement that the angular momentum 
of a particle moving under a central force, such as gravity, is constant. By definition, the 
angular momentum L of a particle with mass m and velocity u is 

dr 
L = r ∧ m , (53)

dt 
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where r is the vector position of the particle. The rate of change of angular momentum is
given by

dL
= r ∧ f = r ∧ f(r)r̂ = 0, (54)

dt

where f(r)r̂ is the central force, depending only on the distance r = |r| and pointing in the
direction r̂ = r/r. It can therefore be seen that the angular momentum of a particle moving
under a central force is constant, a consequence of this being that motion takes place in a
plane. The area swept out by the line joining a planet and the sun is half the area of the
parallelogram formed by r and dr. Thus

1
dA =

2
|r ∧ dr| = 1

2

∣∣∣∣r ∧ drdt dt
∣∣∣∣ =

L
dt, (55)

2m

where L = |L| is a constant. The area swept out is therefore also constant.

4.1.2 First law

To prove Keplers first law consider the sun as being stationary (i.e., infinitely heavy), and
the planets in orbit around it. The equation of motion for a planet is

d2r
m = f(r)r̂. (56)
dt2

In plane polar coordinates

dr ˙= ṙr̂ + rθθ̂, (57a)
dt
d2r − ˙2 ¨ ˙= (r̈ rθ )r̂ + (rθ + 2ṙθ)θ̂. (57b)
dt2

In component form, equation (56) therefore becomes

˙m(r̈ − rθ2) = f(r), (58a)

¨ ˙m(rθ + 2ṙθ) = 0. (58b)

Putting (57a) into (53) gives ∣∣ r
L = ∣ d∣r ∧m ∣∣∣∣ = |mr2θ̇|. (59)

dt

Thus
r2θ̇ = l, (60)

where l = L/m is the angular momentum per unit mass. Given a radial force f(r), equa-
tions (58a) and (58b) can now be solved to obtain r and θ as functions of t. A more practical
result is to solve for r(θ), however, and this requires the definition of a new variable

1
r = . (61)

u
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Rewriting the equations of motion in terms of the new variable requires the identities

1
ṙ = −

u2
u̇ = − 1

u2

dθ du

dt dθ
= −l du

dθ
, (62a)

r̈ = −l d
dt

du

dθ
= −lθ̇ d

2u

dθ2
= −l2u2d

2u
. (62b)

dθ2

Equation (58a) becomes
d2u

dθ2
+ u = − 1

ml2u2
f

(
1
)
. (63)

u

This is the differential equation governing the motion of a particle under a central force.
Conversely, if one is given the polar equation of the orbit r = r(θ), the force function can be
derived by differentiating and putting the result into the differential equation. According
to Newtons law of gravitation f(r) = −k/r2, so that

d2u

dθ2
+ u =

k
. (64)

ml2

This has the general solution

k
u = Acos(θ − θ0) + , (65)

ml2

where A and θ0 are constants of integration that encode information about the initial
conditions. Choosing θ0=0 and replacing u by the original radial coordinate r = 1/u,(

k
r = Acosθ +

)−1

(66)
ml2

which is the equation of a conic section with the origin at the focus. This can be rewritten
in standard form

1 + ε
r = r0 , (67)

1 + εcosθ

where
Aml2

ε =
k

, r0 =
ml2

. (68)
k(1 + ε)

ε is called the eccentricity of the orbit:

• ε = 0 is a circle,

• ε < 1 is an ellipse,

• ε = 1 is a parabola and

• ε > 1 is a hyperbola.

For an elliptical orbit, r0 is the distance of closest approach to the sun, and is called the
perihelion. Similarly,

r1 = r0(1 + ε)/(1− ε) (69)

is the furthest distance from the sun and is called the aphelion. Orbital eccentricities are
small for planets, whereas comets have parabolic or hyperbolic orbits. Interestingly though,
Halley’s comet has a very eccentric orbit but, according to the definition just given, is not
a comet!
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4.1.3 Third law

To prove Keplers third law go back to equation (55). Integrating this area law over time
gives ∫ τ lτ

A(τ) = dA =
0

, (70)
2

where τ is the period of the orbit. The area A of an ellipse can also be written as A = πab
where a and b are the semi-major and semi-minor axes, yielding

lτ
= πab (71)

2

The ratio of a and b can be expressed in terms of the eccentricity

b

a
=
√

1− ε2. (72)

Using this expression to substitute b in (71)

2πa2

τ =
l

√
1− ε2 (73)

The length of the major axis is

2ml2
2a = r0 + r1 = . (74)

k(1− ε2)

Squaring (71) and replacing gives

τ2 4π2m
= a3, (75)

k

confirming Kepler’s 3rd law.

4.2 Hamiltonian dynamics of many-body systems

The Kepler problem is essentially a two-body problem. In the remainder of this course, we
will be interested in classical (non-quantum) systems that consist of N � 2 particles. The
complete microscopic dynamics of such systems is encoded in their Hamiltonian

∑N p2

H = n

n=1

+ U(x1, . . . ,xN ), (76a)
2mn

where mn, pn(t) and xn(t) denote the mass, momentum and position of the nth particle.
The first contribution on the rhs. of Eq. (76a) is the kinetic energy, and U is the potential
energy. For our purposes, it is sufficient to assume that we can decompose (76a) into a sum
of pair interactions

1
U(x1, . . . ,xN ) =

∑
Φ(xn,xk). (76b)

2
n,k:n6=k
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Given H, Newton’s equations can be compactly rewritten as

ẋn = ∇pnH , ṗn = −∇xnH. (77)

That this so-called Hamiltonian dynamics is indeed equivalent to Newton’s laws of motion
can be seen by direct insertion, which yields

p
ẋn = n , ṗn = mnẍn = −∇x

m nU. (78)
n

An important observation is that many physical systems obey certain conservation laws.
For instance, the Hamiltonian (76a) itself remains conserved under the time-evolution (77)

d ∑[ ]
H = (∇pnH) · ṗn + (∇x

dt nH) · ẋn∑n [ ]
= (∇pnH) · (−∇xnH) + (∇xnH) · ∇pnH ≡ 0. (79)

n

which is just the statement of energy conservation. Other important examples of conserved
quantities are total linear momentum and angular momentum,∑ ∑

P = pn , L = xn ∧ pn (80)
n n

if the pair potentials Φ only depend on the distance between particles.
There exists a deep mathematical connection between such invariants and symmetries of

the underlying Hamiltonian, known as Noether’s theorem. For example, energy conservation
is a consequence of the fact that the Hamiltonian (76a) is note explicitly time-dependent
and, hence, invariant under time translations. Similarly, conservation of linear momentum is
linked to spatial translation invariance and conservation of angular momentum to rotational
invariance.

For the remainder of this course, it will be important to keep in mind that microscopic
symmetries and conservation laws must be preserved in coarse-grained macroscopic contin-
uum descriptions.

4.3 Practical limitations

Deriving Kepler’s laws required us to solve a second-order linear ordinary differential equa-
tion, which was obtained by considering the idealised case in which a single planet is orbiting
the sun. If we consider a more realistic problem in which several planets orbit the sun, all in-
teracting with each other via gravity, the problem becomes analytically intractable. Indeed,
for just two planets orbiting the sun one encounters the celebrated ‘three-body problem’, for
which there is no general analytical solution. Lagrange showed that there are some solutions
to this problem if we restrict the planets to move in the same plane, and assume that the
mass of one of them is so small as to be negligible. In the absence of an explicit solution
to the ‘three body problem’ one must use ideas from 18.03 to calculate fixed points of the
equations and investigate their stability. However, now you see the problem. The critical
number of equations for complicated things to happen is three (for ODE’s), and yet any
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relevant problem in the world contains many more than three degrees of freedom. Indeed a 
physical problem typically contains 1023 interacting particles (Avogadro’s number), which 
is so great a number that it is unclear if the mathematical techniques described above are 
of any use. The central aim of this course is to make theoretical progress towards under­
standing systems with many degrees of freedom. To do so we shall invoke the “continuum 
hypothesis”, imagining that the discrete variable (e.g. the velocity of a particular molecule 
of fluid) can be replaced with a continuum (e.g. the velocity field v(x, t)). There are many 
subtleties that arise in trying to implement this idea, among them; 

(i) How does one write down macroscopic descriptions in terms of microscopic constants 
in a systematic way? It  would be terrible to have to solve 1023 coupled differential 
equations! 

(ii) Forces and effects that	 a priori appear to be small are not always negligible. This 
turns out to be of fundamental importance, but was not recognised universally until 
the 1920’s. 

(iii) The mathematics of how to solve ‘macroscopic equations’, which are nonlinear partial 
differential equations, is non-trivial. We will need to introduce many new ideas. 

In tackling these problems we will spend a lot of time doing fluid mechanics, the reason being 
that it is by far the most developed field for the study of these questions. Experiments are 
readily available and the equations of motion are very well known (and not really debated!). 
Furthermore, fluid dynamics is an important subject in its own right, being relevant to many 
different scientific disciplines (e.g. aerospace engineering, meteorology, coffee cups). We will 
also introduce other examples (e.g. elasticity) to show the generality of the ideas. 

4.4 Suggestions 

For more details on Kepler’s laws, and a java applet to let you play with them, go to 

http://csep10.phys.utk.edu/astr161/lect/history/kepler.html 

5 Random walkers and diffusion 

The most important (and obvious) problem when introducing the continuum hypothesis is 
to figure out how to treat Avogadro’s number of particles obeying Schrödinger’s equation 
or Newton’s laws. This a little ambitious for us to start with, so we begin by trying to 
understand how the simplest microscopic model for the motion of particles can lead to 
macroscopic laws. We will see that the simplest model, that of a randomly moving particle, 
leads to a nice derivation of the diffusion equation, whose properties will be investigated in 
the next lecture. 

Consider the motion of particles along one axis. The particles start at time t = 0 at 
position x = 0 and execute a random walk according to the following rules: 

(i) Each particle steps to the right or the left once every τ seconds, moving a distance 
dxi = ±δ. 
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(ii) The probability of going to the right at each step is 1/2, and the probability of going
to the left is 1/2, independently of the previous history.

(iii) Each particle moves independently of all the other particles, i.e. the particles do not
interact with one another.

There are two striking consequences of these rules. Let N be the total number of
particles and xi(n) be the position of the ith particle after n steps, and denote the average
position of all particles by

1
X(n) =

∑N
xi(n). (81)

N
i=1

The mean displacement of the particles after n steps is

1〈X(n)〉 =
N

N∑
i=1

〈xi(n)〉

=
1 ∑N

[〈xi(n− 1)〉+ 〈dxi〉]
N

i=1

1
=

[∑N 1〈xi(n− 1)〉+ δ ·
N

i=1
2

+ (−δ) · 1

2

]

=
1 ∑N 〈xi(n− 1)〉
N

i=1

= 〈X(n− 1)〉. (82)

Thus particles go nowhere on average.
Secondly, assuming that the all particles start at xi(0) = 0, the root-mean-square dis-

placement of the particles, which is a good measure of spreading, is obtained as follows:

〈[X(n)−X(0)]2〉 = 〈X(n)2〉〈[
1

=
N

N∑
i=1

xi(n)

][
1

N

N∑
k=1

xk(n)

]〉

=
1 ∑N ∑N

〈xi(n)xk(n)〉
N2

i=1 k=1

1
=

∑N
〈xi(n)2〉, (83)

N2
i=1

where we have used that, by virtue of assumption (iii),

〈xi(n)xk(n)〉 = 〈xi(n)〉〈xk(n)〉 = 0 for i 6= k.
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The mean-square displacement per particle can be calculated from

〈xi(n)2〉 = 〈[xi(n− 1) + dxi]
2〉

= 〈xi(n− 1)2〉+ 2〈xi−1(n) dxi〉+ 〈dx2
i 〉

= 〈xi(n− 1)2〉+ 2〈xi−1(n)〉〈dx 2
i〉+ δ

= 〈xi(n− 1)2〉+ δ2. (84)

Repeating this procedure n times and recalling that xi(0) = 0, we find

〈xi(n)2〉 = 〈xi(0)2〉+ nδ2 = nδ2 (85)

and, hence, for the mean square displacement of the cloud’s mean value

〈X(n)2 1〉 =
N2

N∑
i=1

nδ2 =
δ2

n. (86)
N

If we write n in terms of time such that t = nτ , where τ is the time in between each step,
then √

〈xi(n)2〉 =

(
t

τ

) 1
2

δ =

(
δ2t

τ

) 1
2

=

(
δ2

τ

) 1
2 √

t. (87)

The root-mean-square displacement of each particle is proportional to the square-root of
the time.

We now seek to derive a theory to predict the distribution of a cloud of random walkers
at some time t given the distribution at t = 0. There are two ways to do so, one using
particle fluxes and the other adopting a probabilistic approach.

5.1 Derivation of the diffusion equation using particle fluxes

Consider two neighbouring points on a line. At time t there are N(x, t) particles at x and
N(x+ δ, t) particles at position x+ δ. At time t+ τ half the particles at x will have stepped
across the dashed line from left to right and half of the particles at x+ δ will have stepped
across the dashed line from right to left. The net number of particles crossing to the right
is therefore

1− [N(x+ δ, t)−N(x, t)] . (88)
2

To obtain the net flux, we divide by the area normal to the x-axis, A, and by the time
interval τ ,

[N(x+ δ, t)−N(x, t)]
Jx = − . (89)

2Aτ

Multiplying by δ2/δ2 gives

δ2

Jx = −
2τ

1

δ

[
N(x+ δ, t)−N(x, t)

]
, (90)

Aδ

which can be rewritten
n(x+ δ, t)− n(x, t)

Jx = −D , (91)
δ
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where D = δ2/2τ is the diffusion coefficient and

N(x, t)
n(x, t) =

Aδ

is the particle density (i.e., the number of particles per unit volume at position x at time t).
If δ is assumed to be very small, then in the limit δ → 0, the flux becomes

∂n
Jx = −D , (92)

∂x

where we have ignored higher-order derivatives in making the approximation.
Now consider a single box with boundaries at x−δ/2 and x+δ/2. In a single time step,

Jx(x − δ/2, t)Aτ particles will enter from the left and Jx(x + δ/2, t)Aτ particles will leave
through the right boundary. The number of particles in the box increases as follows,

N(x, t+ τ)−N(x, t) = [Jx(x− δ/2, t)− Jx(x+ δ/2, t)]Aτ.

By dividing both sides by Aδτ the number of particles per unit volume in the box n(x, t)
is seen to increase at the rate2

n(x, t+ τ)− n(x, t)

τ
= − [Jx(x+ δ/2, t)− Jx(x− δ/2, t)]

. (93)
δ

In the limit τ → 0 and δ → 0, this becomes

∂n

∂t
= −∂Jx

∂x
= D

∂2n
, (94)

∂x2

which is Fick’s law. This is commonly known as the diffusion equation. It tells us how
a cloud of particles will redistribute itself in time. If we know the initial distribution and
the boundary conditions, we can figure out all later distributions. It can be used to model
many things, such as the spreading of dye in water, the transport of heat in solids, and the
motion of bacteria.

5.2 Derivation using probabilities

Before going on to solve the diffusion equation, let us derive the diffusion equation using a
different approach, involving probabilities. Assuming non-interacting particles, the number
of particles in the interval [x− δ/2, x+ δ/2] at any given time is

N(x, t) = N0P (x, t) = N0p(x, t)δ, (95)

where N0 is the total number of particles in the sample, P (x, t) = p(x, t)δ the probability
of finding the particle at time t in [x − δ/2, x + δ/2] and p(x, t) the associated probability
density. If we consider discrete changes in position and time, then for particles that move
to the left or right with equal probability

1
P (x, t+ τ) =

2
[P (x+ δ, t) + P (x− δ, t)] , (96)

2For strictly one-dimensional systems, the boundary area is just a point and, hence, A = 1 in this case.
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where the size of the time step is τ and the spatial separation is δ. Upon dividing by δ, we
can rewrite (96) in terms of the associated probability density

1
p(x, t+ τ) = [p(x+ δ, t) + p(x− δ, t)] . (97)

2

Performing a Taylor expansion about the position x and time t in the limit δ, τ → 0,

∂p
p(x, t) +

∂t
τ ≈ 1

[
∂p

p(x, t) +
2 ∂x

δ +
∂2p

∂x2

δ2

2
+ p(x, t)− ∂p

∂x
δ +

∂2p

∂x2

δ2
]
. (98)

2

which simplifies to the diffusion equation for the probability density

∂p

∂t
≈ D∂2p

∂x2
, D =

δ2

. (99)
2τ

To recover Eq. (94), we note that the number density of particles is given by n = N0p, and
our derivation is complete.

Note that we have ignored higher-order terms in the Taylor expansion. Additional terms
would give us

∂p

∂t
+
τ

2

∂2p

∂t2
≈ δ2

2τ

∂2p

∂x2
− δ4

4!τ

∂4p
. (100)

∂x4

Are we allowed to ignore these extra terms? To see if we are, compare the ratio of the
neglected terms on the right hand side

δ4

τ

∂4p

∂x4

/
δ2

τ

∂2p
. (101)

∂x2

Now ∂p/∂x is essentially ∆p/∆x, where ∆p is a characteristic change in the value of p and
∆x is the characteristic length over which it changes. Let ∆p = P and ∆x = L; the ratio
of the two terms is

δ4

τ

P

L4

/
δ2

τ

P

L2
∼ O

(
δ
)2

, (102)
L

which is typically very small. This is an example of a scaling argument, which in this case
implies that we are justified in neglecting the extra terms provided L is much greater than δ.
You must be careful however, as this estimate is not correct everywhere. For example, in
the tails of the distribution the characteristic lengthscale over which there is a change in
p may become important. The argument of neglecting terms is therefore not always valid,
and we shall discuss this point more when we encounter singular perturbations later in the
course. The discovery of this issue and its resolution was probably the greatest achievement
of applied mathematics in the twentieth century.

5.3 Suggestions

For an excellent read on random walkers and the diffusion equation, and their applications
in biology, have a look at Random Walks in Biology by Howard C. Berg (a professor over at
Harvard). In this book, the ideas we have discussed are applied to a number of biological
phenomena, including the motion of bacteria (which would make a good course project).

24



6 Solving the diffusion equation

We have shown, through two different arguments, that the density of random walkers on a
one dimensional lattice obeys the diffusion equation,

∂n

∂t
= D

∂2n
. (103)

∂x2

This description is valid whenever examining the dynamics of large quantities of random
walkers on scales much larger than the lattice spacing. As the next step, it is important to
understand how to solve this equation, as the same mathematical problem will arise later on
in our studies of fluid motion. For instance we would like to know the solution to the above
equation, subject to the initial condition n(x, t = 0) = n0(x) and the boundary conditions
that n vanishes at ±∞.

There are two basic techniques for solving this, each of which relies on a different method
for representing the solution. In both cases, the central idea is that since the equation is
linear, it is possible to “break down” any initial state into a linear combination of simpler
problems. By solving the simpler problems explicitly it is then possible to reconstruct the
general solution.

6.1 Fourier method

This method relies on the fact that it is possible to express n(x, t) in a basis of plane waves3,
i.e.

1
n(x, t) =

∫ ∞
eikxn̂(k, t)dk. (104)

2π −∞

As a complement to (104), the Fourier coefficients for a given distribution are found using
the Fourier transform ∫ ∞

n̂(k, t) = e−ikxn(x, t)dx, (105)
−∞

and we define n̂0(k) to be the Fourier coefficients of the initial condition n0(x).
The strength of this approach is that it is simple to solve the diffusion equation for a

single plane wave. For example, integrating the diffusion equation in the following manner∫ ∞ ∂n

−∞ ∂t
e−ikxdx =

∫ ∞
−∞

D
∂2n

e−ikxdx (106)
∂x2

gives
∂n̂(k, t)

= (ik)2Dn̂(k, t) = −k2Dn̂(k, t). (107)
∂t

Given the initial condition n0(x)→ n̂0(k) the solution of (107) is

2
n̂(k, t) = n̂0(k)e−Dk t. (108)

3An intuitive way of thinking is to note that a plane wave can be written as eikx = cos(kx) + i sin(kx).
The Fourier transform thus can be interpreted as expressing a (complex) function as a superposition of real
and complex sinusoidal waves. The Fourier coefficient n̂(k, t) describes how large the contribution of a wave
with wave vector k ∝ 1/λ, with λ the wavelength, is in this superposition.
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The solution of the original problem is therefore

1
n(x, t) =

∫ ∞
n̂0(k)eikx−Dk

2tdk. (109)
2π −∞

We note that the high-wavenumber components (which correspond to sharp gradients) are
rapidly damped, emphasising the smoothing property of diffusion.

Example Consider a distribution that is initially Gaussian (normal) about the point x = 0
at time t = 0, with standard deviation σ,

1
n(x, 0) = √

2πσ2
e−

x2

22σ . (110)

Note that in the limit where σ → 0, this distribution corresponds to the Dirac delta-
function δ(x), a function which is localized at zero. We come back to this limit again at the
end of the example.

The Fourier transform of the above initial distribution is

1
n̂0(k) = √

2πσ2

∫ ∞
−∞

e−ikx−
x2

2σ2 dx =
1√

2πσ2

∫ ∞
−∞

e
−
(
x2

)
2 +ikx

2σ dx. (111)

Completing the square for the exponent

x2 1
+ ikx =

2σ2 2σ2

(
x2 + 2σ2ikx

)
=

1 [( ) ]
x+ ikσ2 2

+ k2σ4 . (112)
2σ2

enables (111) to be rewritten as

2 2

e−
k σ

n̂0(k) =
2

√
2πσ2

∫ ∞
−∞

e−
(x+ikσ2)2

22σ dx. (113)

To calculate the above integral, which involves a complex integrand, we use the Cauchy
integral formula. It states that for a complex function f(z) ∈ C, z ∈ C, integration along a
closed path in the complex plane is zero, provided that f(z) has no poles inside the path:∮

f(z)dz = 0 (114)

Introducing the substitution z = x+ ikσ2, dz = dx, the integral (113) can be rewritten as

2 2

e−
k σ

n̂0(k) =
2

√
2πσ2

lim
R→∞

∫ R+ikσ2

−R+ikσ2

e−
z2

22σ dz (115)

Let’s keep R finite for the moment. We can then think of the integral as one segment of a
closed curve with rectangular shape:∮

2
− z

0 = e 2σ2 dz

=

∫ R+ikσ2

−R+ikσ2

e−
z2

2σ2 dz +

∫ R

R+ikσ2

e−
z2

2σ2 dz +

∫ −R
R

e−
z2

∫ −R+ikσ2
2

− z
22σ dz + e

−R
22σ dz (116)
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In the limit R → ∞, the second as well as the last integral vanish due to the exponential
damping with large R, leading to∫ R+ikσ2

2
− z

lim e
R→∞ −R+ikσ2

2σ2 dz = lim
R→∞

∫ R

−R
e−

z2

22σ dz . (117)

Inserting this into Eq. (115), we obtain

2 2

e−
k σ

n̂0(k) =
2

√
2πσ2

∫ ∞
−∞

e−
x2

22σ dx. (118)

This means that we can basically drop the imaginary part in the original integral, Eq. (113).
From 18.01 we know that ∫ ∞

e−x
2 √

=
−∞

π,

√
so by making a change of variable y = x/ 2σ2 we have that

n̂0(k) = e−
k2σ2

2 . (119)

This result is worth keeping in mind: The Fourier transform of a Gaussian is a Gaussian.
To obtain the full solution of the diffusion equation in real space, we have to insert n̂0(k)

into (104),
1

n(x, t) =

∫ ∞
eikx−Dk

2t−k2σ2/2dk. (120)
2π −∞

We can do a bit of rearranging to get

1
n(x, t) =

∫ ∞
2 )eikx−k (Dt+σ2/2 dk . (121)

2π −∞

As before we complete the square for the exponent,(
k2 σ2

Dt+
2

)
− ikx =

(
Dt+

σ2

2

){[
k − ix

]2 x2

+
2(Dt+ σ2/2)

}
, (122)24 (Dt+ σ2/2)

so that the integral becomes

2
− x

e
n(x, t) =

4(Dt+σ2/2)

2π

∫ ∞
−∞

e
−(Dt+σ2/2)

[
k− ix

]2
22(Dt+σ /2) dk. (123)

This is essentially the same integral that we had before, so we drop the imaginary part and
change the integration variable, giving the result

2
− x

e
n(x, t) =

4(Dt+σ2/2)√ . (124)
4π(Dt+ σ2/2)

This is the solution of the diffusion equation starting from a Gaussian distribution at time
t = 0.
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Note:

• Introducing σ̃2 = 2(Dt+σ2/2), the solution is a Gaussian with a standard deviation σ̃,√
i.e. the width of the solution grows like Dt in time. Similarly, the amplitude
decreases like 1√ .

Dt

• Let us substitute td = σ2/(2D). The solution then can be written as

2
− x

e
n(x, t) =

4D(t+td)√ . (125)
4πD(t+ td)

Remember that in the limit td = σ2 → 0 the initial condition (110) corresponds to2D
a Dirac delta function. Thus an initially Gaussian distribution of particles that is
diffusing may be viewed as having originated from a delta function a time td ago.
Indeed, it can be shown that diffusion will cause any form of particle distribution
initially localised about zero to eventually look like a Gaussian.

6.2 Green’s function method

This method relies on another trick for representing the solution, that is somewhat more
intuitive. Now, instead of representing n in a basis of plane wave states, we will express it
as a basis of states which are localised in position. This is done by using the so-called Dirac
delta function, denoted δ(x−x0). You should think of this of a large spike of unit area that
is centered exactly at the position x0. The definition of δ is that given any function4 f(x),∫ ∞

f(x′) δ(x− x′)dx′ = f(x). (126)
−∞

We can represent the initial distribution of particles n(x, 0) = n0(x) as a superposition
of δ-functions ∫ ∞

n0(x) = n ′
0(x ) δ(x− x′) dx′. (127)

−∞

This formula decomposes n0 into a continuous series of “spikes”. The idea is to then
understand how each spike individually evolves and then superimpose the evolution of each

4Intuitively, one can obtain the Dirac δ-function from the normalized Gaussian (110) by letting σ → 0.
Derivatives of order n of the δ-function, denoted by δ(n), can be defined by partial integration∫ ∞ ∫ ∞

f(x′) δ(n)(x− x′) dx′ = (−1)n f (n)(x′) δ(x− x′) dx′.
−∞ −∞

The Fourier transformation of the δ-function is given by∫ ∞
δ̂(k) = e−ikxδ(x) dx = 1.

−∞

Applying the inverse transformation yields a useful integral representation of the Dirac δ-function

1
δ(x) =

2π

∫ ∞
−∞

eikxδ̂(k) dk =
1
∫ ∞

eikx dk.
2π −∞
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spike to find the final density distribution. We define the Green’s function G(x − x′, t) so
that G(x− x′, 0) = δ(x− x′), and ∫ ∞

n(x, t) = G(x− x′, t) n0(x′) dx′. (128)
−∞

Plugging this into the diffusion equation we see that∫ ∞ )
n0 x

′ ∂G(x− x′, t
( )

−∞ ∂t
dx′ = D

∫ ∞
−∞

n0(x′)
∂2G(x− x′, t)

dx′. (129)
∂x2

Thus G(x − x′, t) obeys the diffusion equation and we have reduced the problem to the
mathematics of solving the diffusion equation for the localised initial condition δ(x− x′).

There are many ways of solving this problem. The one in most textbooks is to actually
use the Fourier decomposition of δ(x−x′) and solve the equation in Fourier space, and then
transform back into real space. This is an advisable procedure as the Fourier transform of δ
is very simple5. We will advocate another procedure however, that is more elegant and uses
an idea that we will return to later in our studies of fluids. The idea is to use dimensional
analysis to determine the solution. If we look at the diffusion equation

∂n

∂t
= D

∂2n
(130)

∂x2

we see that roughly ‘∂/∂t’ ∼ ‘∂2/∂x2’. (I’ve written this in quotes because there is a sense
in which this equality is meaningless.) What I mean by it is that if you have a function
n which obeys a diffusion equation, taking a single time derivative of the function gives
a number of about the same size as when you take two spatial derivatives. This means√
that the characteristic length scale over which n varies is of order t. Now, since the
initial distribution δ is perfectly localised, we expect that at time t, G(x − x′) will have a
characteristic width

√
t. Thus, we guess a (so-called) similarity solution(

G(x− x′ x− x′
, t) = A(t) F √

)
. (131)

t

The time dependence of A(t) is determined by the conservation of particles. Since∫ ∞ ∫ ∞ (
x

n dx = A(t) F
−∞ −∞

√
t

)
dx = A(t)

√ ∫ ∞
t F (y)dy (132)
−∞

√
must be constant in time (we have changed variables from x to y = x/ t), we see that

A(t) =
A0√ (133)
t

for some constant A0. Now let’s just plug in

A0
G(x, t) = √

t
F (x/

√
t)

5Note that in the limit td = σ2/(2D) → 0 the initial condition (110) approaches a Dirac delta function,
so we have already ‘solved’the problem: equation (125) tells us that an initially Gaussian distribution of
particles that is diffusing may be viewed as having originated from a delta function a time td ago.

29



into the diffusion equation. This gives us the following ordinary differential equation for F (y)

1

t
3
2

(
−1

2
F − 1

2
yF ′
)

=
1

t
3 DF

′′. (134)
2

Cancelling out the time factors and integrating this equation once gives

1− Fy = DF ′. (135)
2

2
This equation can be immediately integrated to give F (y) = F /

0e
−y 4D, and thus

G(x− x′ F0
, t) = √

t
e−

(x−x′)2
4Dt , (136)

where the constant F0 = 1/
√ ∫

4πD is determined by requiring that dxG = 1.

Mean square displacement We would like to determine 〈x(t)2〉 for a collection of par-
ticles starting at x0 = 0. Since G(x − x0, t) is the solution of the diffusion equation with
initial condition δ(x− x0), we can compute the mean square displacement from∫〈 〉 ∞

x(t)2 = dx x2G(x, t)∫−∞∞ x2

= dx
−∞

√
4πDt

e−
x2

4Dt

=

√
α√
∫ ∞

2
dx x2e−αx (137)

π −∞

where α = 1/(4Dt). To evaluate the integral, note that∫ ∞
dx x2e−αx

2 d
= −

−∞ dα

∫ ∞
−∞

dx e−αx
2

= − d

dα

√
π

α
=

π
. (138)

2α3/2

which then gives 〈 〉
x(t)2 1

= = 2Dt. (139)
2α

We have thus recovered the fundamental result that the mean square displacement of Brow-
nian particles grows linearly in time.

6.3 Zero-flux solution: Sedimentation

Consider spherical particles diffusing under the effect of a constant drift velocity u in one
dimension, described by the conservation law

∂n

∂t
= − ∂

Jx (140)
∂x

with current
∂

Jx = un−D n. (141)
∂x
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Interpreting x > 0 as the distance from the bottom of a vessel and assuming reflective 
boundaries at x = 0, we may think of u arising from the effects of gravity 

−gm∗ 
u = (142)

6πηa 

where g is the gravitational acceleration, a and m∗ > 0 denote radius and effective bouyant 
mass6 of the particles, and η the viscosity of the fluid. The stationary zero-current solution, 
satisfying Jx = 0, is obtained by integrating 

∂ 
un − D n = 0, (143)

∂x 

yielding an exponentially decaying density profile 

n(x) = Ce−x/λ (144) 

with characteristic sedimentation length 

D 6πηaD 
λ = − = > 0. (145) 

u gm∗ 

Sutherland and Einstein showed in 1905 that the diffusion constant D of a small particle 
moving in a fluid is given by 

kT 
D = , (146)

6πηa

where k is the Boltzmann’s constant and T the temperature (measured on a Kelvin scale), 
implying that 

kT 
λ = . (147) 

gm∗ 

Note that particle shape (and mass density) enter through the buoyant mass m . ∗

7 Linear stability analysis and pattern formation 

7.1 Linear stability analysis of fixed points for ODEs 

Consider a particle (e.g., bacterium) moving in one-dimension with velocity v(t), governed 
by the nonlinear ODE 

d
v(t) = −(α + βv2)v =: f(v). (148)

dt 

We assume that the parameter β is strictly positive, but allow α to be either positive or 
negative. The fixed points of Eq. (148) are, by definition, velocity values v∗ that satisfy 
the condition f(v ) = 0. For α > 0, there exists only one fixed points v0 =  0. For α < 0,∗
we find the three fixed points v0 = 0 and v  = ±

o
−α/β. That is, the system undergoes ±

pitchfork bifurcation at the critical parameter value α = 0. 
6The buoyant mass m  is defined as the difference between the particle mass and the mass of the liquid ∗

that is displaced by the particle. Particles heavier than water have m∗ > 0 whereas m∗ < 0 for gas bubbles. 
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To evaluate the stability of a fixed points v∗, we can linearize the nonlinear equation (148)
in the vicinity of the fixed points by considering small perturbations

v(t) = v∗ + δv(t). (149)

By inserting this perturbation ansatz into (148) and noting that, to leading order,

f(v∗ + δv) ' f(v∗) + f ′(v∗) δv = f ′(v∗) δv, (150)

we find that the growth of the perturbation δv(t) is governed by the linear ODE

d
δv(t) = f ′(v∗) δv(t), (151)

dt

which has the solution

′
δv(t) = δv(0) ef (v∗)t. (152)

If f ′(v∗) > 0, then the perturbation will grow and the fixed point is said to be linearly
unstable. whereas for f ′(v∗) < 0 the perturbation will decay implying that the fixed point
is stable.

For our specific example, we find

f ′(v0) = �α , f ′(v±) = �(α+ 3βv2
±) = 2α (153)

This means that for α > 0, the fixed point v0 = 0 is stable, indicating that the particle will
be damped to rest in this case. By√contrast, for α < 0, the fixed point v0 becomes unstable
and the new fixed points v± = � �α/β become stable; that is, for α < 0 the particle will
be driven to a non-vanishing stationary speed. Equation (148) with α < 0 defines one of
the simplest models of active particle motion.

7.2 Stability analysis for PDEs

The above ideas can be readily extended to PDEs. To illustrate this, consider a scalar
density n(x, t) on the interval [0, L], governed by the diffusion equation

∂n

∂t
= D

∂2n
(154a)

∂x2

with reflecting boundary conditions,

∂n

∂x
(0, t) =

∂n
(L, t) = 0. (154b)

∂t

This dynamics defined by Eqs. (154) conserves the total ‘mass’∫ L

N(t) = dx n(x, t) � N0, (155)
0

and a spatially homogeneous stationary solution is given by

n0 = N0/L. (156)
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To evaluate its stability, we can consider wave-like perturbations

n(x, t) = n0 + δn(x, t) , δn = ε eσt−ikx. (157)

Inserting this perturbation ansatz into (154) gives the dispersion relation

σ(k) = �Dk2 � 0, (158)

signaling that n0 is a stable solution, because all modes with jkj > 0 become exponentially
damped.

7.3 Swift-Hohenberg theory of pattern formation

As a simple generalization of (154), we consider the simplest isotropic fourth-order PDE
model for a non-conserved real-valued order-parameter ψ(x, t) in two space dimensions
x = (x, y), given by

∂tψ = F (ψ) + γ r2ψ � γ 2 2
0 2(r ) ψ, (159)

where ∂t = ∂/∂t denotes the time derivative, and r = (∂/∂x, ∂/∂y) is the two-dimensional
Laplacian. The force F is derived from a Landau-potental U(ψ)

∂U
F = �

∂ψ
, U(ψ) =

a

2
ψ2 +

b

3
ψ3 +

c
ψ4, (160)

4

where c > 0 to ensure stability. The appearance of higher-order spatial derivatives means
that this model accounts for longer-range effects than the diffusion equation. This becomes
immediately clear when one writes a (159) in a discretized form as necessary, for example,
when trying to solve this equation numerically on a space-time grid: second-order spatial
derivatives require information about field values at nearest neighbors, whereas fourth-order
derivatives involves field values at next-to-nearest neighbors. In this sense, higher-than-
second-order PDE models, such as the Swift-Hohenberg model (159), are more ‘nonlocal’
than the diffusion equation (154).

The field ψ could, for example, quantify local energy fluctuations, local alignment, phase
differences, or vorticity. In general, it is very challenging to derive the exact functional de-
pendence between macroscopic transport coefficients (a, b, c, γ1, γ2) and microscopic inter-
action parameters. With regard to practical applications, however, it is often sufficient to
view transport coefficients as purely phenomenological parameters that can be determined
by matching the solutions of continuum models, such as the one defined by Eqs. (159)
and (160), to experimental data. This is analogous to treating the viscosity in the clas-
sical Navier-Stokes equations as a phenomenological fit parameter. The actual predictive
strength of a continuum model lies in the fact that, once the parameter values have been
determined for a given set-up, the theory can be used to obtain predictions for how the
system should behave in different geometries or under changes of the boundary conditions
(externally imposed shear, etc.). In some cases, it may also be possible to deduce qualita-
tive parameter dependencies from physical or biological considerations. For instance, if ψ
describes vorticity or local angular momentum in an isolated ‘active’ fluid, say a bacterial
suspension, then transitions from a > 0 to a < 0 or γ0 > 0 to γ0 < 0, which both lead to
non-zero flow patterns, must be connected to the microscopic self-swimming speed v0 of the
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bacteria. Assuming a linear relation, this suggests that, to leading order, a0 = δ�αv0 where
δ > 0 is a passive damping contribution and αv0 > 0 the active part, and similarly for γ0. It
may be worthwhile to stress at this point that higher-than-second-order spatial derivatives
can also be present in passive systems, but their effects on the dynamics will usually be
small as long as γ0 > 0. If, however, physical or biological mechanisms can cause γ0 to
become negative, then higher-order damping terms, such as the γ2-term in (159), cannot
be neglected any longer as they are essential for ensuring stability at large wave-numbers,
as we shall see next.

Linear stability analysis The fixed points of (159) are determined by the zeros of the
force F (ψ), corresponding to the minima of the potential U , yielding

ψ0 = 0 (161a)

and

b
ψ± = �

2c
�
√

b2

4c2
� a

, if b2 > 4ac. (161b)
c

Linearization of (159) near ψ0 for small perturbations

δψ = ε0 exp(σ0t� ik � x) (162)

gives

σ0(k) = �(a+ γ0jkj2 + γ2jkj4). (163)

Similarly, one finds for

ψ = ψ± + ε± exp(σ±t� ik � x) (164)

the dispersion relation [ ]
σ (k) = � �(2a+ bψ ) + γ jkj2 4
± ± 0 + γ2jkj . (165)

In both cases, k-modes with σ > 0 are unstable. From Eqs. (163) and (165), we see
immediately that γ2 > 0 is required to ensure small-wavelength stability of the theory and,
furthermore, that non-trivial dynamics can be expected if a and/or γ0 take negative values.
In particular, all three fixed points can become simultaneously unstable if γ0 < 0.

Symmetry breaking In the context biological systems, the minimal model (159) is useful
for illustrating how microscopic symmetry-breaking mechanisms that affect the motion of
individual microorganisms or cells can be implemented into macroscopic field equations that
describe large collections of such cells. To demonstrate this, we interpret ψ as a vorticity-
like 2D pseudo-scalar field that quantifies local angular momentum in a dense microbial
suspension, assumed to be confined to a thin quasi-2D layer of fluid. If the confinement
mechanism is top-bottom symmetric, as for example in a thin free-standing bacterial film,
then one would expect that vortices of either handedness are equally likely. In this case,
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Figure 1: Numerical illustration of structural transitions in the order-parameter ψ for sym-
metric (a) mono-stable and (b) bi-stable potentials U(ψ) with b = 0. (c) Snapshots of the
order-parameter field ψ at t = 500, scaled by the maximum value ψm, for a mono-stable
potential U(ψ) and homogeneous random initial conditions. (b) Snapshots of the order-
parameter at t = 500 for a bi-stable potential. For γ0 � −� (2π)2γ 2

2/L , increasingly more
complex quasi-stationary structures arise; qualitatively similar patterns have been observed
in excited granular media and chemical reaction systems.

(159) must be invariant under ψ ! −→ ψ, implying that U(ψ) = U(−ψ) and, therefore, b = 0
in (160). Intuitively, the transformation ψ ! −→ ψ corresponds to a reflection of the observer
position at the midplane of the film (watching the 2D layer from above vs. watching it from
below).

The situation can be rather different, however, if we consider the dynamics of microor-
ganisms close to a liquid-solid interface, such as the motion of bacteria or sperms cells in
the vicinity of a glass slide (Fig. 2). In this case, it is known that the trajectory of a
swimming cell can exhibit a preferred handedness. For example, the bacteria Escherichia
coli and Caulobacter have been observed to swim in circles when confined near to a solid
surface. More precisely, due to an intrinsic chirality in their swimming apparatus, these
organisms move on circular orbits in clockwise (anticlockwise) direction when viewed from
inside the bulk fluid (glass surface). Qualitatively similar behavior has also been reported
for sea urchin sperm swimming close to solid surfaces.

Hence, for various types of swimming microorganisms, the presence of the near-by no-
slip boundary breaks the reflection symmetry, ψ 6→6! −ψ. The simplest way of accounting for
this in a macroscopic continuum model is to adapt the potential U(ψ) by permitting values
b 6=6 0 in (160). The result of a simulation with b > 0 is shown in Fig. 2a. In contrast to
the symmetric case b = 0 (compare Fig. 1c), an asymmetric potential favors the formation
of stable hexagonal patterns (Fig. 2a) – such self-assembled hexagonal vortex lattices have
indeed been observed experimentally for highly concentrated spermatozoa of sea urchins
(Strongylocentrotus droebachiensis) near a glass surface (Fig. 2b).
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Figure 2: Effect of symmetry-breaking in the Swift-Hohenberg model. (a) Stationary hexag-
onal lattice of the pseudo-scalar angular momentum order-parameter ψ, scaled by the maxi-
mum value ψm, as obtained in simulationsof Eqs. (159) and (160) with b > 0, corresponding
to a broken reflection symmetry ψ 6! �ψ. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus droe-
bachiensis) near a glass surface. At high densities, the spermatozoa assemble into vortices
that rotate in clockwise direction (inset) when viewed from the bulk fluid.

7.4 Reaction-diffusion (RD) systems

RD systems provide another generic way of modeling structure formation in chemical and
biological systems. The idea that RD processes could be responsible for morphogenesis goes
back to a 1952 paper by Alan Turing (see class slides), and it seems fair to say that this
paper is the most important one ever written in mathematical biology.

RD system can represented in the form

∂tq(t,x) = Dr2q +R(q), (166)

where

� q(t,x) as an n-dimensional vector field describing the concentrations of n chemical
substances, species etc.

� D is a diagonal n� n-diffusion matrix, and

� the n-dimensional vector R(q) accounts for all local reactions.

36

6→ −

∇

×



7.4.1 Two species in one space dimension

As a specific example, let us consider q(t,x) = (u(t, x), v(t, x)), D = diag(Du, Dv) and
R = (F (u, v), G(u, v)), then

ut = Duuxx + F (u, v) (167a)

vt = Dvvxx +G(u, v) (167b)

In general, (F,G) can be derived from the reaction/reproduction kinetics, and conservation
laws may impose restrictions on permissible functions (F,G). The fixed points (u∗, v∗)
of (167) are determined by the condition( )

F (u∗, v∗)R(u∗, v∗) = = 0. (168)
G(u∗, v∗)

Expanding (167) for small plane-wave perturbations( ) ( )
u(t, x) u∗= + ε(t, x) (169a)
v(t, x) v∗

with ( )
ε = ε̂ eσt−ikx

ε̂
= eσt−ikx, (169b)

η̂

we find the linear equation( ) ( )
k2Du 0 F ∗

σε̂ = � ε̂+ u F ∗v
0 k2Dv G∗u G∗

ε̂ �M ε̂, (170)
v

where

F ∗u = ∂uF (u∗, v∗) , F ∗v = ∂ ∗
vF (u∗, v∗) , Gu = ∂uG(u∗, v∗) , G∗v = ∂vG(u∗, v∗).

Solving this eigenvalue equation for σ, we obtain

1
σ± =

2

{
�(Du +Dv)k

2 + (F ∗u +G∗v)�
√ }

24F ∗vG
∗
u + [F ∗u �G∗v + (Dv �Du)k2] . (171)

In order to have an instability for some finite value k, at least one of the two eigenvalues
must have a positive real part. This criterion can be easily tested for a given reaction
kinetics (F,G). We still consider a popular example.

7.4.2 Lotka-Volterra model

This model describes a simple predator-prey dynamics, defined by

F (u, v) = Au�Buv, (172a)

G(u, v) = �Cv + Euv (172b)
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with positive rate parameters A,B,C,E > 0. The field u(t, x) measures the concentration 
of prey and v(t, x) that of the predators. The model has two fixed points 

(u0, v0) = (0, 0) , (u , v ) = (C/E, A/B), (173) ∗ ∗

with Jacobians  
Fu(u0, v0) Fv(u0, v0) A 0 

= (174a) 
Gu(u0, v0) Gv(u0, v0)

  
0 −C

 
and  

, v ) A  C Fu(u v ) F B A∗ ∗ v(u ,  ∗ ∗
Gu(u , v ) Gv(u , v )∗ ∗ ∗ ∗

 
=

 
− E −

. (174b)
C −C + AE

B

 
It is straightforward to verify that, for suitable choices of A, B, C, D, the model exhibits a 
range of unstable k-modes. 

8 Variational Calculus 

In this part of the course, we consider the energetics governing the shape of water droplets, 
soap films, bending beams etc. For systems with a few degrees of freedom (e.g., particle 
mechanics) you are used to the idea of solving equations of the form 

d2x dU(x) 
= − , (175)

dt2 dx 

where U(x) is an energy function. You will recall that the basic idea to understanding this 
type of equation is to first find the fixed points (the places where the force on the particle is 
zero) and then understand their stability. By piecing the trajectories that go into and out 
of the fixed points together you arrive at a complete description of how the system works, 
even if you can’t calculate everything. 

We now want to figure out how to think about solving such problems in continuous 
systems. In this case the state of the system is described not by discrete variables xi but 
by functions fi(x). A good example of the difference is to consider a mass-spring system. 
If there are n masses connected by springs then we would want to know xi(t), the position 
of the ith mass. The limit of infinitely many small masses connected by small springs is an 
elastic rod, in which case we would want to know h(x, t), the displacement of the rod at a 
given position x and time t. To develop techniques for continuous systems we consider an 
energy functional U [f(x)], which is a function of a function. Several sorts of difficulties arise 
(mathematical and otherwise) when one tries to think about physical problems described 
by this energy using the same notions as those for finite dimensional dynamical systems. 
We will start by considering some simple problems. 

8.1 What is the shortest path between two points? 

It will come as no great surprise that it is a straight line, but lets show this to be the case. 
In 2D there is some function h(x) that is the path between two points x1 and x2 (think of 
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h(x) as the height above the x-axis). The length of the path is given by the functional√∫ x2

L[h] = dx
x1

1 +

(
dh
)2

. (176)
dx

Now consider an alternate path h(x)+δh(x) which is only slightly different from the previous
path considered. The length of this path is √∫ x2

L[h+ δh] = dx
x1

1 +

(
d

)2

(h+ δh) . (177)
dx

Taylor-expanding the integrand for small δh and keeping only terms of linear order in
δh′ = dδh/dx, we find ∫ x2 h′δh′

L[h+ δh]− L[h] ' dx
x1

√ . (178)
1 + h′2

Integrating by parts gives [
h′

L[h+ δh]− L[h] ' √
1 + h′2

δh

]x2
x1

−
∫ x2

x1

dx

(
h′√

)′
δh. (179)

1 + h′2

The first term on the right hand side is identically zero, as we require δh to be zero at
either end (since we know our starting and ending point). Otherwise, for our path to be
a minimum we require δL to be zero for arbitrary δh. If this were not the case we could
always choose a δh and −δh to increase or decrease the path length. Thus h(x) must satisfy(

h′√
)′

= 0, (180)
1 + h′2

the solution of which is a straight line (check this for yourself). By analogy with systems
containing few degrees of freedom we say that this solution satisfies the condition δL/δh=0.

8.2 Functional differentiation

We now generalize the example from the previous section by defining a formal functional
derivative. To this end consider a general functional I[f ] of some function f(x). A func-
tionals is, by definition, a map that assigns a number to a function f(x). Basic examples
are the delta-functional ∆x0 [f ] := f(x0), which is related to the delta function by∫ ∞

∆x0 [f ] = dx δ(x− x0)f(x) = f(x0), (181a)
−∞

or integrals ∫ ∞
J [f ] = dx f(x) c(x). (181b)

−∞

A functional I is called linear, if it satisfies

I[af + bg] = aI[f ] + bI[g] (182)
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for arbitrary numbers a, b and functions f, g. Obviously, both examples in Eq. (181) are
linear. Typical examples of nonlinear functionals are action functionals, such as∫ t [m

S[x, ẋ] = ds
0

]
ẋ(s)2 − V (x(s)) , (183)

2

where, for example, V (x) = kx2/2 for the harmonic oscillator.
Given some functional I[f ], we can define its point-wise functional derivative by

δI[f ]

δf(y)
= lim

ε→0

1 {I[f(x) + εδ(x− y)]− I[f(x)]} (184)
ε

If I is linear, this simplifies to

δI[f ]
= I[δ(x− y)], (185)

δf(y)

yielding, for example,

δ∆x0 [f ]
∫

= dx δ(x− x0)δ(x− y) = δ(x0 − y0) (186a)
δf(y)

and

δJ [f ]
∫

= dx δ(x− y)c(x) = c(y). (186b)
δf(y)

Similar to ordinary derivatives, functional derivatives are linear7

δ

δf
{aF [f ] + bG[f ]} = a

δF

δf
+ b

δG
, a, b ∈ R, (187a)

δf

satisfy the product rule

δ

δf
{F [f ]G[f ]} =

δF

δf
G[f ] + F

δG
(187b)

δf

as well as two chain rules

δ δ(F [g(f)])
(F [g(f)]) =

δf δg

dg(x)

df(x)
(187c)

δ

δf
g(F [f ]) =

dg(F [f ])

dF

δ(F [f ])
(187d)

δf

As a nice little exercise, you can use the above properties to prove that the exponential
functional ∫

F [f ] = e dx f(x)c(x) (188)

satisfies the functional differential equation

δF [f ]
= c(y)F [f ]. (189)

δf(y)

7See, e.g., Appendix A in Parr & Young, Density-Functional Theory of Atoms and Molecules (1989,
Oxford University Press)
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8.3 Euler-Lagrange equations

In practice, relevant functionals typically not just depend on a function but also on its
derivatives, see Eq. (183). For instance, let us assume we are looking for a twice differentiable
function Y (x), satisfying the boundary conditions Y (x1) = y1, Y (x2) = y2 and minimizing
the integral ∫ x2

I[Y ] = f(x, Y, Y ′)dx. (190)
x1

What is the differential equation satisfied by Y (x)? To answer this question, we compute
the functional derivative

δI[Y ]

δY
= lim

ε→0

1 {I[Y (x) + εδ(x− y)]− I[Y (x)]}∫ ε
x [2 ∂f

=
x1 ∂Y

δ(x− y) +
∂f

∂Y ′
δ′(x− y)

]
dx

=

∫ x2

x1

[
∂f

∂Y
− d

dx

∂f
]
δ(x− y)dx. (191)

∂Y ′

Equating this to zero, yields the Euler-Lagrange equations

∂f
0 =

∂Y
− d

dx

∂f
(192)

∂Y ′

It should be noted that the condition δI/δY = 0 alone is not a sufficient condition for
a minimum. In fact, the relation might even indicate a maximum. It is often possible,
however, to convince oneself that no maximum exists for the integral (e.g., the distance
along a smooth path can be made as long as we like), and that our solution is a minimum.
To be rigorous, however, one should also consider the possibility that the minimum is merely
a local minimum, or perhaps the relation δI/δY = 0 indicates a point of inflexion.

It is easy to check that Eq. (192) yields the Newton equations

mẍ = −V ′(x), (193)

when applied to the action functional (183). Similarly, the Euler-Lagrange equations for
the shortest-path integral (176) just give the ODE (180).

8.4 Brachistrochrone

In June 1696, Johann Bernoulli set the following problem: Given two points A and B in a
vertical plane, find the path from A to B that takes the shortest time for a particle moving
under gravity without friction. This proposal marked the real beginning of general interest
in the calculus of variations. (The term ‘brachistochrone’ derives from the Greek brachistos
meaning shortest and chronos meaning time.)

If the particle starts with zero initial speed at height h0, energy conservation requires
mv2/2 = mg(h0 − h(x)), where v is particle speed, h0 is the original height of the particle
and h(x) is the height of the particle at position x. Thus√

v = 2g(h0 − h(x)). (194)
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By definition v = ds/dt so that the time taken to go from A to B is∫ B ∫ B ds
dt = √ . (195)

A A 2g[h0 − h(x)]

√
We know that ds = 1 + h′2, so that the time taken is√∫ B 1 + h′2

T [h] = dx . (196)
A 2g(h0 − h)

The integrand √
1 + h′2

f = (197)
2g(h0 − h)

determines the time of descent. We can insert f directly into the Euler-Lagrange equa-
tion (192) to obtain the ODE that governs the shortest-time solution. Here, we shall
pursue a slightly different approach by starting from the readily verifiable identity( )

d
h′
∂f − f = 0, (198)

dx ∂h′

which integrates to

h′
∂f − f = C, (199)
∂h′

with some constant C. Substituting for f we obtain explicitly√
h′2 1 + h′2√ − = C. (200)

(h h′0 − h)(1 + 2) h0 − h

Solving this for h′ and integrating both sides of the expression, we obtain∫ √
h0 − h

x = dh√ , (201)
2a− (h0 − h)

where C = (2a)−
1
2 . To evaluate this integral we substitute h0 − h = 2a sin2 θ and obtain2∫

θ
x = 2a sin2 dθ + x0 = a(θ − sin θ) + x0. (202)

2

We have thus found a parametric representation for the desired curve of most rapid descent:

x = x0 + a(θ − sin θ), h = h0 − a(1− cos θ). (203)

These are the equations of a cycloid generated by the motion of a fixed point on the
circumference of a circle of radius a, which rolls on the negative side of the given line
h = h0. By adjustments of the arbitrary constants, a and x0 it is always possible to
construct one and only one cycloid of which one arch contains the two points between
which the brachistochrone is required to extend. Moreover, this arc renders the time of
descent an absolute minimum compared with all other arcs.
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9 Surface Tension

Moving on, we shall now use our knowledge of variational principles to investigate the shape
of water droplets and soap films. The surface S of a droplet has energy∫

E[S] = γ dS (204)

with the coefficient of proportionality γ being the surface tension. The questions we now
want to answer are: What are the equilibrium shapes predicted by this energy? How can
we incorporate constraints, such as fixed volume, into the problem? Is the solution stable?
First we will look at the problem in one dimension, and then extend our analysis to many
dimensions.

9.1 Two-dimensional bubble

Consider a two-dimensional bubble, corresponding to an areaB confined by a non-intersecting
closed path ∂B in the plane. Let’s assume we can describe parameterize path by y(x). The
surface energy is ∫ ∫ √

E[y] = γ ds = γ dx
∂B ∂B

1 + y′2. (205)

We have already solved the problem to determine the curve that connects two points while
satisfying δE/δy = 0, the solution being a straight line. Now we need to introduce the
constraint of a fixed volume, and this is done by adding a Lagrange multiplier. Thus we
consider the functional ∫ √

E[y] = γ dx
∂B

1 + y′2 − λ
∫
B
dx y (206)

the second integral being the volume of the bubble. We combine this into

E[y] =

∫
dx
[
γ
√ ]

1 + y′2 − λy (207)

Inserting the integrand into the Euler-Lagrange equations gives(
y′

γ √ )′
= λ. (208)

1 + y′2

The term on the left hand side is called the mean curvature of the surface, and the solution
is readily shown to be a circle (as we expect). You can test this yourself since you know the
equation of a circle is just x2 + y2 = r2.

9.2 Soap film between two hoops

Now lets be a little more ambitious and consider a cylindrically symmetric two dimensional
surface, confined by two parallel rings located at x = −a and x = a. Given the axi-symmetry
of the problem, we may express the surface energy is∫ ∫

E = γ dA = γ 2πr ds. (209)
A A
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The arclength ds is simply
√

1 + r′2dx, and we see that through symmetry we have reduced
this to a one dimensional problem. The problem to be solved is now∫ a √

E[r] = 2πγ dx r
−a

!
1 + r′2 = min. (210)

Putting the integrand into the Euler-Lagrange equation gives√
1 + r′2 − d

dx

(
rr′√

)
= 0 (211)

1 + r′2

which can be simplified to
rr′′ − r′2 = 1 (212)

We can see immediately that a particular solution of this equation is given by the catenoid8

r = a cosh(x/a), (213)

which corresponds to the special case R/a = cosh(1). For other ratios, we need to solve (212)
numerically.

9.3 Rayleigh-Plateau Instability

In the previous section, we considered the shape of a soap film, stretched between two
hoops. We know, however, that the film breaks after a certain extension, but it is not clear
that there is anything in our problem to account for this. What is wrong? To answer this
question we must analyze the stability of the solution we have found. This is a topic that
we will address in more detail later on in the course, but shall touch upon now.

In one-dimensional calculus we check if our extremum is a maximum or a minimum, and
if it is the former it is unstable. We now adopt the same approach in variational calculus,
and consider the instability of a thin cylinder of fluid. This was studied by Plateau in the
1870’s, who was interested in the formation of droplets from a jet. In cylindrical coordinates
y(x) = r0 for the perfect cylinder. The cylinder has surface energy and we look for an
extremum by considering the functional∫ √

E[r] = γ dx 2πr

∫
1 + r′2 − λ dxπr2, (214)

where the second part is just the volume constraint.
We shall perturb the shape and show that if the wavelength of disturbance is greater

than 2πr0, the energy of the system decreases. Using the analysis from above, we know
that an extremum is required to satisfy the Euler-Lagrange equations[

1
γ √

1 + r′2
− r r′′

(1 + r′2)3/2

]
= λr. (215)

8You can find more soap film solutions at http://www.susqu.edu/brakke/evolver/evolver.html.
There, you will also download a surface evolver code to investigate minimal surfaces in more detail.
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For the perfect cylinder y(x) = r0 is a solution with λ = γ/r0. Note that λ has dimensions
of force/area, and is in fact the pressure. We now consider a perturbation such that

r(x) = r0 + ε cos kx. (216)

This perturbation is in some sense arbitrary, because any perturbation can be decomposed
into sines and cosines. Thus∫ [ √

E[r] = γ 2π(r0 + ε cos kx) 1 + ε2k2 sin2 kx− π
]

(r0 + ε cos kx)2 dx. (217)
r0

Assuming that ε is small, we can expand the square root, yielding∫ [ (
1

E[r] = γ 2π(r0 + ε cos kx) 1 +
2
ε2k2 sin2 kx

)
− π

]
(r0 + ε cos kx)2 dx. (218)

r0

Expanding everything out, we find that terms linear in ε cancel out, and we are left with∫ ∫ [ 2
2 2 2 cos kx

E[r] = γ πr0dx+ ε γπ r0k sin kx−
]
dx. (219)

r0

The first term corresponds to the energy E0 of the undeformed problem, so we are really
interested in the sign of the second integral ∆E. If it is positive then the energy is increased
as a result of the perturbation, and the system will be stable. However, if the integral is
negative, then by perturbing the system the energy is decreased, and the system must be
unstable.

Since the disturbance is periodic, we integrate over one wavelength, 2π/k, to determine
the energy per wavelength. We know that∫ 2π ∫ 2π

dx sin2 kx = dx cos2 π
kx =

0 0
, (220)

k

so that the energy change, ∆E, is (
∆E = ε2γπ2 1

r0k −
)
. (221)

r0k

So now we see that if r0k > 1 the system is stable, because ∆E is positive. However, if r0k <
1 then ∆E is negative and the system is unstable. Since k = 2π/λ this can be rearranged
to say that the system is unstable to wavelengths λ greater 2πr0, the circumference of
the cylinder. This was Plateau’s results, which Rayleigh found to be wrong by a factor√
of

√
2, due to hydrodynamic effects within the cylinder (i.e., λ = 2 2πr0 is the correct

answer). The physical reasoning arises from the fact that by perturbing the cylinder you
may be increasing the length of the surface along the cylinder, but you are reducing the
cross sectional area. It is the trade off between these two that determines the stability.

So does this answer our question of why the soap film breaks? Perhaps. You see, if
the distance between the two hoops is less than the 2π/r0, then the system is not open to
long wavelength perturbations, and is therefore stable. As soon as the separation exceeds
the critical wavelength, instability sets in and the bubble breaks. Note, however, that a
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critical part of our stability analysis relied on the constraint of constant volume to determine 
instability. With the soap film this is not present, so perhaps an alternative mechanism is 
responsible (e.g., possibly the shape of the soap film between the two hoops becomes so 
eccentric that surfaces in the middle touch, and there is a pinch off?). What would happen 
if the ends of the two hoops were closed, so that the volume constraint did then apply? Our 
stability analysis would now seem more relevant. The only way to check is to now go do 
some experiments (a good course project!). 

10 Some basic differential geometry 

In the next section, we will look more closely at the the mathematical description of elastic 
materials. To prepare this discussion, it is useful to briefly recall a few basics of differential 
geometry. 

10.1 Differential geometry of curves 

Consider a continuous curve r(t) ∈ R3, where t ∈ [0, T ]. The length of the curve is given by � T 
L = dt ṙ(t)  (222) 

0 
|| ||

where ṙ(t) = dr/dt and || · || denotes the Euclidean norm. The local unit tangent vector is 
defined by 

ṙ
t = . (223)

||ṙ|| 

The unit normal vector, or unit curvature vector, is 

(I 
n

− tt) · r̈
 = . (224)

||(I − tt) · r̈|| 

Unit tangent vector t̂(t) and unit normal vector n̂(t) span the osculating (‘kissing’) plane 
at point t. The unit binormal vector is defined by 

... 
(I − tt) · (I − nn) · r 

b = ... . (225)
||(I − tt) · (I − nn) · r || 

The orthonormal basis {t(t), n(t), b(t)} spans the local Frenet frame. 
The local curvature κ(t) and the associated radius of curvature ρ(t) = 1/κ are defined 

by 

ṫ · n 
κ(t) = , (226) 

|| ṙ|| 

and the local torsion τ (t) by 

ṅ  b 
τ(t) = 

·
. (227) 

|| ṙ|| 
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Plane curves satisfy, by definition, b = const. or, equivalently, τ = 0.
Given ||ṙ||, κ(t), τ(t) and the initial values {t(0),n(0), b(0)}, the Frenet frames along

the curve can be obtained by solving the Frenet-Serret system

1

    
ṫ 0 κ 0 tṅ = −κ 0 τn . (228a)

||ṙ||
ḃ 0 −τ 0 b

The above formulas simplify if t is the arc length, for in this case ||ṙ|| = 1.
As a simple example (which is equivalent to our shortest path problem) consider a

polymer confined in a plane. Assume the polymer’s end-points are fixed at (x, y) = (0, 0)
and (x, y) = (0, L), respectively, and that the ground-state configuration corresponds to a
straight line connecting these two points. Denoting the tension9 by γ, adopting the param-
eterization y = h(x) for the polymer and assuming that the bending energy is negligible,
the energy relative to the ground-state is given by[∫ L √

E = γ dx
0

]
1 + h2

x − L , (229)

where hx = h′(x). Restricting ourselves to small deformations, |hx| � 1, we may approxi-
mate

γ
E '

∫ L

dxh2

2 x. (230)
0

Minimizing this expression with respect to the polymer shape h yields the Euler-Lagrange
equation

hxx = 0. (231)

10.2 Two-dimensional surfaces

We now consider an orientable surface in R3. Possible local parameterizations are

F (s1, s2) ∈ R3 (232)

where (s1, s2) ∈ U ⊆ R2. Alternatively, if one chooses Cartesian coordinates (s1, s2) =
(x, y), then it suffices to specify

z = f(x, y) (233a)

or, equivalently, the implicit representation

Φ(x, y, z) = z − f(x, y). (233b)

The vector representation (232) can be related to the ‘height’ representation (233a) by 
x

F (x, y) =  y  (234)
f(x, y)

9γ carries units of energy/length.

47



Denoting derivatives by F i = ∂siF , we introduce the surface metric tensor g = (gij) by

gij = F i · F j , (235a)

abbreviate its determinant by

|g| := det g, (235b)

and define the associated Laplace-Beltrami operator ∇2 by

∇2 1
h = √

|g|
∂i(g

−1
ij

√
|g|∂jh), (235c)

for some function h(s1, s2). For the Cartesian parameterization (234), one finds explicitly   
1 0

F x(x, y) =  0 , F y(x, y) =  1 (236)
fx fy

and, hence, the metric tensor( ) ( )
F x · F x F 1 + 2

x · F y f fxfyg = (gij) = = x
2 (237a)

F y · F x F y · F y fyfx 1 + fy

and its determinant

|g| = 1 + f2
x + f2

y , (237b)

where fx = ∂xf and fy = ∂yf . For later use, we still note that the inverse of the metric
tensor is given by

1
g−1 = (g−1

ij ) =

( )
1 + f2

y −fxfy . (237c)
1 + f2

x + f2 −y fyf 1 + f2
x x

Assuming the surface is regular at (s1, s2), which just means that the tangent vectors F 1

and F 2 are linearly independent, the local unit normal vector is defined by

F 1 ∧ F 2
N = . (238)

||F 1 ∧ F 2||

In terms of the Cartesian parameterization, this can also be rewritten as

∇Φ
N =

||∇Φ||
=

1√
 
−fx−fy . (239)

1 + f2
x + f2

y 1

Here, we have adopted the convention that {F 1,F 2,N} form a right-handed system.
To formulate ‘geometric’ energy functionals for membranes, we still require the concept

of curvature, which quantifies the local bending of the membrane. We define a 2 × 2-
curvature tensor R = (Rij) by

Rij = N · (F ij) (240)
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and local mean curvature H and local Gauss curvature K by

1
H = tr (g−1 ·R) , K = det(g−1 ·R). (241)

2

Adopting the Cartesian representation (233a), we have     
0 0 0

F xx =  0  , F xy = F yx =  0  , F yy =  0  (242a)
fxx fxy fyy

yielding the curvature tensor( )
N · F xx N · F xy 1

(Rij) = =
N · F yx N · F yy

√ ( )
fxx fxy (242b)

1 + f2
x + f2 fyx fyy

y

Denoting the eigenvalues of the matrix g−1 · R by κ1 and κ2, we obtain for the mean
curvature

1
H =

2
(κ1 + κ2) =

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy
(243)

2(1 + f2
x + f2

y )3/2

and for the Gauss curvature

fxxfyy − f2
xy

K = κ1 · κ2 = . (244)
(1 + f2

x + f2
y )2

An important result that relates curvature and topology is the Gauss-Bonnet theo-
rem, which states that any compact two-dimensional Riemannian manifold M with smooth
boundary ∂M , Gauss curvature K and geodesic curvature kg of ∂M satisfies the integral
equation ∫ ∮

K dA+ kg ds = 2π χ(M). (245)
M ∂M

Here, dA is the area element on M , ds the line element along ∂M , and χ(M) the Euler
characteristic of M . The latter is given by χ(M) = 2− 2g, where g is the genus (number of
handles) of M . For example, the 2-sphere M = S2 has g = 0 handles and hence χ(S2) = 2,
whereas a two-dimensional torus M = T2 has g = 1 handle and therefore χ(T2) = 0.

Equation (245) implies that, for any closed surface, the integral over K is always a
constant. That is, for closed membranes, the first integral in Eq. (245) represents just a
trivial (constant) energetic contribution.

10.3 Minimal surfaces

Minimal surfaces are surfaces that minimize the area within a given contour ∂M ,∫
A(M |∂M) = dA = min! (246)

M
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Assuming a Cartesian parameterization z = f(x, y) and abbreviating fi = ∂if as before,
we have √

dA = |g| dxdy =
√

1 + f2
x + f2

y dxdy =: L dxdy, (247)

and the minimum condition (246) can be expressed in terms of the Euler-Lagrange equations

δA
0 =

δf
= −∂i

∂L
. (248)

∂fi√
Inserting the Lagrangian L = |g|, one finds

0 = −

∂x
 fx√

1 + f2
x + f2

y

+ ∂y

 fy√
 (249)

1 + f2
x + f2

y

which may be recast in the form

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy
0 = = −2H. (250)

(1 + f2
x + f2

y )3/2

Thus, minimal surfaces satisfy

H = 0 ⇔ κ1 = −κ2, (251)

implying that each point of a minimal surface is a saddle point.

10.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich proposed in 1973 the following geometric curvature energy per unit area for a closed
membrane

kc
ε = (2H − c0)2 + kGK, (252)

2

where constants kc, kG are bending rigidities and c0 is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as∫ ∫ ∫

Ec = dA ε+ σ dA+ ∆p dV, (253)

where σ is the surface tension and ∆p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation10

∆p− 2σH + kc(2H − c0)(2H2 + c0H − 2K) + kc∇2(2H − c0) = 0, (254)

10The full derivation can be found in Chapter 3 of Z.-C. Ou-Yang, Geometric Methods in the Elastic
Theory of Membranes in Liquid Crystal Phases(World Scientific,Singapore, 1999).
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 where \2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (254) uses 
our earlier result 

δA 
= −2H, (255)

δf 

 and the fact that the volume integral may be rewritten as11  
1 

V = dV = dA F · N , (256)
3 

which gives 

δV 
= 1, (257)

δf 

corresponding to the first term on the rhs. of Eq. (254). 
For open membranes with boundary ∂M , there is no volume constraint and a plausible 

energy functional reads 

Eo =

 
dA E + σ

 
dA + γ

 
ds, (258) 

∂M 

where γ is the line tension of the boundary. In this case, variation yields not only the 
corresponding shape equation but also a non-trivial set of boundary conditions. 

11 Elasticity 

What shape does a piece of paper take when we push it in at the ends? To answer this 
question let’s acquaint ourselves with another continuum approximation, used to describe 
the deformation of elastic solids (we might actually have studied this before our work on 
fluids, as it is conceptually simpler). We first need to find a way to describe stress and strain 
within the solid, and then determine the relation between the two. Then we can derive the 
equations of elasticity and apply them to the buckling of a thin plate. 

11.1 Strain 

If a solid is deformed, then points within the solid will move. We fix our attention on a 
single point, whose coordinates are (x1, x2, x3), and the close neighborhood of this point. 
We suppose that in the strained state the Cartesian coordinates of the same point have 
become (x;1, x;2, x;3). The displacement of this point due to the deformation is denoted by 
u = u(x1, x2, x3), where 

ui = xi
; 
 − xi. (259) 

The vector u is called the displacement vector. 
When a body is deformed the distance between its points change. Let’s consider two 

points very close together. If the vector joining them before is dxi, the vector joining them in 
11Here, we made use of the volume formula dV = 1h

3  dA for a cone or pyramid of height h = F · N . 
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the√ deformed body is dx′i = dxi + dui. This distance between the points was originally dl =√
dx2

1 + dx2
2 + dx2

3 and is now dl′ = dx′21 + dx′22 + dx′23 . Using the summation convention,
which tells us to sum over repeated indices (i.e., aibi = a1b1 +a2b2 +a3b3), and substituting
in that dui = (∂ui/∂xk)dxk, we get

′2 = dl2
∂ui

dl + 2
∂xk

dxidxk +
∂ui
∂xk

∂ui
dxkdxl. (260)

∂xl

We shall neglect the last of these terms, as we consider the ui to be small, so that

dl′2 = dl2 + 2eijdxidxj (261)

where

1
eij =

2

(
∂ui
∂xj

+
∂uj

)
(262)

∂xi

are the components of the strain tensor e. This is called linear elasticity (even though it
is not really linear). It is often very useful to separate pure shear from pure compression
effects, which can be achieved by rewriting12(

δij
eij = eij −

3
ell

)
+
δij
3
ell =

(
eij −

δij
3
∇ · u

)
+
δij∇ · u. (263)
3

The first part in parentheses has a vanishing trace and therefore represents pure shear.

11.2 Stress tensor

When a body is deformed, the arrangement of molecules within is changed, and forces arise
that want to restore the body to its equilibrium configuration. These are called internal
stresses, represented by a stress tensor σ = (σij), and when there is no deformation the
stress is zero

σik = 0. (264)

The three components of a force on a volume element V can be obtained from stresses by
transforming a surface integral into a volume integral∫ ∫ ∫

σikdAk = (∂kσik)dV = fidV (265)
∂V V V

Hence, the vector fi must be given by the divergence of the stress tensor σik.

∂σik
fi = . (266)

∂xk

We recognize that σikdAk is the force per unit area in the i-direction on the surface element
with outward normal dA. One thing we know about the stress tensor is that it is symmetric

12In d dimensions one would simply replace δij/3 by δij/d everywhere.
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(σij = σji). If, for example, the body is in a gravitational field then the internal stresses
must everywhere balance gravity, in which case the equilibrium equations are

∂σik
+ ρgi = 0. (267)

∂xk

Additional external forces applied to the surface of the body will enters as boundary condi-
tions that complement the equilibrium conditions (267). For instance, if there is an external
force per unit area, f̂ , acting over the surface, then we require

ˆσiknk = fi, (268)

where n is the outward unit normal on the surface.

11.3 Hooke’s law

In general, we would like to use Eqs. (267) to predict the deformation of a solid body under
a given force distribution. That is, we have to express the stress tensor σij in terms of the
displacement field u. The main body of the mathematical theory of elasticity rests on the
assumption of a linear homogeneous relation between the elements of the stress tensor and
the strain tensor. This is just the continuum version of Hooke’s Law. To simplify matters,
let’s focus on materials that are isotropic (i.e., the elastic properties are independent of
direction). In this case

σij = λδij(e11 + e22 + e33) + 2µeij = λδijTre+ 2µeij (269)

where δij is the Kronecker delta and λ and µ are positive elastic constants of the material,
called Lame coefficients. The corresponding (free) energy density E of the body associated
with deformation, obtained from the relation

∂E
σij = , (270)

∂eij

is therefore
1

E = λe2
ii + µe2

ij . (271)
2

As stated above, the sum eii = Tre is related to the change in volume associated with a
deformation. If this is zero, only the shape of the body is altered, corresponding to pure
shear. Recalling our above decomposition

1
eij = (eij −

3
δijell) +

1
δijell. (272)

3

we can obtain a general expression for the energy density of a deformed isotropic body, by
replacing (271) with

1
E =

2
Ke2

ll + µ(eik −
1
δ 2
ikell) (273)

3
where K and µ positive constants, respectively called the modulus of compression and the
modulus of rigidity. In 3D, K is related to the Lame coefficients by13

2
K = λ+

3
µ (274)

13In 2D, this relation becomes K = λ+ µ.
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11.4 A simple problem

Consider the simple case of a beam. Let the beam be along the z-axis, and let us pull it a
both ends to stretch it. The force per unit area p is uniform over each end. The resulting
deformation is uniform throughout the body and, hence, so is the stress tensor. It therefore
follows that all components σik are zero except for σzz, and from the forcing condition at
the end we have that σzz = p.

From the general expression that relates the components of the stress and strain tensors,
we see that all components eik with i 6= k are zero. The equilibrium equations are therefore

1
exx = eyy = −

3

(
1

2µ
− 1

3K

)
p (275)

and

ezz =
1

3

(
1

µ
+

1
)
p. (276)

3K

The component ezz gives the lengthening of the rod, and the coefficient of p is the coefficient
of extension. Its reciprocal is Young’s modulus

9Kµ
Y = . (277)

3K + µ

The components exx and eyy give the relative compression of the rod in the transverse
direction. The ratio of the transverse compression to the longitudinal extension is called
Poisson’s ratio, ν:

exx = −νezz, (278)

where
1

ν =
2

(
3K − 2µ

)
. (279)

3K + µ

Since K and µ are always positive, Poisson’s ratio can vary between -1 and 1 . Note that a2
negative value corresponds to pulling on the beam and it getting thicker! Now we see why
we use Y and ν; they are easier to measure. Inverting these formulae, we get

Y
µ =

2(1 + ν)
, K =

Y
. (280)

3(1− 2ν)

The free energy then becomes

Y
E =

2(1 + ν)

(
e2
ik +

ν
)

e2

1− 2ν ll . (281)

The stress tensor is given in terms of the strain tensor by

Y
σik =

1 + ν

(
eik +

ν
)

ellδik . (282)
1− 2ν

Conversely
1

eik = [(1 + ν)σik − νσllδik]. (283)
Y
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11.5 Bending of a thin beam

Now we are in a position to try and calculate the shape of a bent beam. Our analysis
requires that the thickness be much smaller than the lateral dimension. The deformations
must also be small, such that the displacements are small compared with the thickness.
Although the general equilibrium equations are greatly simplified when considering thin
plates, it is more convenient not to derive our result from these. Rather, we shall use our
knowledge of variational calculus to calculate afresh the energy of a bent plate, and set
about varying that energy.

When a plate is bent, it is stretched at some points and compressed at others: on the
convex side there is evidently an extension and on the concave side there is compression.
Somewhere in the middle there is a neutral surface, on which there is no extension or
compression. The neutral surface lies midway through the plate.

We take a coordinate system with the origin on the neutral surface and the z-axis normal
to the surface. The xy-plane is that of the undeformed surface. The displacement of the
neutral surface is given by uz = w(x, y). For further calculations we note that since the
plate is thin, comparatively small forces on the surface are needed to bend it. These forces
are always considerably less than the internal stresses caused in the deformed beam by the
extension and compression of its parts. Thus we have on both surfaces of the plate

σxz = σyz = σzz = 0. (284)

Since the plate is small, these quantities must be small within the plate if they are zero on
the surface. We therefore conclude that σxz = σyz = σzz are small everywhere, and equate
them to zero. From our general formulae relating stress and strain, we have

Y
σzx =

Y
ezx, σzy =

1 + ν 1 + ν
ezy, (285)

σzz =
Y

[(1− ν)ezz + ν(exx + eyy)]. (286)
(1 + ν)(1− 2ν)

Substituting in our expression for the the strain tensor and equating to zero, we get

∂ux
∂z

= −∂uz ∂uy
,

∂x ∂z
= −∂uz

∂y
, (287)

ezz = −ν(exx + eyy)
. (288)

(1− ν)

In the first two of these equations uz can be replaced by w(x, y). Thus, integrating the
above relations gives

∂w
ux = −z

∂x
, uy = −z ∂w , (289)

∂y

where the constants of integration were chosen so as to make ux = uy = 0 for z = 0.
Knowing ux and uy we can now determine all the components of the strain tensor:

∂2w
exx = −z

∂x2
, eyy = −z ∂

2w

∂y2
exy = −z ∂

2w
, (290)

∂x∂y
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zν ∂2w ∂2w 
exz = eyz = 0, ezz =

 
+ 

y2 

 
. (291)

1 − ν ∂x2 ∂

We now calculate the free energy of the plate, using our general formula,  

2
2  2
Y

 
 

 
∂2w

  2 
 1 ∂ w ∂2w ∂2w ∂2w 

E = z + + . 1  − ν) ∂x2
  (292) + ν 2(1 ∂y2

 
∂x∂y

 
−
∂x2 ∂y2

 

Integrating from −h to h , where h is the thickness of2  the plate, then integrating again over2  
an area element gives the free energy per unit area   � 

2
 2

Y h3  
∂ w ∂2w

  
∂

  
2 2
w ∂2w ∂2w 

EA = + + 2(1  ν)  
24(1 −  ν2) ∂x2 ∂y2

−
∂x∂y

−
∂x2 ∂y2

 �
dxdy. 

(293) 
where the element of area can be written dxdy since the deformation is small. 

We now derive the equilibrium equation for a plate from the condition that it’s free 
energy is a minimum. To simplify things, let’s just ignore any y-dependence and consider a 
2D problem. Using the calculus of variations we have that the energy of the distorted beam 
is 

δE Y h3 d4w 
= . (294)

δw 12(1 − ν2)  dx4

This expression must equal the force f(x) applied to deform the plate: 

Y h3 d4w 
= f(x). (295)

12(1 − ν2) dx4 

The simplest boundary conditions are if the edges are clamped, in which case 

dw 
w = 0, = 0 (296)

dx 

at the edges. The first of these expresses the fact that the edge of the plate undergoes no 
deformation, and the second that it remains horizontal. For more details, see chapter 2 in 
Theory of Elasticity, Landau & Lifschitz. 

12 Towards hydrodynamic equations 

The previous classes focussed on the continuum description of static (time-independent) 
elastic systems. We become more ambitious now and look to derive the hydrodynamic 
equations for a system of particles obeying Newton’s laws. There are two ways we can 
go about this: by going from the microscopic to the macroscopic scale, or by adopting a 
continuum approximation and deriving the macro-equations from general considerations. 

The general principle underlying this subject is that the macroscopic variables are quan­
tities that are microscopically conserved. The reason for this is simply that the entire notion 
of a macroscopic equation relies on scale separation with the microscopic scale. Any quan­
tity which is not conserved microscopically necessarily varies on a macroscopic scale. The 
only quantities that are candidate hydrodynamic variables are therefore those which are 
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conserved. This simple argument shows that what we really need to do is figure out how to
generalise our random walkers to something that conserves momentum and energy.

To rigorously justify the macroscopic equations of motion for a fluid (i.e., a collection
of particles interacting with each other by Newton’s laws) it is necessary to find a way of
passing in detail from the microscopic (quantum) mechanical description, to the macroscopic
description. The ideas behind this are highly related to what we have already done for the
random walker, albeit with another level of complexity.

12.1 Euler equations

Instead of obtaining macroscopic equations of fluid motion from microscopic principles (this
will be done in Sec. 12.2 below), we shall first derive the equations of inviscid (frictionless)
hydrodynamics purely from macro-considerations alone. This requires us to adopt a contin-
uum approximation, which assumes a macroscopic scale large compared with the distance
between molecules. We assume that the fluid is continuous in structure, and physical quan-
tities such as the mass and momentum are spread uniformly over small volume elements.

The validity of the continuum hypothesis under everyday conditions is clear, as two of
the more common fluids, air and water, are so obviously continuous and smoothly varying
that no different hypothesis would seem natural. One or two numbers readily show the
great difference between the lengthscale representative of the fluid as a whole and that
representative of the particle structure. For most laboratory experiments, a characteristic
linear dimension of the region occupied by the fluid is at least 1cm, and very little variation
of the physical and dynamical properties of the fluid occurs over a distance of 10−3cm. Thus
an instrument with a sensitive volume of 10−9cm3 would give a local measurement. Small
though this volume is, it contains about 1010 molecules of air at normal temperature and
pressure (and an even larger number of molecules of water), which is large enough for an
average of all the molecules to be independent of their number.

The continuum hypothesis implies that it is possible to attach a definite meaning to
the notion of value ‘at a point’ of the various fluid properties such as density, velocity
and temperature, and that in general values of these quantities are continuous functions of
position and time. There is ample observational evidence that common real fluids move as if
they were continuous, under normal conditions and indeed for considerable departures from
normal conditions. However, some of the properties of the equivalent continuous media need
to be determined empirically, and cannot be derived directly from microscopic principles.

12.1.1 The continuity equation

Let’s suppose the fluid density is described by a function ρ(r, t). The total mass enclosed
in a fixed volume V is ∫

ρdV. (297)
V

The mass flux leaving this volume through the bounding surface S = ∂V is∫
ρu · ndS, (298)

S
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where u(x, t) is the velocity of the fluid and n is the outward normal. Hence we have∫
∂ρ

V

∫ ∫
dV = − ρu · ndS = − ∇ · (ρu)dV. (299)

∂t S V

This must hold for any arbitrary fluid element dV , thus

∂ρ
+∇ · (ρu) = 0. (300)

∂t

This is called the continuity equation.
For fluids like water, the density does not change very much and we will often be tempted

to neglect the density variations. If we make this approximation the continuity equation
reduces to the incompressibility condition

∇ · u = 0. (301)

Like all approximations, this one is sometimes very good and sometimes not so good. We
will have to figure out where it fails.

12.1.2 Momentum equations

So far we have more unknowns than equations (three velocity components but only one
equation). We now consider the conservation of linear momentum and, adopting an alter-
native viewpoint to that used in deriving the continuity equation, consider Newton’s laws
for a particular moving element of fluid:

d
∫ ∫ ∫

ρudV = − pndS + fdV, (302)
dt V (t) S(t) V (t)

where V (t) is the volume of the element enclosed by the surface S(t), f is the density of
body forces, such as gravity ρg, and p is a pressure force. The pressure force is a normal
force per unit area (usually compressive) exerted across the surface of a fluid element, and
is related to both intermolecular forces and momentum transfer across an interface. For
any volume, the pressure force is∫ ∫

− pndS = − ∇pdV. (303)

Both V (t) and S(t) are being deformed by the motion of the fluid, so if we want to take the
d/dt inside the integral sign we must take account of this. The Reynolds transport theorem
does so, and it can be shown that for a deforming, incompressible fluid element

d

dt

∫
V (t)

ρudV =

∫
V (t)

ρ
Du

dV (304)
Dt

Here

D

Dt
=

∂
+ (u · ∇) (305)

∂t
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is called the convective derivative, and we shall discuss it’s significance in a moment. Hence,
assuming that f is solely given by gravity, f = ρg, we find∫

Du
ρ

V (t)

∫
dV = (−∇p+ ρg)dV (306)

Dt V (t)

Since this must hold for any arbitrary fluid element we arrive at

Du

Dt
=
−∇p

+ g. (307)
ρ

This, combined with the the continuity equation (300), constitutes the Euler equations.
Things can be tidied up a little if we realise that the gravitational force, being conservative,
can be written as the gradient of a scalar potential ∇ψ. It is therefore usual to redefine
pressure as p+ ψ → p. This implies that gravity simply modifies the pressure distribution
in the fluid and does nothing to change the velocity. However, we cannot do this if ρ is not
constant or if we have a free surface (as we shall see later with water waves).

Assuming the density is constant means we now have four equations in four unknowns:
three components of u and p. Note that if we do not demand constant density then the equa-
tions (continuity+momentum) only close with another relation, an equation of state p(ρ).

12.2 From Newton’s laws to hydrodynamic equations

To complement the purely macroscopic considerations from the previous section, we will
now discuss how one can obtain hydrodynamic equations from the microscopic dynamics.
To this end, we consider a many-particle system governed by Newton’s equations

dxi
dt

= vi , m
dvi

= F i, (308)
dt

assuming that all particles have the same mass m, and that the forces F i can be split into
an external contribution G and pair interactions H(r) = −H(−r)∑

F (x1, . . . ,xn) = G(xi) + H(xi − xj) = −∇xiΦ(x1, . . . ,xn) (309)
j 6=i

We define the fine-grained phase-space density∑N
f(t,x,v) = δ(x− xi(t))δ(v − vi(t)) (310)

i=1

where δ(x− xi) = δ(x− xi)δ(y − yi)δ(z − zi) in three dimensions. Intuitively, the density
f counts the number of particles that at time t are in the small volume [x,x + dx] while
having velocities in [v,v + dv]. By chain and product rule

∂

∂t
f =

N∑
i=1

d
[δ(x− xi)δ(v − vi)]

dt

∑N
= {δ(v − vi)∇xiδ(x− xi) · ẋi + δ(x− xi)∇viδ(v − vi) · v̇i}

i ∑N ∑N F i
= −∇x δ(v − vi)δ(x− xi) · vi −∇v δ(x− xi)δ(v − vi) ·

i=1 i=1

(311)
m
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where, in the last step, we inserted Newton’s equations and used that

∂

∂xi
δ(x− xi) = − ∂

δ(x− xi) (312)
∂x

Furthermore, making use of the defining properties of the delta-function

∂ ∑N ∑N F i
f = −v · ∇x δ(v − vi)δ(x− xi)−∇v δ(x− xi)δ(v − vi) ·

∂t
i=1 i=1

m

= −v · ∇xf −
1 ∑N
∇v δ(x− xi)δ(v − vi) · F i. (313)

m
i=1

Writing ∇ = ∇x and inserting (309) for the forces, we may rewrite(
∂

m

 ) ∑N ∑
+ v · ∇ f = −∇v δ(x− xi)δ(v − vi) · G(xi) + H(xi − xj)

∂t
i=1  j 6=i ∑N ∑

= −∇v δ(x− xi)δ(v − vi) · G(x) + H(x− xj) i=1  xj 6=x∑
= −G(x) + H(x− xj) · ∇vf (314)

xj 6=x

In the second line, we have again exploited the properties of the delta function which allow
us to replace xi by x. Also note the appearance of the convective derivative on the lhs.;
the above derivation shows that it results from Newton’s first equation.

To obtain the hydrodynamic equations from (314), two additional reductions will be
necessary:

• We need to replace the fine-grained density f(t,x,v), which still depends implicitly
on the (unknown) solutions xj(t), by a coarse-grained density 〈f(t,x,v)〉.

• We have to construct the relevant field variables, the mass density ρ(t, r) and velocity
¯field u, from the coarse-grained density f .

To motivate the coarse-graining procedure, let us recall that the Newton equations (308)
form a system of deterministic ODEs whose solutions are {x1(t), . . . ,xN (t)} are uniquely
determined by the initial conditions {x1(0), . . . ,xN (0);v1(0), . . . ,vN (0)} =: Γ0. However,
for any experimental realization of a macroscopic system (say, a glass of water), it is prac-
tically impossible to determine the initial conditions exactly. To account for this lack of
knowledge, we may assume that the initial conditions are drawn from some probability
distribution P(Γ0). Without specifying the exact details of this distribution at this point,
we may define the coarse-grained density 〈f〉 by averaging the fine-grained density f with
respect to P(Γ0), formally expressed as ∫

〈f(t,x,v)〉 = dP(Γ0) f(t,x,v). (315)
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Averaging Eq. (314) and using the fact that integration over initial conditions commutes
with the partial differentiations, we have(

∂
m

)
+ v · ∇ 〈f〉 = −∇v · [G(x)〈f〉+C] (316)

∂t

where the collision-term ∑
C(t,x,v) := 〈H(x− xj)f(t,x,v)〉 (317)

xj 6=x

represents the average effect of the pair interactions on a fluid particle at position x.
We now define the mass density ρ, the velocity field u, and the specific kinetic energy

tensor Σ by ∫
ρ(t,x) = m d3v 〈f(t,x,v)〉, (318a)∫

ρ(t,x)u(t,x) = m d3v 〈f(t,x,v)〉 v. (318b)∫
ρ(t,x) Σ(t,x) = m d3v 〈f(t,x,v)〉 vv. (318c)

The tensor Σ is, by construction, symmetric as can be seen from the definition of its
individual components ∫

ρ(t,x) Σij(t,x) = m d3v 〈f(t,x,v)〉 vivj ,

and the trace of Σ defines the local kinetic energy density

1
ε(t,x) :=

2
Tr(ρΣ) =

m
∫
d3v 〈f(t,x,v)〉 |v|2. (319)

2

Integrating Eq. (316) over v, we get

∂
∫

ρ+∇ · (ρu) = − dv3 ∇v · [G(x)〈f〉+C] , (320)
∂t

but the rhs. can be transformed into a surface integral (in velocity space) that vanishes since
for physically reasonable interactions [G(x)〈f〉+C]→ 0 as |v| → ∞. We thus recover the
mass conservation equation

∂
ρ+∇ · (ρu) = 0. (321)

∂t

To obtain the momentum conservation law, lets multiply (316) by v and subsequently
integrate over v,∫ (

dv3 ∂
m

) ∫
+ v · ∇ 〈f〉v = − dv3 v∇v · [G(x)〈f〉+C] . (322)

∂t
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The lhs. can be rewritten as∫ (
dv3 ∂

m
∂t

+ v · ∇
)
〈f〉v =

∂
∫

(ρu) +∇ · dv3 m〈f〉vv
∂t

∂
=

∂t
(ρu) +∇ · (ρΣ)

=
∂

(ρu) +∇ · (ρuu) +∇ · [ρ(Σ− uu)]
∂t
∂

= ρ
∂t
u+ u

∂

∂t
ρ+ u∇ · (ρu) + ρu · ∇u+∇ · [ρ(Σ− uu)]

(321)
= ρ

(
∂

)
+ u · ∇ u+∇ · [ρ(Σ− uu)] (323)

∂t

The rhs. of (322) can be computed by partial integration, yielding∫ ∫
− dv3 v∇ 3

v · [G(x)〈f〉+C] = dv · [G(x)〈f〉+C]

= ρg + c(t,x), (324)

where g(x) := G(x)/m is the force per unit mass (acceleration) and the last term∫ ∫ ∑
c(t,x) = dv3C = dv3 〈H(x− xj)f(t,x,v)〉 (325)

xj=6 x

encodes the mean pair interactions. Combining (323) and (324), we find(
∂

ρ

)
+ u · ∇ u = −∇ · [ρ(Σ− uu)] + ρg(x) + c(t,x). (326)

∂t

The symmetric tensor

Π := Σ− uu (327)

measures the covariance of the local velocity fluctuations of the molecules which can be
related to their temperature. To estimate c, let us assume that the pair interaction force
H can be derived from a pair potential ϕ, which means that H(r) = −∇rϕ(r). Assuming
further that H(0) = 0, we may write∫ ∑

c(t,x) = − dv3 〈[∇xϕ(x− xj)]f(t,x,v)〉 (328)

xj(t)

Replacing for some function ζ(x) the sum over all particles by the integral∑ 1
ζ(xj) '

xj
m

∫
d3y ρ(t,y) ζ(y) (329)

we have

c(t,x) ' − 1
∫ ∫
dv3 d3y ρ(t,y) 〈[∇xϕ(x− y)]f(t,x,v)〉

m
1

= −
m

∫
dv3

∫
d3y ρ(t,y) 〈[−∇yϕ(x− y)]f(t,x,v)〉

= − 1
∫ ∫
dv3 d3y [∇ρ(t,y)] 〈ϕ(x− y)f(t,x,v)〉 (330)

m
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In general, it is impossible to simplify this further without some explicit assumptions about
initial distribution P that determines the average 〈 · 〉. There is however one exception,
namely, the case when interactions are very short-range so that we can approximate the
potential by a delta-function,

ϕ(r) = φ0a
3δ(r), (331)

where ϕ0 is the interaction energy and a3 the effective particle volume. In this case,

ϕ 3
0a

c(t,x) = −
∫ ∫
dv3 d3y [∇ρ(t,y)] 〈δ(x− y)f(t,x,v)〉

m

ϕ0a
3

= −
m

[∇ρ(t,x)]

∫
dv3〈f(t,x,v)〉

= −ϕ0a
3

[∇ρ(t,x)]ρ(t,x)
m2

ϕ0a
3

= − ∇ρ(t,x)2 (332)
2m2

Inserting this into (326), we have thus derived the following hydrodynamic equations

∂
ρ+∇ · (ρu) = 0 (333a)(∂t
∂

ρ
∂t

+ u · ∇
)
u = ∇ ·Ξ + ρg(x), (333b)

where

Ξ := −
[
ρ(Σ− uu) +

ϕ0a
3

]
ρ2I (333c)

2m2

is the stress tensor with I denoting unit matrix.
Note that Eqs. (333) do not yet form a closed system, due to the appearance of the

second-moment tensor Σ. This is a manifestation of the well-known hierarchy problem,
encountered in all14 attempts to derive hydrodynamic equations from microscopic models.
More precisely, the hierarchy problem means that the time evolution of the nth-moment
depends on that of the higher moments. The standard approach to overcoming this obstacle
is to postulate (guess) reasonable ad-hoc closure conditions, which essentially means that
one tries to express higher moments, such as Σ, in terms of the lower moments. For example,
a commonly adopted closure condition is the ideal isotropic gas approximation

kT
Σ− uu = I, (334)

m

where T is the temperature and k the Boltzmann constant. For this closure condition,
Eqs. (333a) and (333b) become to a closed system for ρ and u.

Traditionally, and in most practical applications, one does not bother with microscopic
derivations of Ξ; instead one merely postulates that

µ
Ξ = −pI + µ( >u+∇u> 2∇ )−

3
(∇ · u), (335)

14Except, perhaps for very trivial examples.
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where p(t, x) is the pressure field and µ the dynamic viscosity, which can be a function 
of pressure, temperature etc. depending on the fluid. Equations (333a) and (333b) com­
bined with the empirical ansatz (335) are the famous Navier-Stokes equations. The second 
summand in Eq. (335) contains the rate-of-strain tensor 

1
E = (

2
  u + u ) (336)

and ( · u) is the rate-of-expansion of the flow. 
For incompressible flow, defined by ρ = const., the Navier-Stokes equations simplify to

  · u = 0 (337a)

∂ 
ρ + u  u = p + µ 2u + ρg. (337b)

∂t 
·  

 
−  

In this case, one has to solve for (p, u). 

13 The Navier-Stokes Equations 

In the previous section, we have seen how one can deduce the general structure of hydro­
dynamic equations from purely macroscopic considerations and and we also showed how 
one can derive macroscopic continuum equations from an underlying microscopic model. 
For the remainder of this course, we will return to the macroscopic viewpoint developed in 
Sec. 12. 

13.1 Viscosity 

A main insight from the discussion in the previous section is that the Euler equations, as 
given in Sec. 12.1, do not account for one final element needed to complete the macroscopic 
fluid equations: viscosity. Viscous stresses try to stop relative motion between nearby parts 
of the fluid. Another way of saying this is that wherever there is a rate of strain in the fluid, 
a stress acts to reduce the strain. As with pressure, viscosity has its origins in intermolecular 
forces and momentum transfer across a surface. 

To understand more about viscosity, let’s first have a general discussion of the stress 
acting on an infinitesimal fluid element. There are two kinds of stresses: normal stresses 
and tangential stresses. We anticipate that the viscous stresses act tangentially to the fluid 
element (as their role is to get rid of relative motion.) Our goal is to figure out the form of 
these tangential stresses. All of the information related to normal and tangential stresses 
within a fluid can be collected in the stress tensor. The stress tensor is a three by three 
matrix σ with components σij , which has the property that the stress acting on a surface S 
with unit normal n is just σijnj . For an arbitrary fluid element, the net force arising from 
surface stresses is  

σ · ndS =
 

( · σ)dV. (338) 
S V 

We must therefore determine the form of σ in order derive our equations of motion. 
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Firstly, suppose there were no tangential stresses on a fluid element. The normal stresses 
are just pressures. In this case the stress tensor would just be 

  
−p 0 0 

σ = 

⎛⎝ 0  −p 0 . (339) 
0 0 

⎞
−p 

The

⎠
 momentum equation for the component ui of the velocity is then 

Dui ∂p 
=  , (340)

Dt 
−
∂xi 

and this is Euler’s equation, which we derived in the previous lecture. 
Now let’s think a little more about the tangential stresses acting on a fluid element. We 

argue that the net torque on an element must vanish. This means that σ12, the stress in the 
x-direction on the face with normal in the y-direction must be equal to σ21, the stress in the 
y-direction on the face with normal in the x-direction. If these do not exactly cancel, the 
forces will make the fluid element spin. The fact that the tangential stresses on the fluid 
element balance means that the stress tensor must be symmetric. We therefore deduce that 
the stress tensor is of the general form ⎛  

σ⎝ 11 σ12 σ13 
σ = −pI +  σ12 σ22 σ23  , (341) 

σ13 σ23 σ33 

⎞

where

⎠
 I is the identity matrix. 

In determining the form of the viscous tangential stresses, we reason that these must 
arise from relative motion between fluid elements. Thus the stress should somehow depend 
on \u, which will only be nonzero if there are velocity gradients. Note that \u is also a 
tensor, and can be written explicitly as 

 
∂xux ∂yux ∂zux 

\u = 

⎛⎝ ∂xuy ∂yuy ∂zuy 
∂xuz ∂yuz ∂zuz 

⎞

W

⎠ . (342) 

e immediately have a problem because the tensor is not symmetric, whilst we know that 
the stress tensor is necessarily symmetric. There is, however, a mathematical fact that says 
a general tensor can be expressed as the sum of a symmetric tensor and an antisymmetric 
tensor, i.e., if A is a tensor then 

1 1 
Aij = As

ij + Aa
ij = (Aij + Aji) + (Aij − Aji). (343)

2 2 

The first part of the formula corresponds to a symmetric tensor and the second part to 
an antisymmetric tensor. Using this construction, the velocity gradient tensor can thus be 
divided into symmetric part 

s 1\u = (∂iuj + ∂
 j ui) (344a)
2
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and antisymmetric part 

a 1\u = (∂iuj − ∂
 j ui).	 (344b)
2

Physically, the symmetric part \us corresponds to the deformation of the fluid element 
and is called the rate of strain tensor. The antisymmetric part corresponds to rotation of 
the fluid element and is called the vorticity tensor. To see this, let’s consider a flow that 
is rotating, but not deforming, and also a flow that is deforming, but not rotating. In two 
dimensions a rotating flow is u ∝ (−y, x) and a deforming flow is u ∝ (x, y). For the 
rotating flow it can be shown that the antisymmetric part \ua is non-zero, and for the 
deforming flow the symmetric part is non-zero \us. 

The grand conclusion of this is that we expect the strain tensor σ to be a function of 
the rate of strain tensor i.e., σ = σ(\us). The question now is, what function is it? This 
depends on the fluid and the situation is usually divided into two categories. 

(i)	 Newtonian fluids: In Book II of the Principia Newton writes 

‘The resistance arising from the want of lubricity in the parts of a fluid is, other 
things being equal, proportional to the velocity with which the parts of the fluid are 

separated from one another.’ 

Thus Newton’s guess, which corresponds to the simplest situation, was that the stress 
is a linear function of the strain, 

σ = 2µ\us .	 (345) 

(ii)	 Non-Newtonian fluids: This encompasses all other cases. That is, whenever the stress 
depends on the strain in a more complicated way, the fluid is called non-Newtonian. 

Which of these two possibilities happens can only be determined experimentally for a par­
ticular fluid. In general, whether a fluid is non-Newtonian or not depends on how hard 
you are shearing it. Fortunately, it happens that most simple fluids are Newtonian under 
ordinary conditions. So for water, oil, air etc. it is often possible to approximate fluids as 
being Newtonian. Non-Newtonian also happens frequently in nature (e. g. liquid crystals) 
and gives rise to fascinating flow phenomena, but this is more specialised. 

Now let’s put everything together and write down the equations for Newtonian viscous 
         th flow. If we consider the equation for ui, the i component of the velocity, this is 

Dui ∂p 
	 
� ∂ 1 

 
∂uj ∂ui

ρ = − + 2µ + 
Dt ∂xi ∂xj 2 ∂xi ∂xj 

 −\   \  = ip+ µ i( u

 
\ · u) + µ\2

i. (346) 

When the fluid density doesn’t change very much we have seen that \ · u = 0, and under 
these conditions the Navier-Stokes equations for fluid motion are 

Du 
ρ = p + µ 2 u. (347)−\ \
Dt 
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These form the basis for much of our studies, and it should be noted that the derivation relies 
crucially on the incompressibility of the flow. The equations are essentially a macroscopic 
description of microscopic laws, and were written down even before the notion of a molecule 
was fully understood. 

The parameter µ is called the coefficient of viscosity, and since our derivation of the 
viscous force is phenomenological, it is both important and useful to make sure that all 
of the assumptions have been clearly stated. Is it true in general that only one number 
is sufficient to completely characterise the viscosity? Stated another way, the viscous ef­
fects in a fluid capture the macroscopic consequences of dissipative collisions between fluid 
particles. Is it obvious that only one number is sufficient to characterise this (enormously 
complicated!) process? Interestingly, one can show that if the fluid is both assumed to be 
both incompressible and isotropic (i.e., whichever way you look at the fluid it’s macroscopic 
properties are the same) then the parameter µ is all that is needed. 

13.2 Boundary conditions 

Now we have the equations of motion governing a fluid, the basic claim is that all the 
phenomena of normal fluid motion are contained in the equations. Unfortunately, there is 
no general theory of obtaining solutions to the Navier-Stokes equations. In fact, so difficult 
can it be, that the challenge of proving the existence and smoothness of solutions has been 
named as one of the seven Millennium Prize Problems by the Clay Mathematics Institute 
(www.claymath.org/prizeproblems/statement.htm). All is not lost however, as one can 
turn to experiments to find new phenomena and, on the basis of this mathematicians can 
go looking for solutions. To become familiar with the equations we shall find some simple 
solutions to well known problems, but to directly compare solutions to experiments we first 
need to think a little about boundary conditions. 

There are several types of boundaries that occur in practice, though the most common is 
simply the solid wall. The equations of motion for the fluid specify what happens everywhere 
except for the fluid element right next to the wall. At the wall, the forces between the wall 
and the fluid determine the dynamics. 

To derive boundary conditions from first principles, it is necessary to take these inter­
actions into account. Suffice to say that (a) in the nineteenth century there were vigorous 
debates between Maxwell, Stokes, etc. about what the correct conditions were, and (b) 
though today there is agreement for most situations, no decent derivation beginning with 
the microscopics has been given. From a purely mathematical point of view, it is necessary 
to check how many boundary conditions are allowed to still have unique solutions to the 
equations. If too many conditions are specified there might be no solutions of the equations 
which are consistent with them. 

What are the boundary conditions? First, fluid cannot penetrate the boundary. That 
is, the component of the velocity normal to the solid boundary vanishes. What about the 
tangential component of the velocity? If the fluid has no viscosity, it is inconsistent to 
demand any relation on the tangential component of the velocity at the boundary. If there 
is viscosity then it is possible to demand another condition. The condition which is mostly 
accepted to be true is called the no slip boundary condition (there is important ongoing 
research which aims at determining if and when such a condition breaks down). The no-slip 
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condition says that dissipative processes are so strong that the tangential component of the 
velocity actually vanishes there! This is known to be true from experimental studies of the 
motion of fluid near walls. It is extremely important, however, to understand that this is a 
phenomenological observation, not derived from first principles. 

13.3 Some simple solutions 

As mentioned before, in different limits the Navier-Stokes equations contain all of the im­
portant classes of partial differential equations. Let’s proceed to find an example which has 
within it a diffusion equation. We consider the following problem, at low Reynolds numbers 
(taken from Acheson, p.35). Consider a viscous fluid that is at rest in the region 0 < y < ∞ 
and suppose that at t = 0 the rigid boundary at y = 0 is moved at constant speed U in the 
x-direction. What is the motion of the fluid? 

Since the jerking motion is uniform in the x-direction, we expect the velocity to be of the 
form (u, v, w) = (u(y, t), 0, 0). Moreover, there is no pressure variation across the system in 
the x-direction, so the pressure is uniform. Thus the equation of motion is just 

∂u ∂2u 
= ν . (348)

∂t  ∂y2

Note that the assumed form of the velocity automatically satisfies the incompressibility 
condition. Also, the nonlinear term has vanished because of the form of the velocity field. 
The equation is a diffusion equation for the velocity in which ν is the diffusion coefficient. 
The initial condition is that u = 0 in the upper half plane. The boundary conditions are 
that u(0, t) = U for t > 0 (no-slip), and we expect that u will vanish as y → ∞ (since it 
vanishes initially).  

We look for a similarity solution of the form u(y, t) = f(y/
√
 νt) = f(η). The logic is the 

same as we employed in examining the diffusive spreading of a point cloud. That is, initially  
there are no characteristic scales in the solution. After time t the only scale is of order 

√
t 

because of the structure of the equations. The factor of ν is for convenience. Plugging this 
into the diffusion equation gives 

f "" 
1 

+ ηf " = 0. (349)
2 

Integrating twice, 
η 

f =   A+ B e− s2/4ds, (350) 
0 

where A and B are integration constants. 

∫ 
The boundary conditions imply that A +

B ∞
exp(0 −s2/4)ds = 0 and A = U . Using the fact that  ∫ ∞ 

−  2 
e s /4ds = 

√
π, (351) 

0 

we have the solution 
y/ 

√
νt 1  2u(y, t) = U

 
1 − √ 

∫ 
e −s /4ds 

 
. (352)

π 0 

The simple form of the initial and boundary conditions was essential to our finding this  
solution. We see that at different times the velocity profiles are all geometrically similar  
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i.e., the velocity is always the same function of (y/

√
 νt). As time progresses, the velocity 

profile becomes stretched out and the effects √ of motion are largely confined to within a 
distance νt from the boundary. 

The solution above would not have been so simple if, for instance, an upper boundary 
were present. In this case, a length-scale is imposed on the problem, this length-scale being 
the distance h between the plates. We can then no longer look for a similarity solution, 
and instead the solution is found by the method of separation of variables. The problem is 
described in detail in Acheson (p. 40-41). Without solving the problem in detail however, 
we can get a very good idea of what happens. We argue that after a large amount of time 
we expect the system to reach a steady state. This problem is easy to solve, as all we need 
to do is drop the time dependent term from equation (1) and solve subject to the boundary 
conditions u(0, t) = U and u(h, t) = 0. The steady state solution is the linear profile y 

u(y) = U 1 −
 
. (353)

h 
The outstanding issue is to then ask, how long does it take for this profile to be realised. 
Well, we know that viscous diffusion is responsible for setting up the profile, and the di­
mensions of ν are L2/T . Since the separation of the plates is h, then we obtain a timescale 
by forming the combination h2/ν. This is roughly the time taken for viscous diffusion to 
act over the gap between the plates, and gives an order of magnitude estimate for the time 
taken to set up a steady profile. And we have obtained all this information, without having 
to do any difficult mathematics! 

13.4 The Reynolds number 

For an incompressible flow, we have established that the equations of motion are 

∂u 
ρ + ρu 
∂t 

· \u = −\  p + µ\2u + f ext, (354) 

as well as incompressibility \· u = 0. Now note that the equation has five terms in it. The 
first two have to do with inertia and the third is pressure gradient, the fourth is viscosity 
and the fifth is an external force. In many situations, all of these terms are not equally 
important. The most trivial situation is a static situation. Here all of the terms involving 
the velocity are zero, and the only nonzero terms are the pressure gradient and the external 
forces. There are many other possibilities. The most difficult part is to figure out in any 
particular situation which of the terms in the equation are large, and which are small. In 
different limits the Navier-Stokes equations contain all of the important classes of partial 
differential equations (i.e., diffusion equation, Laplace’s equation, wave equations) which 
are usually considered. In the next lecture we shall find an example which has within it a 
diffusion equation. 

An important parameter that indicates the relative importance of viscous and inertial 
forces in a given situation is the Reynolds number. Suppose we are looking at a problem 
where the characteristic velocity scale is U0, and the characteristic length scale for variation 
of the velocity is L. Then the size of the terms in the equation are 

∂u U2 U2 
0 0 µU∼ 0
, u · \u ∼  , µ\2u ∼ . (355) ∂t L L L2
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The ratio of the inertial terms to the viscous term is  

ρU2
0 /L ρU0L 

= = Re, (356)
µU0/L2 µ 

and this is called the Reynolds number, Re. When the Reynolds number is very high the 
flow is rather inviscid, and when the Reynolds number is low the flow is very viscous. Honey 
is at low Reynolds number and turbulence is at high Reynolds number. For low Reynolds 
number it may be possible to ignore the inertial terms in the Navier-Stokes equations and 
obtain the so-called slow (or creeping) flow equations for very viscous flow. At high Reynolds 
number one ends up with the Euler equations. 

The Reynolds number can be varied by changing the viscosity of fluid. In practice, one 
distinguishes two types of viscosities. 

Dynamic viscosity The SI physical unit of dynamic viscosity µ is the Pascal×second 

[µ] = 1Pa · s = 1 kg/(m · s) (357) 

If a fluid with a viscosity µ = 1Pa · s is placed between two plates, and one plate is pushed 
sideways with a shear stress of one pascal, it moves a distance equal to the thickness of 
the layer between the plates in one second. The dynamic viscosity of water (T = 20 ◦C) is 
µ  = 1.0020 × 10−3 Pa · s. 

Kinematic viscosity When dealing with incompressible fluids of constant density, then 
it’s often convenient to consider the kinematic viscosity ν, defined as 

µ
ν = , [ν] = m2/s (358) 

( 

which essentially enters into the Reynolds number of an object of given size L and speed 
U0. The kinematic viscosity of water  with mass density ( = 1 g/cm3 is ν = 10−6m2/s = 
1 mm2/s = 1 cSt. 

To conclude this section, let’s put in some numbers. For example, for fish or humans 
swimming in water, we s finds: 

L  1 m, U  1 m/s ⇒ Re  106 
0 , 

whereas for bacteria: 

L  1 µm, U0  10 µm/s ⇒  Re  10−5. 

This is a huge difference and allows for considerable mathematical simplifications. 

14 Low-Reynolds number limit 

In this section, we look at the limit of Re → 0 which is relevant to the construction of 
microfluidic devices and also governs the world of swimming microbes. 
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Bacteria and eukaryotic cells achieve locomotion in a fluid through a self-induced change
of shape: Escherichia coli propel themselves by rotating a helically shaped bundle of flagella,
much like a corkscrew penetrating into a cork. Sperm cells move by inducing a wave-like
deformation in a thin flagellum or cilium, whereas algae and other organisms move by
beating two or more cilia in a synchronized manner (see slides).

Because of their tiny size, these microswimmers operate at very low Reynolds number,
i.e., inertial and turbulent effects are negligible15. In this regime, swimming mechanisms
are very different from employed by humans and other animals. In particular, any micro-
bial swimming strategy must involve time-irreversible motion. Whilst moving through the
liquid, a swimmer modifies the flow of the surrounding liquid. This can lead to an effective
hydrodynamic interactions between nearby organisms, which can be attractive or repulsive
depending on the details of the swimming mechanism. In reality, such deterministic forces
are usually perturbed by a considerable amount of thermal or intrinsic noise, but we will
neglect such Brownian motion effects here.

14.1 Stokes equations

If the Reynolds number is very small, Re � 1, the nonlinear NSEs (354) can be approxi-
mated by the linear Stokes equations16

0 = ∇ · u, (359a)

0 = µ∇2u−∇p+ f . (359b)

The four equations (359) determine the four unknown functions (u, p). However, to uniquely
identify such solutions, these equations must still be endowed with appropriate initial and
boundary conditions, such as for example{

u(t,x) = 0,
as |x| → ∞. (360)

p(t,x) = p ,∞

Note that, by neglecting the explicit time-dependent inertial terms in NSEs, the time-
dependence of the flow is determined exclusively and instantaneously by the motion of the
boundaries and/or time-dependent forces as generated by the swimming objects.

14.2 Oseen’s solution

Consider the Stokes equations (359) for a point-force

f(x) = F δ(x). (361)

15This is equivalent to larger animals swimming through a bath of treacle.
16More precisely, by replacing Eq. (354) with Eq. (359), it is assumed that for small Reynolds numbers

R̃e(t,x) := |%(u · ∇)u|/(µ∇2u) ' UL(%/µ)� 1 one can approximate

% [∂tu + (u · ∇)u]− µ∇2u ' −µ∇2u

The consistency of this approximation can be checked a posteriori by inserting the solution for u into the
lhs. of Eq. (354) .
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In this case, the solution with standard boundary conditions (360) reads17

Fjxj
ui(x) = Gij(x) Fj , p(x) = + p , (362a)

4π|x|3 ∞

where the Greens function Gij is given by the Oseen tensor

1
Gij(x) =

8πµ |x|

(
δij +

xixj
|

)
, (362b)

x|2

which has the inverse

−1

(
x| | − jxk

G (x) = 8πµ x δjk jk
2

)
, (363)

|x|2

as can be seen from

GijG
−1

(
xixj

= δjk ij +
|x|2

)(
δjk −

xjxk
2|x|2

x

)
= δik −

ixk
2|x|2

+
xixk xixj−
|x|2 |x|2

xjxk
2|x|2

= δik −
xixk
2|x|2

+
xixk
2|x|2

= δik. (364)

14.3 Stokes’s solution (1851)

Consider a sphere of radius a, which at time t is located at the origin, X(t) = 0, and
moves at velocity U(t). The corresponding solution of the Stokes equation with standard
boundary conditions (360) reads18

3
ui(t,x) = Uj

[
4

a

|x|

(
δji +

xjxi
|x|2

)
+

1

4

a3

|x|3

(
δji − 3

xjxi
,

|x|2

)]
(365a)

3
p(t,x) =

2
µa
Ujxj

+ p . (365b)
|x|3 ∞

If the particle is located atX(t), one has to replace xi by xi−Xi(t) on the rhs. of Eqs. (365).
Parameterizing the surface of the sphere by

a = a sin θ cosφ ex + a sin θ sinφ ey + a cos θ ez = aiei

where θ ∈ [0, π], φ ∈ [0, 2π), one finds that on this boundary

u(t,a(θ, φ)) = U , (366a)

3
p(t,a(θ, φ)) =

2

µ

a2
Uj aj(θ, φ) + p∞, (366b)

17Proof by insertion.
18Proof by insertion.
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corresponding to a no-slip boundary condition on the sphere’s surface. The O(a/|x|)-
contribution in (365a) coincides with the Oseen result (362), if we identify

F = 6π µaU . (367)

The prefactor γ = 6π µa is the well-known Stokes drag coefficient for a sphere.
The O[(a/|x|)3]-part in (365a) corresponds to the finite-size correction, and defining the

Stokes tensor by

1
Sij = Gij +

24πµ

a2

|x|3

(
δji − 3

xjxi
2

)
, (368)

|x|

we may rewrite (365a) as19

ui(t,x) = SijFj . (369)

14.4 Dimensionality

We saw above that, in 3D, the fundamental solution to the Stokes equations for a point
force at the origin is given by the Oseen solution

Fjxj
ui(x) = Gij(x) Fj , p(x) = + p , (370a)

4π|x|3 ∞

where

1
Gij(x) =

8πµ |x|

(
δij +

xixj
|

)
, (370b)

x|2

It is interesting to compare this result with corresponding 2D solution

Fjxj
ui(x) = Jij(x)Fj , p = + p , x = (x, y) (371a)

2π|x|2 ∞

where

1
Jij(x) =

4πµ

[
−δij ln

(
|x|
a

)
+
xixj
|

]
(371b)

x|2

with a being an arbitrary constant fixed by some intermediate flow normalization condi-
tion. Note that (371) decays much more slowly than (370), implying that hydrodynamic
interactions in 2D freestanding films are much stronger than in 3D bulk solutions.

To verify that (371) is indeed a solution of the 2D Stokes equations, we first note that
generally

x
∂j |x| x 1/2 − /2 j

= ∂j(
1

ixi) = xj(xixi) = (372a)
|x|

∂ |x|−n = ∂ (x x )−n/2 = −nx (x x )−(n+2)/2 xj
j j i i j i i = −n

|x|n+2
. (372b)

19For arbitrary sphere positions X(t), replace x→ x−X(t).
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From this, we find

Fi
∂ip =

2π|x|2
− 2

Fjxjxi
2π|x|4

=
Fj

2π|x|2

(
δij − 2

xjxi
|

)
(373)

x|2

and

1
∂kJij =

4πµ
∂k

[
−δij ln

(
|x|
a

)
+
xixj
|x|2

1

]
=

[
1−δij

4πµ |x|
∂k|x|+ ∂k

(
xixj
|x|2

)]
=

1 x
δ

4πµ

[
− k

ij |x|2
+

(
δik

xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|

)]
. (374)

x|4

To check the incompressibility condition, note that

1
∂iJij =

4πµ

[
−δij

xi
|x|2

+

(
δii

xj
|x|2

+ δji
xi
|x|2
− xixjxi

2|x|4

)]
=

1 x

4πµ

(
− j

|x|2
+ 2

xj
|x|2

+
xj
|x|2
− 2

xj
|x|2

= 0,

)
(375)

which confirms that the solution (371) satisfies the incompressibility condition ∇ · u = 0.
Moreover, we find for the Laplacian

∂k
∂k∂kJij =

4πµ

[
−δij

xk
|x|2

+ δik
xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|x|4

]
=

1

4

[ (
x− k

δij∂k
πµ |x|2

)
+ δik∂k

(
xj
|x|2

)
+ δjk∂k

(
xi
|x|2

)
− 2∂k

(
xixjxk
|x|4

)]
=

1 δ
δ

4πµ

[
− ij

(
kk xkxk− 2
|x|2 |x|4

)
+ δik

(
δjk
|x|2
− 2

xjxk
|x|4

)
+ δjk

(
δik
|x|2
− 2

xixk
|x|4

)
−

2

(
δikxjxk xiδjkxk

+
|x|4 |x|4

+
xixjδkk
|x|4

− 4
xixjxkxk
|x|6

)]
=

1 2
δ

4πµ

[
− ij

(
|x|2
− 2

1
) (

δij
+

|x|2 |x|2
− 2

xjxi
|x|4

)
+

(
δij
|x|2
− 2

xixj −
|x|4

)
2

(
xjxi
|x|4

+
xixj
|x|4

+ 2
xixj
|x|4

− 4
xixj
|x|4

)]
=

1 δ

2πµ

(
ij

|x|2
− 2

xjxi
|

)
(376)

x|4

Hence, by comparing with (373), we see that indeed

−∂ip+ µ∂k∂kui = −∂ip+ µ∂k∂kJijFj = 0. (377)

The difference between 3D and 2D hydrodynamics has been confirmed experimentally
for Chlamydomonas algae.
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14.5 Force dipoles

In the absence of external forces, microswimmers must satisfy the force-free constraint. This
simplest realization is a force-dipole flow, which provides a very good approximation for the
mean flow field generated by an individual bacterium but not so much for a biflagellate
alga.

To construct a force dipole, consider two opposite point-forces F+ = −F− = Fex
located at positions x+ = ±`ex. Due to linearity of the Stokes equations the total flow at
some point x is given by

ui(x) = Γ (x− x+)F+
j + Γij(x− x−[ ij ] )Fj

−

= Γij(x− x+)− Γij(x− x−) F+
j

= [Γij(x− `ex) − Γij(x+ `ex)]F+
j (378)

where Γij = Jij in 2D and Γij = Gij in 3D. If |x| � `, we can Taylor expand Γij near ` = 0,
and find to leading order

ui(x) '
{

[Γ ij

[
+

ij(x) − Γ (x)]− x ∂kΓ (x) − x−∂ Γ (x) F+
k ij k k ij j

= −2x+ [∂kΓij(x)]F+
k j

]}
(379)

2D case Using our above result for ∂kJ
+

ij , and writing x = `n and F+ = Fn with
|n| = 1, we find in 2D

x+

ui(x) = − k

2πµ

[
−δij

xk
|x|2

+

(
δik

xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|x|4

)]
F+
j

= − F` x
n

2πµ

(
− knk

i |x|2
+ ni

xjnj xi
+ nknk|x|2 |x|2

− 2
nkxixjxknj
|x|4

)
and, hence,

F`
u(x) =

2

[
2(n · x̂)2 − 1

]
x̂ (380)

πµ|x|

where x̂ = x/|x|.

3D case To compute the dipole flow field in 3D, we need to compute the partial derivatives
of the Oseen tensor

1
Gij(x) =

8πµ|x|
(1 + x̂ix̂j) , x̂k =

xk
. (381)

|x|

Defining the orthogonal projector (Πik) for x̂k by

Πik := δik − x̂ix̂k, (382)
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we have

xk
∂k|x| = = x̂k, (383a)

|x|
δik xkxi Πik

∂kx̂i = − = , (383b)
|x| |x|3 |x|

1
∂nΠik = − (x̂iΠnk + x̂kΠni) , (383c)

|x|

and from this we find

x̂k κ
∂kGij = − G

| | ij + (Π
| | ikx̂j + Πjkx̂i)

x x 2

κ
=

(
−x̂kδij + x̂jδik + x̂iδjk − 3x̂kx̂ix̂j

)
. (384)

|x|2

Inserting this expression into (379), we obtain the far-field dipole flow in 3D

F`
u(x) = 3(n · x̂)2 − 1 x̂. (385)

4πµ x 2

[ ]
| |

Experiments show that Eq. (385) agrees well with the mean flow-field of a bacterium.
Upon comparing Eqs. (380) and (385), it becomes evident that hydrodynamic interac-

tions between bacteria in a free-standing 2D film are much longer-ranged than in a 3D bulk
solution. This is a nice illustration of the fact that the number of available space dimensions
can have profound effects on physical processes and interactions in biological systems.

14.6 Boundary effects

The results in the previous section assumed an quasi-infinte fluid. Yet, many swimming cells
and microorganisms operate in the vicinity of solid boundaries that can substantially affect
the self-propulsion and the hydrodynamic interactions of the organisms. Before tackling
finite boundaries geometries it is useful to recall how the terms in the HD equations can
be rewritten in cylindrical coordinates. The full Navier-Stokes equations are written out
completely in Acheson’s textbook for various coordinate systems. In the next part, we will
summarize those terms that are most important for our further discussion of cylindrical
confinements.

14.6.1 Reminder: Cartesian vs. cylindrical corodinates

Cartesian coordinates In a global orthornormal Cartesian frame {ex, ey, ez}, the po-
sition vector is given by x = xex + yey + zez, and accordingly the flow field u(x) can be
represented in the form

u(x) = ux(x, y, z) ex + uy(x, y, z) ey + uz(x, y, z) ez. (386a)

The gradient vector is given by

∇ = ex∂x + ey∂y + ez∂z, (386b)
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and, using the orthonormality ej · ek = δjk, the Laplacian is obtained as

∆ = ∇ · ∇ = ∂2 + ∂2
x y + ∂2

z . (386c)

One therefore finds for the vector-field divergence

∇ · u = ∂iui = ∂xux + ∂yuy + ∂zuz (386d)

and the vector-Laplacian 
∂2 xu

2
x + ∂yux + ∂2

zux
∆u = ∂i∂iu = ∂2 2 2

xuy + ∂yuy + ∂zuy

 . (386e)
∂2
xu + ∂2

z yuz + ∂2
zuz

Cylindrical coordinates The local cylindrical basis vectors {er, eφ, ez} are defined by

er = cosφex + sinφey , eφ = − sinφex + cosφey , φ ∈ [0, 2π) (387a)

and they form a orthonormal system ej · ek = δjk, where now i, j = r, φ, z. The volume
element is given by

dV = r sinφdr dφ dz. (387b)

In terms of cylindrical basis system, the position vector x can be expressed as

x = rer + ze 2
z , r =

√
x + y2 (387c)

and the flow field u(x) can be decomposed in the form

u(x) = ur(r, φ, z) er + uφ(r, φ, z) eφ + uz(r, φ, z) ez. (387d)

The gradient vector takes the form

1∇ = er∂r + eφ ∂φ + ez∂z, (387e)
r

yielding the divergence

1 1∇ · u = ∂r(rur) + ∂φuφ + ∂zuz. (387f)
r r

The Laplacian of a scalar function f(r, φ, z) is given by

∇2 1 1
f = ∂r(r∂rf) + ∂2 +

r 2 φf ∂2
zf (387g)

r

and the Laplacian of a vector field u(r, φ, z) by

∇2u = Lrer + Lφeφ + Lzez (387h)
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where

1 1 2 2 2 1
Lr = ∂r(r∂rur) + ∂φur + ∂

r 2 zur − ∂φuφ ur (387i)
r r2

−
r2

1 1
Lφ = ∂ 2

r(r∂ruφ) + ∂φu
2 2 1

φ + ∂
r zuφ + ∂φur uφ (387j)

r 2 r2
−
r2

1 1
Lz = ∂r(r∂ruz) + ∂2u

r 2 φ z + ∂2
zuz (387k)

r

Compared with the scalar Laplacian, the additional terms in the vector Laplacian arise
from the coordinate dependence of the basis vectors.

Similarly, one finds that, the r-component of (u·∇)u is not simply (u·∇)ur, but instead

1
er · [(u · ∇)u] = (u · ∇)u 2

r − u
r φ. (388)

Physically, the term u2
φ/r corresponds to the centrifugal force, and it arises because u =

urer + uφeφ + uzez and some of the unit vectors change with φ (e.g., ∂φeφ = −er).

14.6.2 Hagen-Poiseuille flow

To illustrate the effects of no-slip boundaries on the fluid motion, let us consider pressure
driven flow along a cylindrical pipe of radius R pointing along the z-axis. Assume that the
flow is rotationally√ symmetric about the z-axis and constant in z-direction, u = uz(r)ez,
where r = x2 + y2 is the distance from the center. For such a flow, the incompressibil-
ity condition ∇ · u = 0 is automatically satisfied, and the Stokes equation in cylindrical
coordinates (r, φ, z) reduces to

µ
0 = −∂zp+ ∂r(r∂ruz). (389)

r

Integrating twice over r, the general solution uz of this equation can be written as

1
uz(r) = (∂zp)r

2 + c1 ln r + c2, (390)
4µ

where c1 and c2 are constants to be determined by the boundary conditions. For a no-slip
boundary with uz(R) = 0 and finite flow speed at r = 0, one then finds

1
u (r) = − (∂ p)(R2 − r2
z z ). (391)

4µ

If we assume a linear pressure difference ∆P = P (L)− P (0) over a length L, then simply

z P (0) P
p(z = [P (L)− P (0)]

− (L)
)

L
⇒ ∂zp = − . (392)

L

The flow speed is maximal at center of the pipe

u+ P (0)− P (L)
z = R2 (393)

4µL
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and the average transport velocity is  

1 
 R

 uz = uz(r) 2πrdr = 0.5u+z . (394)
πR2

0 

Note that, for fixed pressure difference and channel length, the transport velocity uz de­
creases quadratically with the channel radius, signaling that the presence of boundaries can 
substantially suppress hydrodynamic flows. To illustrate this further, we next consider a 
useful approximation that can help to speed up numerical simulations through an effective 
reduction from 3D to 2D flow. 

14.6.3 Hele-Shaw flow 

Consider two quasi-infinite parallel walls located at z = 0 and z = H. This setting is 
commonly encountered in experiments that study microbial swimming in flat microfluidic 
chambers. Looking for a 2D approximation of the Stokes equation, we may assume constant 
pressure along the z-direction, p = P (x, y), and neglect possible flow components in the 
vertical direction, uz = 0. Furthermore, using the above results for Hagen-Poiseuille flow 
as guidance, we can make the ansatz 

6z(H  z) 6z(H  z) 
u(x, y, z) = [U

2

−
 x(x, y)ex + Ux(x, y)ey] ≡ 

−
U(x, y), (395) H H2

 

corresponding to a parabolic flow profile in the vertical direction that accounts for no-slip 
boundaries at the walls; in particular, in the mid-plane 

3 
u(x, y, H/2) = U (x, y). (396)

2 

We would like to obtain an effective equation for the effective 2D flow U (x, y). This can 
be achieved by inserting ansatz (395) into the Stokes equations and subsequently averaging 
along the z-direction20, yielding 

0 = \ · U , 0 = −\P + µ\2U − κU (397) 

where κ =  12µ/H2 and \ is now the 2D gradient operator. Note that compared with 
unconfined 2D flow in a free film, the appearance of the κ-term leads to an exponential 
damping of hydrodynamic excitations. This is analogous to the exponential damping in the 
Yukawa-potential (mediated by massive bosons) compared to a Coloumb potential (medi­
ated by massless photons). That ist, due to the presence of the no-slip boundaries, effective 
2D hydrodynamic excitations acquire an effective mass ∝  1/H2. 

15 The coffee cup 

Let’s try and apply our knowledge of fluid dynamics to a real observation, to test whether the 
theory actually works. We shall consider a question you will encounter in the last problem 

20That is, by taking 
 H

the integral (1/H) dz
0  of both sides. 
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set21: how long does it take a cup of coffee (or glass of water) to spin down if you start 
by stirring it vigorously? To proceed, we need a model of a coffee cup. For mathematical 
simplicity, let’s just take it to be an infinite cylinder occupying r ≤ R. Suppose that at 
t = 0 the fluid and cylinder are spinning at an angular frequency ω, and then the cylinder 
is suddenly brought to rest. Assuming constant density, we expect the solution to be 
cylindrically symmetric 

p(x, t) = p(r, t) , u(x, t) = uφ(r, t)eφ, (398) 

with only a component of velocity in the angular direction eφ. This component will only 
depend on r, not the angular coordinate or the distance along the axis of the cylinder 
(because the cylinder is assumed to be infinite). 

We shall just plug the assumed functional form into the Navier-Stokes equations and 
see what comes out. Let’s put our ansatz p = p(r, t) and u = (0, uφ(r, t), 0), which sat­
isfies V · u = 0, into the cylindrical Navier-Stokes equations. The radial equation for er ­
component becomes 

uφ 
2 

∂p 
= . (399a) 

r ∂r 
Physically this represents the balance between pressure and centrifugal force. The angular 
equation to be satisfied by the eφ-component is   

∂uφ ∂2uφ 1 ∂uφ uφ 
= ν + − , (399b)

∂t ∂r2 r ∂r r2

and the vertical equation is 
1 ∂p 

0 = . (399c)
ρ ∂z 

The last equation of these three is directly satisfied by our solution ansatz, and the first 
equation can be used to compute p by simple integration over r once we have found uφ. 

We want to solve these equation (399a) and (399b) with the initial condition 

uφ(r, 0) = ωr, (400a) 

and the boundary conditions that 

uφ(0, t) = 0 , uφ(R, t) = 0 ∀t > 0. (400b) 

This is done using separation of variables. Since the lhs. of Eq. (399b) features a first-
order time derivative, which usually suggests exponential growth or damping, let’s guess a 
solution of the form 

uφ = e − k2tF (r). (401) 

Putting this into the governing equation (399b) gives the ODE   
F "

F ""−k2F = ν + − 
F 

(402)
2r r

21See Acheson, Elementary Fluid Dynamics, pp. 42-46 

80  



0 5 10 15 

-0.2 

0.0 

0.2 

0.4 

0.6 

Ξ 

J 1
 'Ξ
� 

Figure 3: The Bessel function of the first order J1(ξ). 

This equation looks complicated. However, note that if the factors of r weren’t in this 
equation we would declare victory. The equation would just be F "" + k2/νF = 0,  which  √ 
has solutions that are sines and cosines. The general solution would be Asin(k/ νr) +√ 
Bcos(k/ νr). We would then proceed by requiring that (a) the boundary conditions were 
satisfied, and (b) the initial conditions were satisfied. 

We rewrite the above equation as 
  

2 
2F "" F " k 2 − 1r + r + r F = 0, (403)

ν 

and make a change of variable, √ 
ξ = kr/ ν. 

The equation becomes   
ξ2F "" + ξF " + ξ2 − 1 F = 0. (404) 

Even with the factors of ξ included, this problem is not more conceptually difficult, though 
it does require knowing solutions to the equation. It turns out that the solutions are 
called Bessel Functions. You should think of them as more complicated versions of sines 
and cosines. There exists a closed form of the solutions in terms of elementary functions. 
However, people usually denote the solution to the Eq. (404) as J1(ξ), named the Bessel 
function of first order22 . This function is plotted in Fig. 3, satisfies the inner boundary 
conditions J1(0) = 0. For more information, see for example the book Elementary Applied 
Partial Differential Equations, by Haberman (pp. 218-224). Now let’s satisfy the boundary 

22Bessel functions Jα(x) of order  α are solutions of 
( )2 ff f 2 x J + xJ + x − α J = 0  
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condition uφ(R, t) = 0. Since we have that 
√ 

uφ = AJ1(ξ) = AJ1(kr/ ν), (405) 
√ 

this implies that AJ1(kR/ ν) = 0. We can’t have A = 0 since then we would have nothing √ √ 
left. Thus it must be that J1(kR/ ν) = 0. In other words, kR/ ν = λn, where λn is the 
nth zero of J1 (morally, J1 is very much like a sine function, and so has a countably infinite 
number of zeros.) Our solution is therefore 

∞ 
−νλ2 t/R2 

nuφ(r, t) = Ane J1(λnr/R). (406) 
n=1 

To determine the An’s we require that the initial conditions are satisfied. The initial con­
dition is that 

uφ(r) = ωr. (407) 

Again, we now think about what we would do if the above sum had sines and cosines instead 
of J1’s. We would simply multiply by sine and integrate over a wavelength. Here, we do the 
same thing. We multiply by rJ1(λmr/R) and integrate from 0 to R. This gives the formula  R  R 

An rJ1(λnr/R)J1(λmr/R) dr = ωr2J1(λmr/R)dr. (408) 
0 0 

Using the identities  R R2 
rJ1(λnr/R)J1(λmr/R) dr = J2(λn)

2δnm, (409)
20 

and  R ωR3 
ωr2J1(λmr/R)dr = J2(λm), (410) 

0 λm 

we get 
2ωR 

An = − , (411)
λnJ0(λn)

where we have used the identity J0(λn) = −J2(λn). Our final solution is therefore 

∞ 2ωR −νλ2 t/R2 
uφ(r, t) = − e n J1(λnr/R). (412)

λnJ0(λn)n=1 

Okay, so this is the answer. Now lets see how long it should take for the spin down to 
occur. Each of the terms in the sum is decreasing exponentially in time. The smallest value 
of λn decreases the slowest. It turns out that this value is λ1 = 3.83. Thus the spin down 
time should be when the argument of the exponential is of order unity, or 

 R2

t ∼ . (413)
νλ21 

82  



This is our main result, and we should test its various predictions. For example, this says 
that if we increase the radius of the cylinder by 4, the spin down time increases by a factor 
of 16. If we increase the kinematic viscosity ν by a factor of 100 (roughly the difference 
between water and motor oil) then it will take roughly a factor of 100 shorter to spin down. 
Note that for these predictions to be accurate, one must start with the same angular velocity 
for each case. 

In your problem set you are asked to look at the spin down of a coffee cup. From our 
theory we have a rough estimate of the spin down time, which you can compare with your 
experiment. Do you get agreement between the two? 

16 Singular perturbations 

The singular perturbation is the bogeyman of applied mathematics. The fundamental prob­
lem is to ask: when can you neglect a term in a continuous equation? The answer is not 
always obvious and, amongst other things, this was the reason why early attempts to un­
derstand the theory of flight failed so dramatically. Before progressing towards this, we 
shall begin with a few examples of singular perturbations. 

16.1 Magnetization 

A magnet is composed of atoms, each of which has a molecular spin. The energetics of 
the interaction between the spins is that each spin produces a magnetic field which tries to 
align the neighboring spins. A popular microscopic model for a magnet imagines the spins 
confined to a regular lattice, and then ascribes an energy 

U =
 

Jij si · sj (414) 
i∼j 

where i ∼ j indicates a summation over nearest neighbors. A typical approximation is to 
take the sum over only the nearest neighbors of a given spin and to take the interaction 
constants Jij to be a constant. 

If one assumes that the local spins vary on a length scale much longer than a lattice 
spacing, then it is possible to derive a macroscopic analogue of the above energy. A complete 
derivation of this includes the effect of random thermal fluctuations and is beyond the scope 
of this course. For simplicity we consider just a one dimensional array of atoms for which 
the energy is 

 
x

   
dM

 2

U [M( )] = ν + f(M)

 
dx, (415a)

dx

where M is the magnitude of the local magnetization, which depends on the average spin 
in a small region, and 

f(M) = −bM2 + cM4 . (415b) 

Physically, ν punishes gradients in magnetization. If b < 0 then we have a paramagnet, 
with M = 0 being the minimumm energy configuration. Otherwise if b > 0 then we have  a 
ferromagnet, with minima at ± b/(2c). 
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Using the calculus of variations the function M(x) that minimises the energy satisfies  

ν 
d2M 
dx2 − bM + 2cM3 = 0. (416) 

We already know that  
b 

M = 0, ±
2c 

(417) 

are three constant solutions. Now if ν = 0 there is no penalty for orientation change t 
bthroughout the system, and for b > 0 the entire system has magnetization ± with any 2c 

orientation. If the system has boundaries then the magnetization must match the boundary 
conditions, but is otherwise free to be orientated however it wants. 

What happens, however, if ν  0?= If we multiply both sides of (3) by M ', then the 
equilibrium condition can be integrated to give  dM 1 

= bM2 − cM4 + k, (418)
dx ν

where k is a constant. Rearranging this one obtains  
ν dM √ = dx. (419)

bM2 − cM4 + k 

Solving this, subject to the appropriate boundary conditions, one finds that domain bound­
aries arise. These are transition regions in which the magnetization flips from the value 
imposed at one boundary to that at the other boundary. In the limit of ν → 0, these domain 
boundaries become infinitely sharp. 

So now you start to get an idea of the problem. If ν = 0 then the orientation of the spins 
throughout the system is arbitrary, except at the boundaries, which are fixed. However, even 
for extremely small non-zero ν (e.g., 10−100), we have completely different behaviour and 
obtain extended regions of uniform magnetization separated by a sharp domain boundary. 
The different behaviour arises because if ν is nonzero the entire system is forced to match 
the imposed boundary conditions at the edges. Setting ν = 0 is therefore called a singular 
perturbation. 

16.2 An elementary algebraic equation 

As another example of a singular perturbation, consider the solution of the algebraic equa­
tion 

bx + c = 0. (420) 

The solution is simply x = −c/b. Now we make a small change, and consider the equation 

Ex2 + bx + c = 0, (421) 

Using the quadratic formula, √ 
−b ± b2 − 4Ec 

x = . (422)
2E 
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In the limit E → 0  
c 2b − 2Ec 

x ≈ − , − . (423)
b 2E 

and the latter solution can be further approximated as −b/E if E is very small. If this term 
has some physical significance then you are in trouble. You cannot simply neglect the term 
Ex2 in the original problem. 

16.3 An elementary differential equation 

Let’s consider the differential equation23 

d2u du 
E + = 1. (424)
dx2 dx 

If E is very small we might argue that we can neglect this term, the solution therefore being 

u = x + C. (425) 

Alternatively, if we consider the full problem the solution is 

u = A + x + Be−x/E. (426) 

Imposing the boundary conditions u(0) = 0, u(1) = 2, for the full problem we determine A 
and B, and find that 

−x/E1 − e
u = x + (427)−1/E1 − e

is the exact solution. We cannot apply both these boundary conditions to our approximate 
solution (as it is a first order equation), so we choose the ‘outer’ condition u(1) = 2. The 
approximate solution satisfying the outer condition is therefore 

u = x + 1. (428) 

In the outer region the approximate solution and the true solution are very close. However, 
in a region close to x = 0 they differ greatly. We call this the boundary layer. It arises 
because the small parameter E multiplies the highest derivative in the equation, and by 
ignoring this term we lower the order of the system and are unable to satisfy both boundary 
conditions. 

We need to find an approximate ‘inner’ solution that matches the boundary condition 
at x = 0. To do so, we change the independent variable to 

x 
X = . (429)

E 

This enables us to zoom in on the boundary layer. With this scaling the original equation 
becomes 

1 d2u 1 du 
+ = 1, (430)

E dX2 E dX 
23See Acheson, pp. 269-271 
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so that to a first approximation the ‘inner’ solution satisfies  

d2u du 
+ = 0. (431)

dX2 dX 

Imposing the boundary condition at X = 0 gives 

− xu = A(1 − e −X ) = A(1 − e  ). (432) 

Finally, we require that as X → ∞ the inner solution matches the outer solution in the 
limit x → 0, so that A = 1. 

We have thus been able to approximate the full solution in two parts, an inner and 
outer solution. Although we could solve for the full solution analytically, often this is not 
possible and we must resort to approximations like those used here. The inner solution 
is valid within a boundary layer of thickness E and matches to the outer solution. Once 
again we see that ignoring the term multiplied by E in the original problem is a singular 
perturbation; no matter how small E is, there exists a region in which it has a significant 
affect on the solution. This idea was due to Prandtl, who first discovered it within the 
context of airplane flight. We will now take a bit of a digression to justify the concept of a 
boundary layer in fluid dynamics. 

17 Towards airplane flight 

There are two forces, lift and drag, experienced when an airplane wing moves through the 
air. At the start of the 20th century, however, fluid dynamicists were unable to correctly 
predict them. In fact, the lift and drag were determined to be identically zero, for all wing 
shapes (despite the fact that the Wright brothers had successfully built airplanes!). To 
proceed further into airplane flight, and how this problem was resolved, we shall first need 
some fluid mechanical preliminaries. 

17.1 High-Reynolds number limit 

We have already derived the Navier-Stokes equations 

∂u \p
+ u · \u = − + ν\2 u , \ · u = 0. (433)

∂t ρ 

The ratio of the viscous forces to inertial forces is 

ν\2u νU/L2 ν 1 ∼ = = (434) 
u · \u U2/L UL Re 

where Re is the Reynolds number. For an airplane typical values are U=400mph, L=5m 
and ν=0.1cm2/s, giving Re = 108 . Thus, the inertial forces are eight orders of magnitude 
larger than viscous forces, so it is seems very reasonable that we can neglect them. Doing 
so, we are left with the Euler equations for an inviscid fluid: 

∂u \p
+ u · \u = − , \ · u = 0. (435)

∂t ρ 
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We shall first convince ourselves that these equations predict both the lift force (Fl) and 
the drag force (Fd) to be zero, independent of the shape of the wing. 

The Euler equations can be written in an interesting form using the vector identity 

\(u2) 
u · \u = (\× u) × u + (436)

2 
as 

∂u 
 
p u2  

+ (\× u) × u = −\ + . (437)
∂t ρ 2

where u is the magnitude of u. The quantity 

ω = \× u (438) 

is called the vorticity. In 2D it represents the average angular velocity of the fluid around 
any point, and has little to do with global rotations of the fluid (e.g., shear flows have 
non-zero vorticity). If the flow is steady (∂u/∂t = 0) and irrotational (ω = 0) then we have 
Bernoulli’s law: 

2p u
H = + = constant. (439)

ρ 2 
The constancy of H in irrotational flow is a famous result, and has many simple qualitative 
consequences. It requires that the pressure in a fluid is smaller when the velocity is larger, 
and is a statement of conservation of energy when viscous dissipation can safely be ignored. 

What are the consequences of ω = 0? The most important is that we can look for 
solutions u of the Euler equation that can be derived from velocity potential: 

u = \φ. (440) 

Now the wonderful thing is that if the flow is also incompressible, then from \ · u = 0 we 
obtain 

\2φ = 0, (441) 

and we have reduced the problem to solving Laplace’s equation. We can determine the 
pressure from the Bernoulli relation 

p 
ρ 
= H − 

(\φ)2 

2 
. (442) 

Solutions of these equations are typically called ideal flows, because viscosity has been 
neglected. 

17.2 Kelvin’s Theorem 

When a plane is at rest we can reasonably argue that flow is initially irrotational (ω = 0). 
When the system becomes non-steady, and the plane accelerates, what happens? To answer 
this, consider the circulation around a closed loop moving with the flow: 

Γ = u · dl. (443a) 
C(t) 

87  

∫



 

  

   

   

By Stoke’s theorem  

Γ(t) = ω · ndA. (443b) 

Thus if ω = 0, Γ = 0. What is the time evolution of Γ? We know that   
DΓ 
Dt 

= 
d 
dt C(t) 

u · dl = Du 
Dt 

· dl + u · D(dl) 
Dt

. (444) 

The first term concerns changes in the velocity field and is identically zero since 

Du 1 1 · dl = −\p · dl = (\×\p) · ndA = 0. (445)
Dt ρ ρ 

The second term relates to stretching of the loop and is zero for essentially geometric reasons. 
One has that 

D(dl) 
= du (446)

Dt 
since one end of the spatial vector dl moves with velocity u and the other with velocity 
u + du. Thus 

D(dl) d(u2) 
u · = u · du = = 0, (447)

Dt 2 

because the integration is around a closed loop and u2 has the same value at the start and 
end of it. But this implies 

DΓ 
= 0, (448)

Dt 
so the circulation around a loop remains constant. If it is initially zero then it remains zero 
for all subsequent times. We should keep in mind, however, that our derivations of this 
result relied on the assumption that the fluid is inviscid and incompressible24 

One of the most interesting things about this theorem is its historical origin: Kelvin 
viewed it as the basis of his vortex theory of the atom.25 

18 Euler equations: basic solutions and forces 

In the limit where the flow is irrotational, we just need to find solutions to Laplace’s equation 
to obtain solutions to the Euler equations. Let’s write down a couple of these to gain some 
intuition: our aim being to acquire techniques to begin to think about airplane flight. 

18.1 Point source 

We know from electrostatics that a solution of Laplace’s equation is just 

c 
φ = − , (449)

4πr 
24More generally, DΓ/Dt = 0 still holds for barotropic ideal fluids with conservative body forces. 
25Read Acheson (p. 168) for an interesting discussion of this. 
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where c would be the charge in an electrostatic problem. What does this solution correspond 
to for us? The velocity field 

c 
u = r (450)

4πr3 

is a radial source or sink of fluid. 

18.2 Uniform flow 

Another trivial solution is simply uniform flow 

φ = U · r, (451) 

which works for any constant velocity vector U . 

18.3 Vortex solutions 

We can also guess solutions by separation of variables φ = f(θ)g(r), where θ and r denote 
cylindrical coordinates. Laplace’s equation in cylindrical coordinates is 

1 ∂ ∂φ 1 ∂2φ 
r + = 0. (452) 

r ∂r ∂r r2 ∂θ2 

Plugging this Ansatz into the equation gives that 

r d dg 1 d2f 
r + = 0. (453) 

g dr dr f dθ2 

Each term in (453) must be a constant, i.e. 

d2f 
= −fk2 , (454a)

dθ2 

r 
d 
dr 

r 
dg 
dr 

= gk2 . (454b) 

For k = 0, 

f = C sin(kθ) + D cos(kθ), (455a) 

with continuity of u requiring k to be an integer. Turning to the radial part we guess that 
αg = r . The radial equation then requires that α = ±k, giving 

g(r) = Ark + Br−k . (455b) 

However, if k = 0 then 

f = C + Dθ. (455c) 

and the radial part is given by 

g(r) = A + B ln r. (456) 
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So, the most general solution is  

∞0 
−k)φ(r, θ) = (A0 + B0lnr)(C0 + D0θ) + (Ck sin kθ + Dk cos kθ)(Akr k + Bkr (457) 

k=1 

The corresponding velocity field is 

∂φ 1 ∂φ ˆu = \φ = r̂ + θ. (458)
∂r r ∂θ 

Putting in our general solution with k = 0, we get 

B0(C0 + D0θ) D0 
u = r̂ + (A0 + B0lnr)θ̂ (459) 

r r 

Setting B0 = 0 to obtain a continuous flow field, we get a flow with no radial component, 
and angular component 

D 
uθ = , (460) 

r 
which is irrotational by virtue of its construction. This is called a point vortex solution. If 
we consider the circulation about a loop containing the origin 

2π 
u · dl = uθrdθ = 2πD = Γ (461) 

0 

Thus D = Γ/2π, where Γ is the circulation about the point vortex. 

18.4 Flow around a cylindrical wing 

Okay, so this isn’t the true shape of an airplane wing, but it’s a good place to start. Let’s 
see if we can calculate the lift and drag on a wing of length £ and radius R « £ moving 
with velocity u0. In the frame of reference of the wing, the boundary conditions are 

φ → u0x as r → ∞, (462a) 
∂φ 
∂r 

= 0 at r = R. (462b) 

Using the general solution found above, the first boundary condition requires that 

D1B1
φ = u0r + cos θ + A0(C0 + D0θ). (463) 

r 

The second boundary condition gives us 

R2 
φ = D0θ + u0 cos θ r + , (464) 

r 

where we have set C0 = 0 since \φ is all that matters. Physically we can see that D0 = 
Γ/2π, where Γ is the circulation about the wing (check this by integrating around a circular 
loop containing the wing). 

90  

∫ ∫

( )

( )



 
 

  

 

  

18.5 Forces on the circular wing 

The lift and drag forces on the wing (length £) are respectively given by 

2π 
FL = £ p(R, θ) R sin θdθ, (465a) 

0 
2π 

FD = £ p(R, θ) R cos θdθ. (465b) 
0 

We can determine the pressure distribution from Bernoulli’s Law 

2 ρ ρ Γ 
p = p0 − (\φ)2 = p0 − 2u0 sin θ − . (466)

r=R2 2 2πR 

Putting this into the above relations we find that 

FD = 0. (467) 

This result is known as D’Alembert’s paradox, contracting the well-known fact that drag is 
acting on a moving body even in in low viscosity fluids. 

Furthermore, the lift on the wing is linearly proportional to the circulation about the 
wing; 

FL = Γρ u0 £. (468) 

Thus, the lift on the cylindrical wing is zero (unless it is spinning, so that Γ = 0!). The lift 
force due to rotation is also known as Magnus force. 

Our earlier discussion of singular perturbations suggests that D’Alembert’s paradox for 
inviscid flows arises as a consequence of the fact that we have neglected viscosity in the Euler 
equations. Historically, this was first realized by Prandtl. Another shortcoming of our above 
calculations is that wings are not circular and, maybe, if we consider an alternative shape 
we would find lift. This will be our next avenue of investigation. We could also be worried 
about the fact that our problem is 2D. However, given that the aspect ratio of a wing is 
roughly 10:1, it is acceptable to consider 2D flow. In the next part, we will study how things 
change if we alter the shape of the wing. To do so will require conformal mapping. 

19 Stream functions and conformal maps 

There is a useful device for thinking about two dimensional flows, called the stream function 
of the flow. The stream function ψ(x, y) is defined as follows 

∂ψ ∂ψ 
u = (u, v) = , − . (469)

∂y ∂x 

The velocity field described by ψ automatically satisfies the incompressibility condition, 
and it should be noted that 

∂ψ ∂ψ 
u · \ψ = u + v = 0. (470)

∂x ∂y 
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Thus ψ is constant along streamlines of the flow. Besides it’s physical convenience, another 
great thing about the stream function is the following. By definition 

∂ψ ∂φ 
u = = , (471a)

∂y ∂x 
∂ψ ∂φ 

v = − = , (471b)
∂x ∂y 

where φ is the velocity potential for an irrotational flow. Thus, both φ and ψ obey the well 
known Cauchy-Riemann equations of complex analysis. 

19.1 The Cauchy-Riemann equations 

In complex analysis you work with the complex variable z = x + iy. Thus, if you have some 
complex function f(z) what is df/dz? Well, f(z) can be separated into a real part u(x, y) 
and an imaginary part v(x, y), where u and v are real functions, i.e.: 

f(z) = f(x + iy) = u(x, y) + iv(x, y). (472) 

2 2For example, if f(z) = z then u = x2 − y and v = 2xy. What then is df/dz? Since we 
are now in two-dimensions we can approach a particular point z from the x-direction or the 
y-direction (or any other direction, for that matter). On one hand we could define 

df ∂f ∂u ∂v 
= = + i . (473a)

dz ∂x ∂x ∂x 

Or, alternatively 
df ∂f ∂f ∂u ∂v 

= = −i = −i + . (473b)
dz ∂(iy) ∂y ∂y ∂y 

For the definition of the derivative to make sense requires ∂u/∂x = ∂v/∂y and −∂u/∂y = 
∂v/∂x, the Cauchy-Riemann equations. If this is true then f(z) is said to be analytic and 
we can simply differentiate with respect to z in the usual manner. For our simple example 
f(z) = z2 we have that df/dz = 2z (confirm for yourself that z2 is analytic as there are 
many functions that are not, e.g., |z| is not an analytic function.) 

19.2 Conformal mapping 

We can now use the power of complex analysis to think about two dimensional potential flow 
problems. Since φ and ψ obey the Cauchy-Riemann equations, this implies that w = φ + iψ 
is an analytic function of the complex variable z = x + iy. We call w the complex potential. 
Another important property of 2D incompressible flow is that both φ and ψ satisfy Laplace’s 
equation. For example, using the Cauchy-Riemann equations we see that 

∂ψ ∂ψ ∂2ψ ∂2ψ 
+ = − + = 0. (474)

∂x2 ∂y2 ∂x∂y ∂y∂x 

The same proof can be used for φ. We can therefore consider any analytic function (e.g., 
sin z,z4,...), calculate the real and imaginary parts and both of them satisfy Laplace’s equa­
tion. 
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The velocity components u and v are directly related to dw/dz, which is conveniently 
calculated as follows: 

dw ∂φ ∂ψ 
= + i = u − iv. (475)

dz ∂x ∂x 
As a simple example consider uniform flow at an angle α to the x-axis. The corresponding 

−iα −iαcomplex potential is w = u0ze . In this case dw/dz = u0e . Using the above relation, 
this tells us that u = u0 cos α and v = u0 sin α. 

We can also determine the complex potential for flow past a cylinder since we know that 

R2 
φ = u0 r + cos θ, (476) 

r 

and this is just the real part of the complex potential 

R2 
w = u0 z + . (477) 

z 

Check this by substituting in z = reiθ . What is the corresponding stream function? Also 
w(z) = −i ln z is the complex potential for a point vortex since   

iθ)Re (w(z)) = Re −i ln(re = θ, (478) 

and we know that φ = θ is the real potential for a point vortex. Thus 

R2 iΓ 
w(z) = u0 z + − ln z (479) 

z 2π 

is the complex potential for flow past a cylinder with circulation Γ. 
So let’s assume that the only problem we know how to solve is flow past a cylinder, when 

really we want to know how to solve for flow past an aerofoil. The idea is to now consider 
two complex planes (x, y) and (X, Y ). In the first plane we have the complex variable 
z = x + iy and in the latter we have Z = X + iY . If we construct a mapping Z = F (z) 
which is analytic, with an inverse z = F −1(Z), then W (Z) = w(F −1(Z)) is also analytic, 
and may be considered a complex potential in the new co-ordinate system. Because W (Z) 
and w(z) take the same value at corresponding points of the two planes it follows that Ψ 
and ψ are the same at corresponding points. Thus streamlines are mapped into streamlines. 
In particular a solid boundary in the z-plane, which is necessarily a streamline, gets mapped 
into a streamline in the Z-plane, which could accordingly be viewed as a rigid boundary. 
Thus all we have done is distort the streamlines and the boundary leaving us with the key 
question: Given flow past a circular cylinder in the z-plane can we choose a mapping so 
as to obtain in the Z-plane uniform flow past a more wing-like shape? (Note that we have 
brushed passed some technical details here, such as the requirement that dF/dz = 0 at any 
point, as this would cause a blow-up of the velocity). 

19.3 Simple conformal maps 

The simplest map is 
Z = F (z) = z + b, (480) 
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which corresponds to a translation. Then there is 

Z = F (z) = ze iα , (481) 

which corresponds to a rotation through angle α. In this case, the complex potential for 
uniform flow past a cylinder making angle α with the stream is 

R2 
iα iΓ 

W (Z) = u0 Ze−iα + e − ln Z. (482)
Z 2π 

Note, that this expression could also include the term ln eiα = iα which I have neglected. 
This is just a constant however and doesn’t change the velocity. 

Finally there is the non-trivial Joukowski transformation, 

2c
Z = F (z) = z + . (483) 

z 

What does this do to the circle? Well, z = aeiθ becomes 

2 2 2c c ciθZ = ae + e −iθ = (a + ) cos θ + i(a − ) sin θ. (484) 
a a a 

Defining X = Re(Z), Y = Im(Z), it is easily shown that  2   2 
X Y 

2 + 2 = 1, (485) 
a + c a − ca a

which is the equation of an ellipse, provided c < a. 

20 Classical aerofoil theory 

We now know that through conformal mapping it is possible to transform a circular wing into 
a more realistic shape, with the bonus of also getting the corresponding inviscid, irrotational 
flow field. Let’s consider some more realistic shapes and see what we get. 

20.1 An elliptical wing 

First let’s rotate our cylinder by an angle α. The complex potential becomes 

R2 iΓ−iα iα w(z) = u0 ze + e − ln z. (486) 
z 2π 

Now, using the Joukowski transformation we want to turn our circular wing into an elliptical 
wing. The transformation stipulates that Z = z + c2/z, so that 

Z Z2 
2z±(Z) = ± − c . (487)

2 4 
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Considering z+(Z) 

R2 iΓ−iα iα w(z) = u0 z+(Z)e + e − ln z+(Z). (488) 
z+(Z) 2π 

If we choose c = R, then the ellipse collapses to a flat plate. The velocity components in 
the Z plane are 

dW i(Γ + 2πu0Z sin α)
U − iV = = u0 cos α − √ , (489)

dZ 2π Z2 − 4R2 

which can also be written as 
iαR2−iα − e iΓ 

dw/dz u0 e z2 − 2πz 
U − iV = = (490)

dZ/dz 1 − R2/z2 

On the surface of the body we have z = Reiθ, so the velocities become � � −iθ−iα − e−2iθ iα − iΓeu0 e e 2πR U − iV = −2iθ . (491)
1 − e

At θ = 0 and θ = π we are in trouble because the velocities are infinite. Notably, however, 
this problem can be removed at θ = 0 if the circulation is chosen so that the numerator 
vanishes   −iθ i(θ−α) − e−i(θ−α)) − iΓ e u0(e 2πRU − iV = −2iθ . (492)

1 − e
Thus for a finite velocity at θ = 0 we require 

−iα − e iα) − 
iΓ 

u0(e = 0, (493)
2πR 

giving 
Γ = −4πu0R sin α. (494) 

In this case flow leaves the trailing edge smoothly and parallel to the plate. Note that it is 
not possible to cancel out singularities at both ends simultaneously, as we have to rotate in 
the opposite direction to cancel out the singularity at θ = π. 

20.2 Flow past an aerofoil 

What if we could now construct a mapping with a singularity just on one side ? This we 
can do by considering a shifted circle, that passes through z = R but encloses z = −R. In 
this case we obtain an aerofoil with a rounded nose but a sharp trailing edge. The boundary 
of the appropriate circle is prescribed by 

iθ z = −λ + (a + λ)e , (495) 

where θ is a parameter. First we must modify the complex potential for flow past a cylinder 
to take account of this new geometry. We have that 

(R + λ)2 iΓ−iα iα w(z) = u0 (z + λ)e + e − ln(z + λ). (496)
(z + λ)2 2π 
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T√o find the complex potential for the aerofoil one must then substitute in z = Z/2 +
Z2/4−R2. Determining the velocities as before we find that

u− iv =
dW

dZ
=
dw/dz

dZ/dz
= u0

e−iα −
(
R+λ
z+λ

)2
− iΓ

2π(z+λ)

1− R2 . (497)
z2

The value of Γ that makes the numerator zero at the trailing edge is

Γ = −4πu0(R+ λ) sinα. (498)

The flow is then smooth and free of singularities everywhere (because we have successfully
trapped the rogue singularity inside the wing), and this is an example of the Kutta-Joukowski
condition at work.

Our goal in the reminder of this part is to show that our earlier results FL = ρ`u0Γ and
FD = 0 are unaffected by the wing shape. To this end, we first derive Blasius’ lemma and
then the Kutta-Joukowski theorem.

20.3 Blasius’ lemma

To derive Blasius’ lemma, we consider the force acting per unit length on the wing, f =
F /` = (fx, fy), which is obtained by integrating the pressure over the (now arbitrary)
surface contour ∂S ∮

f = − pn ds (499)
∂S

where n is the outward surface normal vector and ds the arc length. Denote by dz = dx+idy
a small change along the curve ∂S. In complex notation, the normal element n ds can then
be expressed as

−idz = dy − idx, (500)

and Eq. (499) can be rewritten as ∮
f := fx + ify = i p dz. (501)

From Bernoulli we have that p = p 2
0 − ρ|v| /2, where

dw
v = vx − ivy =

dz
, |v|2 = vv̄ = v2

x + v2
y =

∣∣∣∣dwdz
∣∣∣∣2 . (502)

Thus, we find

f = i

∮ (
p0 −

ρ

2
|v|2
)
dz = −i ρ

∮
|v|2 dz (503)

2

Taking the complex conjugate, we have

ρ
f̄ = fx − ify = i

∮
|v|2 dz̄. (504)

2
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Furthermore, since v is parallel to z on boundary (which is a stream line), we may use

0 = vxdy − vydx (505)

to rewrite

v2 dz = (vx − ivy)2(dx+ idy)

= (v2
x − v2

y − 2ivxvy)(dx+ idy)

= v2dx− v2 2
x ydx− 2ivxvydx+ vxidy − v2

yidy + 2vxvydy

= v2
xdx− v2

ydx− 2iv2
xdy + v2

xidy − v2
yidy + 2v2

ydx

= v2
xdx+ v2

ydx− v2
xidy − v2

yidy

= (v2
x + v2

y)dx− (v2
x + v2

y)idy

= (v2 2
x + vy)(dx− idy)

= |v|2 dz̄ (506)

Hence,

ρ
f̄ = i

2

∮
v2 dz = i

ρ

2

∮ (
dw
)2

dz (507)
dz

which is the statement of the Blasius lemma.

20.4 Kutta-Joukowski theorem

We now use Blasius’ lemma to prove the Kutta-Joukowski lift theorem. For flow around a
plane wing we can expand the complex potential in a Laurent series, and it must be of the
form

dw

dz
= a0 +

a−1

z
+
a−2

+ ... (508)
z2

Higher powers of z cannot appear if the flow remains finite at |z| → ∞ and, in this case,
we can identify

a0 = vx(∞)− ivy(∞). (509)

In particular, if the wing moves along the x-axis and surrounding gas is at rest, then simply
a0 = vx(∞).

To obtain the physical meaning of a−1, we note that by virtue of the residues theorem26

1
a−1 =

2πi

∮
dw

dz
dz (510)

26Let’s assume some otherwise analytic∑ function f(z) has a pole at z = 0. The residue is the coefficient
a−1 of the Laurent series f(z) = ∞ k

k=−∞ akz . The residue theorem states that for a positively oriented
simple closed curve γ around z = 0 ∮

f(z)dz = 2πi a−1.
γ
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Computing the integral on the rhs. gives  
dw 

dz =

 
(vx − ivy)(dx + idy)

dz 

=

 
(vxdx + vydy) + i

 
(vxdy − vydx) (511) 

The last integral vanishes as the boundary is stream line, see Eq. (505), so that 

1 Γ 
a = v  dx = . (512)−1 

2πi

 
·

2πi 

where Γ is the circulation defined above.  
To evaluate the rhs. in Eq. (507), we note that to leading order   2dw a0a 1 a0Γ 

dz
c a0 + 2 −

= a0 + (513)
z πiz 

Thus, using the residue theorem, we find 

ρ a Γ
f̄  0
= fx − ify = i 

 
2πi = iρΓa0 = ρΓvy( ) + iρΓvx( ). (514)

2 πi

 
∞ ∞

Recall that FD = .fx and FL = .fy, this is indeed the generalization of our earlier results 
for drag and lift on a cylinder, if we identify vy(∞) = 0 and vx(∞) = −u0. Note that the 
results FD = 0 is again a manifestation of d’Alembert’s paradox (now for arbitrarily shaped 
wings), which can be traced back to the fact that we neglected the viscosity terms in the 
Navier-Stokes equations. 

21 Rotating flows 

In our above discussion of airfoils, we have neglected viscosity which led to d’Alembert’s 
paradox. To illustrate further the importance of boundary layers, we will consider one 
more example of substantial geophysical importance, where the dynamics of laminar flows 
is completely controlled by the boundary layer. In the process of deriving this result we 
will also learn about a rather remarkable phenomenon  in rotating fluid dynamics.27

21.1 The Taylor-Proudman theorem 

Consider a fluid rotating with angular velocity Ω. The equation of motion in the frame of 
reference rotating with the fluid is 

∂u 1 
+ u 

 
· V  u +Ω × (Ω × r) = − Vp 2

 Ω + νV u − 2Ω × u, (515a)
∂t ρ

V · u = 0. (515b) 
27See Acheson, pp. 278-287 
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There are two additional terms: the first Ω× (Ω× r) is the centrifugal acceleration, which
can be thought of as an augmentation to the pressure distribution, using the identity

1
Ω× (Ω× r) = − ∇(Ω× r)2. (516)

2

Henceforth, we will simply absorb this into the pressure by writing

ρ
p = pΩ − (Ω× r)2. (517)

2

For the rotating earth, the effect of this force is to simply distort the shape of the object
from a sphere into an oblate ellipsoid. The second term is the Coriolis acceleration which
is velocity dependent. Hopefully you have heard about it in classical mechanics.

We are going to be interested in flows which are much weaker than the rotation of the
system. If U is a characteristic velocity scale and L is a characteristic length scale, then the
advective term is of order U2/L whereas the coriolis force is of order ΩU . We will assume
that ΩU � U2/L so that the equation of motion is effectively

∂u

∂t
= −1∇p+ ν∇2u− 2Ω× u, (518a)

ρ

∇ · u = 0. (518b)

21.2 Steady, inviscid flow

Now let’s consider flow at high Reynolds number. The Reynolds number is now ΩL2/ν
within this framework. As usual, the first step is to write down the inviscid equations
(since the viscosity is small), and then the next step is to correct them with boundary
layers.

Following Acheson, let’s write the flow velocity as u = (uI , vI , wI) and Ω = (0, 0,Ω).
The steady, inviscid flow satisfies

1
2ΩvI =

ρ

∂pI
∂x

, (519a)

2ΩuI = −1 ∂pI
ρ ∂y

, (519b)

0 =
1 ∂pI
ρ ∂z

, (519c)

∂uI
∂x

+
∂vI
∂y

+
∂wI

= 0. (519d)
∂z

The third equation says that the pressure is independent of z. Hence, the first two equations
say that uI and vI are independent of z. Then the last equation says that wI is independent
of z. Thus, the entire fluid velocity is independent of z ! This result, which is remarkable,
is called the Taylor-Proudman theorem. Proudman discovered the theorem, but Taylor
discovered what is perhaps its most remarkable consequence.
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21.3 Taylor columns

In his paper “Experiments on the motion of solid bodies in rotating fluids”, Taylor posed
the simple question: given the above fact that slow steady motions of a rotating liquid must
be two-dimensional, what happens if one attempts to make a three dimensional motion
by, for example, pushing a three dimensional object through the flow with a small uniform
velocity? At the beginning of his paper he points out three possibilities:

1. The motion in the liquid is never steady.

2. The motion is steady, but our assumption that uI is small relative to the rotation
velocity breaks down near the object.

3. The motion is steady and two dimensional.

He remarks that the first possibility is unlikely, since it must settle down eventually. The
realistic possibilities are (2) and (3). His paper, which can be downloaded from the course
page, demonstrates that actually what happens is possibility (3). This is really rather
remarkable (as Taylor notes) because there is only one way that it can really happen: An
entire column of fluid must move atop the object.

21.4 More on rotating flows

Above, we wrote the equations of a rotating fluid assuming that the rotation frequency
dominated the characteristic hydrodynamic flows in the problem. In other words, if Ω
is the characteristic rotation frequency, L is a horizontal lengthscale, and U is a typical
velocity in the rotating frame, we assumed that

U
Ro = � 1. (520)

ΩL

This dimensionless number is called the Rossby number. The equations were

∂u

∂t
= −1∇p+ ν∇2u− 2Ω× u, (521a)

ρ

∇ · u = 0. (521b)

We will use these ideas to revisit the famous problem of the spin-down of a coffee cup that
we discussed at the very beginning of class. You might recall that the problem we had
was that our simple theory of how the spin-down occurred turned out to be entirely false.
We shall now construct the correct theory, while learning a bit of atmospheric and oceanic
physics along the way.

21.5 More on the Taylor-Proudman theorem

Let’s consider the Taylor-Proudman theorem again, this time using another method. We
consider the viscosity to be small so that we can use the limit of a stationary, inviscid fluid.
More precisely, we consider the ratio

ν∇2u
Ek =

Ω× u
=

ν � 1. (522)
ΩL2
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This dimensionless number is called the Ekman number. The flow is then strictly two-
dimensional, and the Navier-Stokes equation simplifies to 

1 − 
ρ 
\p = 2Ω × u. (523) 

Taking the curl of both sides, we find 

∂u \× (Ω × u) = Ω\ · u − u\ · Ω + u · \Ω − Ω · \u = −Ω . (524)
∂z 

Here, we have used the fact that the fluid velocity is divergence free. Hence we have that 
∂u/∂z=0, or that the fluid velocity is independent of z. A major consequence of this (Taylor 
columns) was discussed above. 

Before leaving this topic, let’s make one more remark. Taking the dot product of the 
equations of inviscid flow with u, we get 

u · \p = −ρu · (2Ω × u) = 0. (525) 

This formula states that the velocity field moves perpendicular to the pressure gradient, 
which is somewhat against one’s intuition. Hence, the fluid actually moves along lines 
of constant pressure. Pressure work is not performed either on the fluid or by the fluid. 
Geophysicists call this fact the geostrophic balance. 

There is an entertaining fact that one can deduce about atmospheric flows. For an 
atmospheric flow, the analogue of Ω is not the earth’s rotation speed ω̂, but instead Ω = 
ω̂ sin φ, where φ is the longitude. Now, this shows that the effective Ω changes sign in 
the northern and southern hemisphere. What does this imply for the dynamics? When 
Ω > 0 the velocity moves with the high pressure on the right. Conversely in the southern 
hemisphere, the velocity moves with the high pressure on the left. It is also true that because 
of this change in sign, Naval warships have to adjust their range finding when crossing over 
the equator. However, the myth about the bathtub vortex does not hold because one 
cannot throw out inertial and viscous terms in solving this problem. The Coriolis force is 
only important on large scales. 

22 The Ekman layer 

We would now like to return to our coffee cup problem, to get the right answer. To do 
so, we shall consider the effect of walls on the inviscid flow we calculated in the previous 
lecture. For starters, lets consider a jar with the top moving at angular velocity ΩT and 
the bottom moving at angular velocity ΩB . Clearly, if ΩT = ΩB then our inviscid solution 
applies. Let’s try and figure out what happens when ΩT becomes different from ΩB. 

22.1 A small deviation 

Suppose ΩT =Ω and ΩB = Ω + E. Now there is no way to satisfy the no slip condition on 
both the top and bottom while having the whole flow spin at angular velocity Ω. Let’s move 
first to the rotating frame, and try to compute the secondary flow that is induced. Clearly, 
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without viscosity it is impossible to solve this problem because the Taylor-Proudman theo-
rem states that inviscid flow is two dimensional (and so no gradient in Ω across the cylinder
axis is possible). We therefore anticipate that even though the Rossby number is small,
there will be boundary layers. Let’s divide the flow into three regions: (1) A boundary
layer at the top plate; (2) a boundary layer at the bottom plate; and (3) a central inviscid
region.

In the inviscid region we would expect that the solution is (uI , vI , wI), where

1 ∂p−2ΩvI = − I
, (526a)

ρ ∂x

1 ∂p
2ΩuI = − I

, (526b)
ρ ∂y

1 ∂pI
0 = . (526c)

ρ ∂z

In the same way as before, we expect the pressure gradient of the outer flow to force the
boundary layer at the rotating wall. Let’s consider the structure of the boundary layer at
the bottom wall, z = 0. There the equations are

1 ∂p 2u−2Ωv = − I ∂
+ ν , (527a)

ρ ∂x ∂z2

1 ∂pI ∂2v
2Ωu = − + ν , (527b)

ρ ∂y ∂z2

1 ∂pI ∂2w
0 = + ν , (527c)

ρ ∂z ∂z2

∇ · u = 0. (527d)

Here we have made the boundary layer approximation that ∂/∂z � ∂/∂x, ∂/∂y.
From the continuity equation we deduce that w is much smaller than the velocity com-

ponents parallel to the boundary so that ∂pI/∂z = 0, and the equations become

∂2u−2Ω(v − vI) = ν , (528a)
∂z2

∂2v
2Ω(u− uI) = ν . (528b)

∂z2

These are the equations we must solve. Acheson has a good trick. Multiplying the second
equation by i and adding the two yields

∂2f
ν = 2Ωif, (529a)
∂z2

where

f = u− uI + i(v − vI). (529b)

The solution is obtained by guessing f ∼eαz, which yields α2 = 2Ωi/ν. Hence,

f = Ae(1+i)z∗ +Be−(1+i)z∗ , z∗ = z
√

Ω/ν. (530)
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We require that as z∗ → ∞, f → 0. This implies that A = 0. We are in the frame
of reference moving with the bottom plate, so the no slip boundary condition at z = 0
requires that f(z = 0) = −uI − ivI . Splitting f into its real an imaginary parts implies

u = uI − e−z
∗
(uI cos(z/δ) + vI sin(z/δ)), (531)

v = vI − e−z
∗
(vI cos(z/δ)− uI sin(z/δ)). (532)

This is the velocity profile in the boundary layer.
What about the z-component? From the divergence free condition, we have(

Ω
)1/2 ∂w ∂w ∂u ∂v

= =
ν ∂z∗ ∂z

−
∂x
− =
∂y

(
∂vI ∂u

∂x
− I

∂y

)
e−z

∗
sin z∗. (533)

Integrating from z∗ = 0 to ∞ gives

1
(

Ω
)−1/2(∂vI ∂uI

w =
2 ν ∂x

−
∂y

)
ω̂I

=
2

√
ν
, (534)

Ω

where ω̂I is the vorticity in the inviscid flow. Thus, if ω̂I > 0 (i.e., the bottom boundary is
moving slower than the main body of fluid) then there is flow from the boundary layer into
the fluid.

22.2 Matching

Now we have these Ekman layers at the top and the bottom. What we just assumed was
that the boundary is moving at frequency Ω. If it is not, but instead moving at an angular
frequency ΩB relative to the rotating frame, then we need to change the boundary conditions
a little in the rotating frame. In this case

/
=
( ν )1 2

w

(
ω̂I − ΩB

ΩB 2

)
. (535a)

We could derive this, but it is intuitive since (ω̂I − 2ΩB) is the vorticity of the interior flow
relative to the moving lower boundary. Similarly, if ΩT denotes the angular velocity of the
rigid upper boundary relative to the rotating frame, then there is a small z-component of
velocity up into the boundary layer

ν
w =

(
ΩT

)1/2
(

ω̂
ΩT − I

2

)
. (535b)

Now in our container both are happening. Since uI , vI and wI are all independent of z
then so is ω̂I . Thus, the only way the experiment could work is if the induced value of ω̂I
from both cases matches. This implies that

ω̂I = ΩT + ΩB. (536)

With ΩB = 0 and ΩT = ε we have that ω̂I = ε. Thus, the flow in the inner region has a
velocity which is entirely set by the boundary layers. Note that there is no viscosity in this
formula, but viscosity plays a role in determining the flow. We have completely different
behaviour for ν = 0 and in the limit ν → 0.
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22.3 Spin-down of this apparatus

We now want to finally solve the spin-down of our coffee cup. To do so we assume the coffee
cup to be a cylinder with a top and a bottom both rotating with angular velocity Ω + ε.
At t = 0 the angular velocity of the boundaries is reduced to Ω. How long does it take to
reach a steady state?

We use the time-dependent formula

∂uI 1 ∂pI
2ΩvI = , (537a)

∂t
− −

ρ ∂x

∂vI 1 ∂p
+ 2ΩuI =

t
− I

. (537b)
∂ ρ ∂y

Then differentiate the first equation with respect to y and the second with respect to x.
Subtracting the latter from the former, and using the continuity equation, we obtain the
vorticity equation

∂ω̂I ∂wI
= 2Ω . (538)

∂t ∂z

Now ω̂I is independent of z, so∫ L ∂ω̂I ∂ω̂I
dz = L = 2Ω[w(L)

0 ∂t ∂t
− w(0)]. (539)

The velocity is equal and opposite at the two boundaries (flow is leaving both boundary
layers), and has magnitude (ν/Ω)1/2ω̂I/2. Thus

∂ω̂I 2
√

Ων
= − ω̂I , (540)

∂t L

implying that vorticity is decreasing in the interior with a characteristic decay time L/2
√

Ων.
For the coffee cup this gives us a much more realistic spin down time compared to our
experiments. In real life we should note that diffusion of the no-slip condition also will play
a role, and there will be competition between the two depending on the particular shape
of your coffee cup. If you go look at the corresponding flow in Acheson, you can now also
understand the deep reason why coffee grounds end up at the centre of your cup.

23 Water waves

If you look out onto the River Charles, the waves that are immediately apparent are surface
waves on the water. However, there are many different types of waves in the rivers and
oceans, which have profound effects on our surroundings. The most dramatic example is a
Tsunami, which is a wave train generated by earthquakes and volcanoes. Before considering
these, however, let’s begin by considering the motion of a disturbance on the surface of water.
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23.1 Deep water waves

The flow is assumed to be inviscid, and as it is initially irrotational it must remain so. Fluid
motion is therefore described by the velocity potential (u, v) = ∇φ, and satisfies Laplace’s
equation (incompressibility condition)

∇2φ = 0. (541a)

The momentum equation becomes

∂∇φ
∂t

+
1

2
∇(∇φ)2 = −1∇p−∇χ, (541b)

ρ

where χ is the gravitational potential such that g = −∇χ. This can be integrated to give
the unsteady Bernoulli relation

∂φ

∂t
+

1

2
(∇φ)2 +

p
+ χ = C(t). (542)

ρ

Here, C(t) is a time dependent constant that does not affect the flow, which is related to φ
only through spatial gradients. The surface is h(x, t) and we have the kinematic condition

∂h

∂t
+ u

∂h
= v (543)

∂x

on y = h(x, t). This simply states that if you choose an element of fluid on the surface, the
rate at which that part of the surface rises or falls is, by definition, the vertical velocity.
Finally, we require that the pressure be atmospheric, p0 at the surface. From the unsteady
Bernoulli relation we get

∂φ

∂t
+

1
(u2 + v2) + gh = 0 (544)

2

on h(x, t), where we have chosen the constant C(t) appropriately to simplify things.
The equations we have derived so far take account of the effect of gravity on the free

surface. We have ignored one important factor, however, which is surface tension. It costs
energy to create waves, as they have greater surface area than a flat surface. From our
earlier work we know that a pressure jump exists across a distorted interface. If p0 is
atmospheric pressure, then the pressure at the fluid surface is

∂2h(x, t)
p = p0 − γ . (545)

∂x2

Including surface tension in our pressure condition at the surface, we have that

∂φ

∂t
+

1

2
(u2 + v2) + gh− γ

ρ

∂2h
= 0 (546)

∂x2

at y = h(x, t).
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We now follow the same procedure as in the last lecture and assume all the variables to
be small, so that we can linearise the equations. The linearised system of equations consists
of Laplace’s equation and the boundary conditions at y = 0:

∇2φ = 0 (547a)

∂h ∂φ
=

∂t ∂y
(x, 0, t), (547b)

∂φ

∂t
= −gh+

γ

ρ

∂2h
, (547c)

∂x2

These conditions arise because we have Taylor expanded terms such as

v(x, h, t) = v(x, 0, t) + hvy(x, 0, t), (548)

and then ignored nonlinear terms. We guess solutions of the form

φ = Aeky sin(kx− ωt) , h = εeky cos(kx− ωt), (549)

knowing that these satisfy Laplace’s equation (we have ignored terms of the form e−ky, as
the surface is at y = 0 and we need all terms to disappear as y → −∞). Putting these into
the surface boundary conditions (8) and (9) gives

ωε = Ak, (550a)

γk2ε
ωA = gε+ . (550b)

ρ

Eliminating A we get the dispersion relation

ω2 γk3

= gk + . (551)
ρ

What are the consequences of this relation? On the simplest level we know that the phase
speed, c, of a disturbance is given by the relation c = ω/k. Thus

c2 g
=
k

+
γk
. (552)

ρ

The relative importance of surface tension and gravity in determining wave motion is given
by the Bond number Bo = γk2/ρg. If Bo < 1 then we have gravity waves, for which
longer wavelengths travel faster. If Bo > 1 then we have capillary waves, for which shorter
wavelengths travel faster. For water, the Bond number becomes unity for wavelengths of
about 2 cm, and this accounts for the different ring patterns you can observe when a stone
and a raindrop fall into water.

23.2 Properties of the dispersion relation

When a group of waves travels across the surface of water each particular wave crest moves
faster than the group as a whole, i.e., if you look closely then wave crests within the
disturbance appear to move through it. Why is this? The answer is that different Fourier
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components of the disturbance move at different speeds. Such a system is said to be
dispersive.

If we consider a stone thrown into a pond, and we take the Fourier transform of the
disturbance it creates, then that disturbance is described by∫ ∞

ˆh(x, t) = h ei[kx−ω(k)t]
k dk. (553)

−∞

Now the dominant wavelength in the disturbance corresponds to the diameter of the rock d.
We shall call the corresponding wavenumber k0 = 2π/d. Other wavenumbers will also be

ˆexcited but we argue that hk will be very small except when k is very near to k0. Near k0

we have that
ω(k) ≈ ω(k0) + ω′(k0)(k − k0). (554)

where ω′ = ∂ω/∂k. Thus ∫ ∞
ˆ ′

h(x, t) = ei[k0x−ω(k0)t] hke
i(k−k0)[x−ω (k0)t]dk. (555)

−∞

The first term of this expression is a travelling wave moving with phase velocity

ω(k0)
cp = (556a)

k0

The second term is a function only of [x − ω′(k0)t]. It corresponds to an envelope moving
with the group velocity

cg = ω′(k0) (556b)

that encloses the travelling wave describes. Thus, the wave packet as a whole moves with
cg. It is a simple step to recognise that if ω(k) 6= ck then cg 6= cp. For gravity waves in deep
water, we have

d
cg =

dk
(gk)

1
2 =

1
cp. (557a)

2

Alternatively for capillary waves

d
cg =

dk
(γk3/ρ)

1
2 =

3
cp. (557b)

2

For comparison, the dispersion relation for sound waves, ω = ck, tells us that∫ +∞
h(x, t) = b eik(x±ct)

k dk. (558)
−∞

So we start with an arbitrary disturbance, and this perturbation just moves without chang-
ing shape (although in three dimensions there would be a decay in amplitude due to power
conservation).

This is not so for water waves, which have a different dispersion relation, and we can
highlight the difference between these two cases by considering the wakes behind an airplane
and a boat.

107



23.3 The wake of an airplane

The equation governing the propagation of a 2D disturbance in air is the wave equation

∂2φ

∂t2
= c2∇2φ = c2

(
∂2φ

∂x2
+
∂2φ

)
, (559)

∂y2

where φ is some scalar quantity representing the disturbance (e.g., the velocity potential,
the density or the pressure). For an airplane moving through the air we anticipate a solution
that is constant in the frame of reference of the plane. Thus

˜φ(x, y, t) = φ(x− Ut, y), (560)

and we have

2∂
2φ̃

U
∂x2

= c2

(
∂2φ̃

∂x2
+
∂2φ̃

)
. (561)

∂y2

Defining the Mach number M = U2/c2, the above equation becomes

(1−M2 ∂2φ̃
)
∂x2

+
∂2φ̃

∂y2
= 0. (562)

If M < 1 we can make a simple change of variables X = x/
√

1−M2 and regain Laplace’s
equation. Thus everything can be solved using our conformal mapping techniques. However,
if M > 1 then the original equation now looks like a wave equation, with y replacing t,
yielding solutions of the form √

φ̃(x, y) = Φ(x− y M2 − 1) (563)

Thus disturbances are confined to a wake whose half angle is given by

1
tan θ = √ . (564)

M2 − 1

Only a narrow region behind the plane knows it exists, and the air ahead doesn’t know
what’s coming!

23.4 Flow created by a 1D ‘boat’

We now consider a boat moving at constant speed across the surface of water. The motion
of the boat generates a disturbance at point (x′, t′). The total disturbance generated as the
boat progresses is the sum of the individual contributions∫

ˆ ′ ′ ′
h(x, t|x′, t′) = dk h ei[k(x−x )−ω(k)(t−t )]

k e−Γk(t−t ) Θ(t− t′), (565)

where Γk describes the attenuation of the disturbance in time. Let us assume the boat’s
trajectory is given by x′ = Ut′, corresponding the boat moving from left to right. In this

108



case, the sum over the history of the boat positions is given by∫ ∫
h(x, t) ∝ dx′ dt′ h(x, t|x′, t′) δ(x′ − Ut′)∫ ∫ ∫

ˆ= dk h ei[kx−ω(k)t]−Γ t ′ ′ ˆ i[−kx′+ω(k)t′ ′
k

k dx dt hke
]eΓkt Θ(t− t′) δ(x′ − Ut′)∫ ∫ Ut

ˆ i[kx−ω(k)t]−Γkt ′ ˆ= dk h e dx h e{−i[(k−ω(k)/U ]+(Γ/U)}x′
k k (566)

−∞

To simplify things a bit, let’s focus on spatial perturbations at time t = 0∫ ∞ ∫ 0

h(x, 0) ∝ ˆdk h eikx dx′ ′
k e{−i[(k − ω(k)/U ] + (Γ/U)}x

−∞∫ −∞
∞ eikx

= U dk
−∞

. (567)
−i[kU − ω(k)] + Γk

Now this integral is dominated by Fourier components for which kU −ω(k) is close to zero.
Thus the biggest contribution comes from the component whose phase velocity matches
that of the boat. Let’s write

k = k0 + δk , ω(k) = ω(k0) + ω′(k0)δk.

ˆTo further simplify matters we will assume that hk and Γk are well approximated by con-
ˆstants hk0 and Γk0 over the range for which the denominator is small. Then, to a good

approximation our integral may be expressed as an integral over δk with infinite limits∫ ∞ ei(δk)x
ˆh(x, 0) ∝ Uhk0e

ik0x d(δk)
−∞ −iU0δk + Γk0

= i
U

U0
hk0e

ik0x

∮
C
d(δk)

ei(δk)x

, (568)
δk + iΓk0/U0

where U0 = U −ω′(k0) is the difference between the boat velocity and the group velocity of
the Fourier component, and the contour C includes the real k-axis with other contributions
vanishing. If we are considering gravity waves, then U0 is a positive quantity. The integral
has to be evaluated around a contour C in the complex plane. For x > 0 there is no pole
inside the semicircle and the integral is zero. For x < 0, in the lower half of the complex
plane there is a pole at δk = iΓk0/U0, and it follows that

U
h(x, 0) ∝ 2π ĥk0 e

ik0xeΓk0x/U0 Θ(−x). (569)
U0

Thus we see that the boat is trailed by a wave travelling in the same direction, whose
wavelength is such that the boat and wave stay in step (i.e., the phase velocity of the wave
matches the boat velocity). In front of the boat the amplitude of the wave is zero.

Note that if we had considered the motion of an insect across the water then we would
be considering capillary waves. Then the group velocity is faster than the phase velocity.
Thus U0 would be a negative quantity and our complex integration would have revealed a
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wave that precedes the insect, with no disturbance behind it. As mentioned at the start, 
this analysis is applicable to the steady flow past an obstacle. In this case, if U is the 
steady stream velocity we can now understand why we see a steady pattern of capillary 
waves upstream from the object and a steady pattern of gravity waves downstream from 
the object. 

Finally, on open water, the waves created by a boat can move in two dimensions. To 
describe this, our 1D treatment needs to be extended to account for the V-shaped wake 
behind a boat, also known as the Kelvin wedge. In 2D, the disturbance generated by the 
boat is 

h(x, t| ' ' ˆx , t ) = dk h(k)eik(x−x')e iω(k)(t−t') Γk(t−t'e ). (570) 

As before, the only waves that con

 
tribute significantly are those whose phase velocity in 

the direction of motion of the boat matches the speed of the boat. If the waves are gravity 
waves, then the relevant k-vectors are those with inclination α and magnitude kα satisfying 

g
kα = . (571)  U2 sin2 α 

Turning back to our dispersion relation for water waves, it can readily be shown that the 
minimum phase velocity is  1/24gγ 

c =
 

, (572)
ρ

and this occurs for the wavenumber k =
 
ρg/γ. 

24 Solitons 

In the previous section, we considered dispersive waves characterized by time-dependent 
change (e.g., spreading) of the wave form. Now, we will study another interesting class of 
non-dispersive waves called solitons. 

24.1 History 

The occurrence of solitons were first reported by the Scottish engineer and naval architect 
John Scott Russell, who described his observation as follows: 

“I was observing the motion of a boat which was rapidly drawn along a narrow channel 
by a pair of horses, when the boat suddenly stopped –not so the mass of water in the channel 
which it had put in motion; it accumulated round the prow of the vessel in a state of violent 
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the 
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which 
continued its course along the channel apparently without change of form or diminution of 
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or 
nine miles an hour [14km/h], preserving its original figure some thirty feet [9m] long and 
a foot to a foot and a half [30-45cm] in height. Its height gradually diminished, and after 
a chase of one or two miles I lost it in the windings of the channel. Such, in the month of 
August 1834, was my first chance interview with that singular and beautiful phenomenon 
which I have called the Wave of Translation.” 
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Intrigued by his observation, Russell built an smaller-cases channel in his backyard and
performed the first systematic studies of solitary water waves.

Another class of solitons was discovered by Enrico Fermi, John Pasta, Stanislaw Ulam
(FPU) and Mary Tsingou in 1953. FPU had formulated as simple nonlinear chain model to
understand better the thermalization processes (dispersion of energy) in solids. Their model
was implemented numerically by Tsingou in what can be considered the first application
of computers tin physics. Remarkably, instead of showing the expected thermalization, the
numerical results predicted the existence long-lived non-dispersive excitations, illustrating
a previously unknown transport mode.

Since then, solutions have been intensely studied as models of elementary particles and
they have also been utilized in electronics and fibre optics.

24.2 Korteweg-de Vries (KdV) equation

A continuum model for solitary waves in water was first introduced by Boussinesq in 1871.
The theory was developed further by Lord Rayleigh in 1876 and by Korteweg and de Vries
(KdV) in 1895. According to their theory, the spatio-temporal evolution of weakly nonlinear
shallow water waves is described by

3
∂th =

2

√
g

l
∂x

(
h2

2
+

2

3
h+

σ
)

∂2

3 xh (573)

where h(t, x) is the surface profile of the wave and

`3
σ =

3
− γ`

(574)
ρg

with ` the channel height, γ the surface tension, g the gravitational acceleration and ρ the
mass density.

Mathematical studies of the KdV-solitons typically focus on the rescaled version

∂tφ+ ∂3
xφ+ 6φ∂xφ = 0. (575)

To find an exact solution, we make the ansatz

φ(t, x) = f(x− ct− a) = f(X). (576)

Insertion then gives

−cf ′ + f ′′′ + 3(f2)′ = 0. (577)

where f ′ = df/dX. We next integrate once to obtain

−cf + f ′′ + 3f2 = A. (578)

This equation can be rewritten in the Newtonian form

d2f

dX2
= −dΦ

(579a)
df
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with potential

c
V (f) = −Af − f2 + f3. (579b)

2

This equation possesses an explicit solution with f(X) = 0 as X → ±∞, given by

c
φ(t, x) =

2
sech2

[√
c

]
(x− ct− a) . (580)

2

This solution describes a right-moving solitary wave-front of speed c.
In 1965, Zabesky and Kruskal showed how one can derive this equation in the continuum

limit from the FPU model. They argued that two KdV solitons could collide and penetrate
each other without exchanging energy. This explains intuitively why the FPU chain model
does not lead to thermalization. Miura et al.28 provided a general rigorous argument
by showing that the KdV equation possesses an infinite number of non-trivial integrals of
motion.

28Journal of Mathematical Physics 9:1204-1209, 1968
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