
6.841: Advanced Complexity Theory Spring 2016

Problem Set 2

Due Date: March 15th, 2016

Turn in your solution to each problem on a separate piece of paper. Mark the top of each
sheet with the following: (1) your name, (2) the question number, (3) the names of any people you
worked with on the problem, or “Collaborators: none” if you solved the problem individually. We
encourage you to spend time on each problem individually before collaborating!

Problem 1 – AC0 Lower Bound for Majority

Define the function MAJ(x) = 1 iff |x| ≥ n/2, where |x| denotes the number of 1s in the n-bit
string x.

−d−O(1)
Prove that any circuit of constant depth d computing the function MAJ requires size exp(Ω(n2 )).

−d
Hint: Use the fact that depth d circuits computing PARITY require size exp(Ω(n2 )).

Problem 2 – Hardness of Counting over Z

Fix some small ε < 1. Consider the following computational problem: given a polynomial time
computable function f : {0, 1}n → Z, estimate x f(x) to within a factor (1± ε). Show that given
an oracle for this problem, one can solve any #

∑
P problem in polynomial time.

Problem 3 – Computing OR Exactly with Polynomials

Let q be any prime. Show that any polynomial over GF (q) that exactly agrees with the n-bit OR
function on {0, 1}n must have degree at least n.1

Problem 4 – (Another) Alternate Characterization of PH

In the first problem set, we saw that ΣP
2 = NPNP . Extrapolating this, we get an alternate

characterization of the polynomial heirarchy in terms of oracle machines. In this problem, we will
give another characterization of the polynomial heirarchy in terms of circuit families.

Definition 1. (DC-Uniform Circuits) Let {Cn}n 1 be a circuit family. We say that≥ {Cn} is a Di-
rect Connect uniform (DC uniform) family iff the following functions are computable in polynomial
time:

1Notice that this means that using approximations of OR gates was in a sense necessary to get a low degree
polynomial to represent the circuit in the proof of Razborov-Smolensky.
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• SIZE(n) - returns the size S of the circuit Cn in binary.

• TYPE(n, i) - returns the type of the ith gate of Cn, i.e. ∧, ∨, ¬, or NONE.

• EDGE(n, i, j) - returns 1 if there is a directed edge in Cn from the ith gate to the jth gate.

Show that L ∈ PH iff L can be computed by a DC uniform circuit family {Cn} that satisfies the
following:

1. Uses AND, OR, and NOT gates

2. has size 2n
O(1)

and constant depth

3. its gates can have unbounded (exponential) fan-in

4. its NOT gates appear only at the input level

You may additionally assume that the underlying labeling of gates is such that, if the depth of one
gate is greater than another, then it has a higher label. Furthermore, it is okay to assume that the
DC uniform circuit has AND and OR layers like we are used to from class.

Problem 5: Practice with Larger Complexity Classes

In the proof of NEXP 6⊆ ACC0, Williams deals with large complexity classes like ENP and NEXP.
We will use the complexity class E = DTIME(2O(n)), the corresponding nondeterministic class
NE = NTIME(2O(n)), and the class NEXP = NTIME(2poly(n)) below to build some intuition about
larger complexity classes.

a) Show that NEXP ⊆ ENP. 2

b) Show that NEXP 6⊆ P/poly⇒ NE 6⊆ P/poly

c) We say a Turing Machine M nondeterministically generates the truth table of a function fn :
{0, 1}n → {0, 1} if, on input 1n, we have the following. Given an advice string of length n, M
should:

- Have at least one accepting branch of computation.

- Whenever M accepts, it should contain the truth table of fn in the output tape.

Show that NEXP 6⊆ P/poly implies there is a poly(2n)-time TM which, on input 1n and given
an advice string xn of length n, nondeterministically generates 2n-bit truth tables of n-variable
Boolean functions fn satisfying the following: for every d ∈ N and infinitely many n ∈ N, fn
has circuit complexity greater than nd.

2In “A Casual Tour Around a Circuit Lower Bound,” Williams first proves that ENP 6⊂ ACC0 before improving
it to NEXP 6⊂ ACC0.
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Note: The characterization of languages L ∈ PH as DC-uniform circuit families allows us to interpret lower
bounds on circuit families as lower bounds on the oracleized polynomial hierarchy. In fact, Furst, Saxe, and
Sipser proved that if their lower bound on the size of circuits in AC0 that compute Parity was improved from
super-polynomial to super-quasi-polynomial then this would yield an oracle A such that PHA 6= PSPACEA.
Indeed, this was accomplished by works of Yao ’85 and H̊astad ’86.

Results have also been translated from PH to circuit families. In fact, using this correspondence and similar
ones for ⊕P and #P it is possible to reinterpret Toda’s theorem in the land of circuits. This intuitive line
of reasoning comes up in the Yao-Beigel-Tarui theorem, which is used in the Ryan Williams’s proof that
NEXP 6⊂ ACC0.
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