
1 Introduction

In the last lecture we saw that proving the NP-hardness of distinguishing the case where a Max-
3SAT instance can be fully satisfied from the case where only 0.99 fraction of its clauses can be
satisfied is equivalent to proving that any NP language can be tested locally probabilistically
(the PCP Theorem). This is because the former implies a reduction from any NP language L to
the distinguishing problem. Inputs x ∈ L are mapped to fully satisfiable Max-3SAT instances,
whereas inputs x ∈/ L are mapped to instances where only 0.99 fraction of their clauses can be
satisfied. Given an assignment to the Max-3SAT instance, a verifier can pick a random clause,
query its 3 variables, and check whether the clause is satisfied. Even though the test of the
verifier is local (depends on only 3 locations in the proof), we’ll be able to infer (except for some
constant error probability), a global property: the membership of x in L.

In the next couple of lectures we’ll prove a weak version of the PCP Theorem (the probabilis-
tically checkable proof will be of exponential, rather than polynomial, length). We’ll also hint
at how the full PCP Theorem is proved. In this lecture we develop the mathematical machinery
that will allow us to relate the results of local tests to global properties.

We’ll prove an important theorem in property testing, showing that closeness to linearity can
be tested locally. We say that functions f, g : {0, 1}n → {0, 1} are (1 − δ)-close if f(x) = g(x)
for at least 1− δ fraction of the x ∈ {0, 1}n. We say that f is (1− δ)-close to having a property
P ⊆ {{0, 1}n → {0, 1}} ˜if there is f ∈ P that is (1− δ)-close to f . We say that f, g are δ-far if
they are not (1− δ)-close. Similarly we say that f is δ-far from P if f is not (1− δ)-close to P.
The properties P we’ll consider are such that it is impossible to check locally whether f ∈ P,
and the relaxation to checking closeness to P is needed.

2 Linear Functions

Given a function f : {0, 1}n → {0, 1}, we want to test (with high probability) whether f is
(close to) a linear function. This special case is not sufficient for proving the PCP Theorem,
but it is simpler and its ideas – important.

We first define what we mean by a linear function. Two different definitions come to mind,
so let us show that they are equivalent.

Definition. A function f : {0, 1}n → {0, 1} is linear if for all x, y ∈ {0, 1}n, f(x) + f(y) =
f(x+ y).

Claim. A function f : {0, 1}n → {0, 1} is linear iff there exists a vector a = (a1, . . . , an) ∈
{ n0, 1}n such that f(x) =

∑
i=1 aixi = ⟨a, x⟩. (As we are working in GF (2), addition is of

course taken modulo 2.)
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Proof. The ( ) direction is clear. For the (⇒) direction, let {e1, . . . , en} be the standard basis,
i.e.

ei = (0︸ , . . . , 0, 1, 0, . . . , 0)︷︷ ,

1 in position i

and define ai = f(ei). Then the stated formula follows by

︸
linearity.

Note that the functions we are calling “linear” are not affine functions y = ax+ b; we require
that the “constant term” be zero.

3 The Blum-Luby-Rubinfeld Linearity Test

The test we show only makes 3 queries to f . This is the minimal number of queries needed as
there exist functions f which are far from linear but which have the property that for any two
points x, y, there exists a linear function g such that f(x) = g(x) and f(y) = g(y). We will
show that three queries suffices, by studying the properties of the following simple test.

BLR Test (Blum, Luby, Rubinfeld). Choose uniformly random points x, y ∈ {0, 1}n. Test if
f(x) + f(y) = f(x+ y).

This algorithm uses 2n random bits. It makes q = 3 queries. The completeness of this test
is 1, because obviously a linear function passes with probability 1. Analyzing the soundness is
the interesting part; the answer is given by the following theorem.

Theorem (Soundness of BLR). If f is δ-far from linear, then

2
Pr[BLR test rejects f ] ≥ min

(
9
,
δ

2

)
≥ 2δ

.
9

Before proving this theorem, we make some remarks.

• This result is not tight, as we can prove via Fourier analysis that Pr[rejection] ≥ δ. (We
will return to this later in the course.) And even that result is not tight in the low order
terms!

• The definition of linearity generalizes to any group G; in the setting of group theory
such a map is known as a homomorphism. In fact, the BLR test generalizes to testing
homomorphisms on groups. In this setting, the soundness theorem above is tight. For
instance, define f : (Z/9)n → Z/9 by f(u) = 3k if u1 ∈ {3k − 1, 3k, 3k + 1}. (That is, f
rounds the first coordinate to the nearest multiple of 3.) This is not linear; one can check
that f is (2/3)-far from linear. Hence the soundness theorem tells us that BLR should
reject f with probability at least 2/9. In fact, that is exactly the rejection probability,
because

f(x) + f(y) ̸= f(x+ y) ⇐⇒ x1 ≡ y1 ≡ 1 mod 3 or x1 ≡ y1 ≡ −1 mod 3.

4 Analysis of the Linearity Test

The rest of this lecture is devoted to proving the soundness theorem.



34.1 Majority Correction

The proof uses the useful idea of majority correction. Fix a function f : {0, 1}n → {0, 1} and
a point x ∈ {0, 1}n. If f is linear, then for any y ∈ {0, 1}n we have f(x) = f(y) + f(x − y).
Thus we may think of each of the 2n values of y as offering the “vote” f(y) + f(x− y) for f(x).
As there are only two possible values for f(x), 0 and 1, one of them must get a majority of the
votes. We define a function g by setting g(x) to be the value that receives the most votes.

More formally, g : {0, 1}n → {0, 1} is defined by{
1 if Pry[f(y) + f(x− y) = 1]

g(x) =
≥ 1/2

0 otherwise.

(We have chosen to always break a tie with the value 1; this was arbitrary, and it will turn out
that the definition of g(x) in the case Pry[f(y) + f(x − y) = 1] = 1/2 is unimportant.) It will
be useful later to define the probabilities

Px = Pry[g(x) = f(y) + f(x− y)].

By definition of g(x), Px ≥ 1/2 for all x.

4.2 Majority Correction Works

We will obtain the soundness theorem by proving three claims relating properties of the BLR
test to the function g.

Claim. Pr[BLR rejects f ] ≥ 1 dist(2 · g, f).

Proof. Conditioning on whether g(x) = f(x) or not, we have

Pr[rejection] = Pr[g(x) ̸= f(x)] · Pr[rejection | g(x) ≠ f(x)]

+ Pr[g(x) = f(x)] · Pr[rejection | g(x) = f(x)].

We get a lower bound on Pr[rejection] by ignoring the second term. In the first term, notice
that Pr[g(x) ≠ f(x)] = dist(g, f) by definition of the distance. By definition of g, if g(x) ̸= f(x)
then f(x) = f(y) + f(x − y) for 1 − Px ≤ 1/2 of the possible values of y. But because we are
working over the binary field (so addition and subtraction are the same), the equation f(x) =
f(y)+f(x−y) is equivalent to the BLR test f(x+y) = f(x)+f(y). Hence, given g(x) ̸= f(x), the
BLR test fails with probability at least 1/2. Putting this together, Pr[rejection] ≥ 1

2 · dist(g, f),
as desired.

Claim. If Pr[BLR rejects f ] < 2
9 , then for all x we have Px > 2 .3

Proof. Fix x. We compute

A = Pry,z[f(y) + f(x+ y) = f(z) + f(x+ z)]

in two different ways. First, notice that f(y) + f(x + y) equals g(x) with probability Px, and
the same is true of f(z) + f(x+ z). Using independence of y and z, the probability that both
expressions are equal to g(x) is P 2

x , and the probability that they are both equal to g(x) + 1 is
(1− Px)

2. Hence A = P 2
x + (1− Px)

2.
We can also bound A using the probability of BLR rejection. First, rewrite the condition

f(y) + f(x + y) = f(z) + f(x + z) as f(y) + f(z) = f(x + y) + f(x + z). By definition of the



−
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BLR test, f(y) + f(z) equals f(y + z) with probability 1 Pr[BLR rejects f ] > 7/9. As y and
z are independent and uniformly sampled, the same is true of x+ y and x+ z, and so the same
argument shows that f(x + y) + f(x + z) = f((x + y) + (x + z)) = f(y + z) with probability
> 7/9. Thus

f(y) + f(z) = f(y + z) = f(x+ y) + f(x+ z)

with probability > 5/9, so certainly A = Pr[f(y) + f(z) = f(x+ y) + f(x+ z)] > 5/9.
Combining the results of the last two paragraphs, we deduce that

P 2
x + (1− Px)

2 > 5/9.

This implies either Px < 1/3 or Px > 2/3. Of course the first case is impossible because
Px ≥ 1/2, so we must have Px > 2/3 as desired.

Claim. If Pr[BLR rejects f ] < 2 , then g is linear.9

Proof. By the previous claim, we must have Px > 2/3 for all x. Now fix x, y and consider
choosing z uniformly at random. Then g(x) equals f(z)+ f(x+ z) with probability larger than
2/3. Similarly, g(y) equals f(z)+f(y+z) with probability larger than 2/3. The same argument
says that g(x+ y) equals f(z) + f(z+ x+ y) with probability larger than 2/3; we can of course
replace the uniformly sampled value z by z+x, finding that g(x+ y) = f(z+x)+ f(z+ y) with
the same probability (more than 2/3). As each of these three conditions holds with probability
larger than 2/3, they hold simultaneously with positive probability. That is, there exists at
least one z0 such that

g(x) = f(z0) + f(x+ z0),

g(y) = f(z0) + f(y + z0), and

g(x+ y) = f(z0 + x) + f(z0 + y)

all hold. But this shows that

g(x) + g(y) = f(z0) + f(x+ z0) + f(z0) + f(y + z0) = f(x+ z0) + f(y + z0) = g(x+ y).

This holds for all x, y, so g is linear, as desired.

Putting the last few claims together, we immediately get the soundness theorem. Specifically,
we find that either Pr[rejection] ≥ 2/9, or else g is linear and so

1
Pr[rejection] ≥

2
· dist(g, f) ≥ 1

dist(f, linear).
2

That is exactly what the soundness theorem asserts, so we are done.

5 Random Self Reducibility

We finish this lecture by pointing out a useful technique, called random self-reducibility. Suppose
that f : { ˜0, 1}n → {0, 1} is (1 − δ)-close to a linear function f : {0, 1}n → {0, 1}. Note that

˜ ˜ ˜for small δ there can be only one such f , since if there are two f1 ̸= f2, then by the triangle
˜ ˜inequality, dist(f1, f2) ≤ ˜ ˜ ˜ ˜[ 2δ, i.e., Prx

[
(f1 − f2)(x) = 1

]
] ≤ 2δ, but f1 − f2 is a non-zero linear

˜function, hence Prx (f1 − f̃2)(x) = 1 = 1/2.
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This means that if we pick uniformly at random x {0, 1}n ˜, then f(x) = f(x) with probability
˜at least 1− δ. What if we’d like to evaluate f(x0) for an arbitrary x0 ∈ {0, 1}n? We can write

˜x n
0 = (x0 + x) + x for a uniformly random x ∈ {0, 1} , and evaluate f(x0) by computing

f(x0+x)+f(x). Since both x0+x and x are uniformly random, with probability at least 1−2δ
˜ ˜ ˜we have f(x0 + x) = f(x0 + x) and f(x) = f(x), and hence f(x0 + x) + f(x) = f(x).
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