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Abstract. In this survey, we will show that there are instances of the
CIS problem on n vertices which cannot be solved deterministically in
Ω̃(log n) time. Until recently, the best known lower bound for this prob-
lem was only linear in log(n). The approach will be to instead lower
bound the conondeterministic complexity coNPcc(CISG) through a re-
duction to a problem in decision tree complexity. Interestingly, this result
has an application to graph theory, the negative resolution of the Alon-
Saks-Seymour conjecture.

1. Introduction

Given a communication matrix M of a function F , define χ0(F ) to be
the minimal number of rectangles necessary to partition the 0s of M , χ1(F )
similarly, and χ(F ) = χ0(F ) + χ(F ).

Clearly the deterministic communication complexity of F is always at
least logχ(F ), and it is always at most log2(χ(F )). It was unsolved until
recently whether some problems required superlogarithmic amounts of com-
munication. Here, we present some results about the complexity of the clique
versus independent set problem (CIS) that imply there are problems with
superlogarithmic communication complexity.

In this CIS problem, there is a graph G on n vertices which Alice and Bob
both see. Alice has vertices that form a complete subgraph, and Bob has
vertices that form an independent set. Alice and Bob wish to see if their
sets of vertices intersect or not. A solution of CIS in some time t extends to
a solution of any communication problem in the same amount of time. In
the communication matrix, blocks of 1 can be realized as vertices, connected
if they share a common row. Then the 1-rectangles that form some column
are an independent set, and those that intersect some row form a complete
graph. If there is some algorithm to figure our whether the complete graph
and independent set intersect in time t, then the problem can be solved in
time t. As such, proving lower bounds for log(χ1) is equivalent to proving
lower bounds for CIS in much the same way that solving NP is equivalent
to solving SAT.

In this survey, we will show there are instances of the CIS problem with
˜conondeterministic complexity Ω(log1.128(n)), where the graph has n vertices.

˜As such, there is a CIS problem with deterministic complexity Ω(log1.128(n)),
˜or Ω(log1.128(χ1(F ))). In fact, a later result shows that some problems require

˜complexity Ω(log2 ˜(χ1(F )) and Ω(log1.5(χ(F )) [GPW 2015].
1
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Furthermore, the CIS problem is related to a conjecture in graph theory,
the Alon-Saks-Seymour conjecture. Given a graph G, let χ(G) denote its
chromatic number and bp(G) denote the minimal number of bipartite graphs
into which its edges can be partitioned. The initial conjecture was that
χ(G) ≤ bp(G) + 1, but it turns out that showing lower bounds for the CIS
problem shows that it is possible to have χ(G) be more than polynomial in
bp(G). In other words, we have χ(G) ≥ bp(G)m for any fixed m > 0 and
for infinitely many graphs G.

2. General Structure of this Survey

The main objective of the first part of this survey will be to prove the
result due to Goos, that coNPcc(CISG) and therefore Pcc(CISG) are at

˜least Ω(log1.128(n)). First, we will develop the theory of decision trees. Then,
we will proceed to prove this results. To conclude the first part, we will
briefly discuss more recent improvements and examine the results from the
literature that we cite.

We will then turn our attention to graph theory, discussing the relations
between the CISG problem and the Alon-Saks-Seymour conjecture. We will
examine how these conjectures from communication complexity statements
translate to graph theory. As such we will highlight the rich connection
between these two areas of mathematics.

3. Decision Trees

Throughout the remainder of this paper, we will be using results about
decision trees. A decision tree is a directed binary tree with a single root
whose out-edges are labeled 0 or 1. Leaves are also labeled with 0 or 1. All
other vertices are labeled xj for 1 ≤ j ≤ n, and have two out-edges, labeled
with 0 and 1 respectively. When on some vertex labeled xj, one queries xj
and traverses the out-edge from xj corresponding to its value. As such, a
decision tree induces a Boolean function f on n variables. We say that such
a decision tree is a decision tree for f . The queries are analogous to bits ex-
changed in a communication protocol, and thus are important for understand
communication complexity. This is made explicit in the appendix.

We construct complexity classes for decision trees. Denote by Pdt(f) the
minimal possible height of a decision tree for f . This is called the deter-
ministic query complexity of f , because it is the minimal number of queries
necessary to always compute f .

We define NPdt(f), the nondeterministic query complexity, to be the
minimal k such that for for any string x of length n with f(x) = 1, there
exists some k bits of the string that provide enough information to show
that f(x) = 1. In other words, any y that agrees with x just on those bits
has f(y) = f(x) = 1. We say these k bits are a 1-certificate for f . Indeed,
NPdt(f) is also the minimal k such that we can write f as a k-DNF, since
the terms of the DNF correspond to 1-ceritificates.
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We define coNPdt(f) similarly, as the minimal k such that whenever
f(x) = 0 there is an analogous 0-certificate for f . We have coNPdt(f) =
NPdt(¬f).

We define UPdt(f), the unambiguous query complexity, to be the minimal
k such that for any string x with f(x) = 1, there is a unique 1-certificate
of size k. This is also the minimal k such that there exists a k-DNF for
f where exactly one clause is satisfied when f(x) = 1, and no clauses are
satisfied otherwise. Again, this is because the DNFs correspond exactly to
1-certificates.

We can generalize the notion of certificates. An f(x)-certificate of size k for
a string of x of length n, are a set of k bits of the string that provide enough
information to determine the value of f(x). The certificate complexity of f is
the minimal k such that there is an f(x)-certificate of size k for every string.

In this paper, we will be concerned with relationships between the above
quantities. It is an easy result that NPdt(f) ≤ Pdt(f). If there exist a tree
of height k computing f and if f(x) = 1 the values of the at most k variables
on the path taken on input x are sufficient to conclude f(x) = 1. Replacing
f with ¬f , coNPdt(f) ≤ Pdt(f).

Proposition 3.1. Pdt(f) is at most quadratic in UPdt(f). More explicitly,
we have the inequality Pdt(f) ≤ UPdt(f)2.

Proof. Consider a specific decision tree with a unique certificate of size k =
UPdt(f) for any x with f(x) = 1. For any C1 and C2 there exists xj
such that in one certificate xj = 0 and in the other xj = 1. Else, some
assignment would satisfy both C1 and C2, contradicting uniqueness. Now,
take some certificate C0 (say, the first lexicographic one) and ask for all k of
its associated variables. After these variables are determined, any assignment
to the remaining variables satisfies exactly one certificate C of size k of the
original problem. But because C intersects C0, to determine whether some
assignment satisfies C it now suffices to query at most k−1 variables. Indeed,
this resulting problem f ′ has UPdt(f ′) ≤ UPdt(f)−1 = k−1 and we reduced
f to f ′ by querying k variables. We rename k− 1 as k and repeat. Through
this reduction argument, in fact we find that in fact

Pdt(f) ≤
UPdt(f)2∑

k=1

k =
UPdt(f)2 + UPdt(f)

2
.

We do not need the full strength of this result. We have that

coNPdt(f) ≤ Pdt(f) ≤ UPdt(f)2 + UPdt(f)

2
≤ UPdt(f)2,

so coNPdt(f) ≤ UPdt(f)2. We will show that 2 cannot be replaced by 1.128.
�

4. Reductions to Decision Tree Complexity

The goal of this section will be reduce our problem of communication
complexity to a problem relating to query and decision tree complexity. First,
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note that UPcc(CISG) = log n, as the set of vertices constitutes a set of 1-
certificates. Because it is known that the CISG faily of problems is complete
for unambiguous communication, we can focus on constructing a family of
functions F that exhibit an exponent of α > 1.128 separation between UPcc

and coNPcc. This would imply that coNPcc(CISG) ≥ O((log n)1.128). We
rephrase this in the following result.

Theorem 4.1. There is an infinite family of functions F such that coNPdt(F ) ≥
UPdt(F )α for some constant α > 1.128.

We claim that it suffices to show the corresponding theorem for query
complexity by using a result of [GLM+14].

Theorem 4.2. There is an f such that UPdt(f) ≥ coNPdt(f)α for some
α > 1.128.

We introduce some notation before stating the next theorem. Let g :
{0, 1}b × {0, 1}b → {0, 1} be a function taking a pair of inputs of length
b = Θ(log n). Define F = f ◦gn as a function from {0, 1}bn×{0, 1}bn → {0, 1}
as follows. Split the input into strings x1, x2, . . . , xn, and y1, y2, . . . , yn of
length b. Then let

F := f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).

Theorem 4.3 (GLM+14). There is a gadget g on b = Θ(log n) bits that
such that for all f : {0, 1}n → {0, 1}, we have that

coNPcc(f ◦ gn) ≥ Ω(coNPdt(f) · b).

We also a lower bound on UPdt, so we prove the following proposition.

Proposition 4.4. For all gadgets g on b = Θ(log n) bits and all functions
f : {0, 1}n → {0, 1}, we have that

UPcc(f ◦ gn) ≤ UPdt(f).

Proof. Simply simulate the decision tree and use b queries each for Alice and
Bob each time we need to access a bit of the input. By using b queries, they
can find the value of g(xi, yi) for any i. It isn’t hard to check that if the
decision tree is unambiguous, then this protocol is also unambiguous. �

Using the above results along with Theorems 4.1, 4.2, and 4.3, we can
deduce our desired result up to a few extra log n factors. These will end
up being insignificant though, as UPdt(f) will be polynomial in n in our
constructions. As a final note before continuing, we will use larger, not nec-
essarily binary, alphabets in our construction. These can be easily converted
back to binary, and we will make a note of it after the proof of Theorem 4.3.

5. Separation Factor of 2 Using the Projective Plane

Here we’re going to describe an example that has a constant factor of 2
separation between UPdt and coNPdt. The example is based on projective
planes, and later on, we will do recursive composition on it.
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Definition 5.1. A finite projective plane H is hypergraph with n = k2−k+1
nodes and hyperedges. Each node is part of k edges, and each edge contains
k nodes. Also, each pair of edges intersects exactly at one node. Finite
projective planes exist for all k such that k − 1 is a prime power.

Definition 5.2. Now we can define a symmetric incidence ordering on H.
For each node in H, we create an ordering on the k edges that contain it,
and for each edge, we create an ordering on the k nodes that it contains. We
want this ordering to be symmetric, that is, if an edge e is the i-th edge in
the ordering of node v, then v must be the i-th node in the ordering of edge
e.

Proposition 5.3. Symmetric incidence ordering exist for all finite projective
planes.

Proof. Consider constructing the bipartite incidence graph of H with nodes
on the left and edges on the right. We prove the more general statement
that a d-regular bipartite graph G = (A,B) (where A denotes the vertices
on the left, and B denotes the vertices on the right) can be partitioned into
d perfect matchings. The statement is obvious for d = 1. For d > 1, we
claim that for any set S of vertices in A, they are incident to at least |S|
vertices in B. Say that S is incident to a set S ′ in B. Then it is clear that

d|S| =
∑

deg(s) ≤
∑

deg(s′) = d S
s∈S s′∈S

| ′| =⇒ |S| ≤ |S ′|,
′

so Hall’s condition is satisfied. Therefore, we can remove one perfect match-
ing from this graph to reduce it to a (d − 1)-regular graph and induct. It’s
easy to see how we can create the symmetric incidence ordering from these
perfect matchings.

�

Our goal now is to extract a query problem f from a projective plane
H. To do this, we make the nodes of H correspond to input variables that
have values in the set {0} ∪ [k]. These values should be understood as
pointers, where a node with input i points to the i-th edge in its symmetric
incidence ordering. 0 is interpreted as a null pointer. Say that an assignment
x : V (H)→ {0}∪ [k] satisfies an edge e if all incident nodes v ∈ e point to e
according to the input x(v). Note that each x can satisfy at most one edge,
as every pair of edges intersect at some node, and this node can only point
to one of the two edges.

Define a function f : ({0} ∪ [k])n → {0, 1} such that f(x) = 1 iff x satis-
fies some edge. By the above discussion, there is a clear set of k-cost UPdt

certificates that correspond exactly with the edges of H. This function f
doesn’t have large coNPdt complexity though; the certificate complexity of
f(~0) = 0 is small, as k positions suffice. We fix this by “weighting” the cost
of querying the inputs.

Input Weights. We will now describe how to change f so that querying
to inputs to x is harder. More specifically, we will alter f so that if we want
to decide whether xj = i or not, we will need w(i) queries (instead of 1),
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where w : [k]→ N is some weighting function that we’ll choose later. To do
this, we set fw = f ◦ gnw, where gw will implement the desired weights. More
specifically, for the integer m = maxw([k]), let g m

w : ({0} ∪ [k]) → {0} ∪ [k]

be defined the following way. If x = ~0, then g(x) = 0. Otherwise, let xj
be the first nonzero coordinate of x, and say that xj = i. If xj ≤ w(i), let
gw(x) = i; otherwise, let gw(x) = 0. It is clear that we need at least w(i)
queries to determine whether gw(x) = i, and that this is sufficient. The
following 2 claims are easy to see from the construction.
(P1) The certificate complexity of “g ~

w(0) 6= i” is w(i).
(P2) If ŵ(i) = ` · w(i) for all i, then coNPdt(fŵ) = ` · coNPdt(fw).

Our next goal is to use this weighting idea described above to create a
(small) separation between UPdt and coNPdt using the function f asso-
ciated with a projective plane H above. To do this, we set w(i) = i and
fw = f ◦ gnw.

Proposition 5.4. The following 2 inequalities hold, and thus show an as-
ymptotic factor of 2 separation between UPdt and coNPdt for fw.

UPdt k(k + 1)
(fw) ≤ ,

2

coNPdt(fw) ≥ k2 − k + 1.

Proof. To prove the upper bound, we can describe a certificate for fw in the
following way. We have to determine for an edge e and input x, whether it is
satisfied by x. We do this in the direct way: check for the i-th node incident
to the edge e, whether that node points to i according to x. By construction,

this takes w(i) = i queries. Therefore, UPdt(fw) ≤
∑k

i=1 i = k(k+1) .
2

We will now lower bound coNPdt(fw). Let g n
w,v denote the gadget in gw

that corresponds to the node v. Note that in order to show that fw(~0) = 0
for the input x, for all edges e we must exhibit an integer i such that the i-th
incident node to edge e does not point to e according to x. More explicitly, if
we let v denote the i-th incident node to e, we must prove that gw,v(xv) 6= i,
where xv denotes the restriction of the input x to just the part corresponding
to the node v.
Now we prove a lemma giving a lower bound on the number of queries needed.

Lemma 5.5. The certificate complexity of showing that gw,v(xv) 6∈ S for
some set S ⊆ [k] is at least |S|.

Proof. Let m = maxs S s. Then by definition, we must show that g∈ w,v(xv) 6=
m, which requires w(m) = m size certificates. �

To finish, say that we must show that gw,v(xv) ∈ Sv for some sets Sv.
Since different gadgets are indep

sets

∑ endent, we’ll need certificates of size at least
|Sv| = n = k2 − k + 1, as every of the n edges contributes to one of the
Sv.

�
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6. The General Result

In this section, we will prove the main result, restated below. The key idea
is we can “recursively compose” the inequalities that we proved in above sec-
tion.

Main Result. There is a function f such that coNPdt(f) ≥ UPdt(f)α

where α > 1.128 is some constant.

In this section, we will consider pairs of functions and weights (f, w),
where w is once again the weighting function on the inputs of f . We define
fw = f ◦ gnw as in the previous section, where fw corresponds with the pair
(f, w). Define a 0-avoiding UPdt decision tree for f to be one whose cer-
tificates only contain letters from Σ, the input alphabet, and not 0. On the
other hand, certificates for fw can contain 0’s, but only ones that come from
the gadgets gnw. Intuitively, we care about the certificates for f not having
0’s, but because the gnw is simply a way to create our desired weighting func-
tion, we don’t care about whether the certificates there contain 0’s or not.
We define a bit of new notation now, given the above discussion. Define
UPdt

? (fw) to be the minimum complexity 0-avoiding UPdt decision tree for
a function fw. Also, define coNPdt

? (fw) to be the minimum cost that we

need to certify that fw(~0) 6= 0.

The main idea of this section will be the recursively improve the bound
given in the above section. We do this in the following way.

Proposition 6.1. Given a pair (f, w) of functions, we can construct a new
pair (f ′, w′) of functions such that

UPdt k(k + 1)
? (fw

′ )′ ≤ UP
2

· dt
? (fw) and

coNPdt
? (fw

′ ) ≥ (k2
′ − k + 1) · coNPdt

? (fw)

ˆWe do this in two steps. First, we construct a new function fŵ that has a
larger size alphabet for both the input and output than fw. Then we reduce

ˆthe output size back to {0, 1} by composing fŵ with another function based
on the projective plane H. This will all be done more explicitly in the fol-
lowing 2 sections.

ˆFirst step: Expanding the alphabet size, construction of fŵ

Let Σ denote an alphabet, and σ throughout denote characters in the
alphabet. Starting with the function f : ({0} ∪ Σ)N → {0, 1}, we will con-

ˆstruct a new function f : ({0} ∪ (Σ × [k]))N → {0
dt

} ∪ [k] that exists the
same factor of separation between UP and coNPdt as f . Also define
πΣ : {0} ∪ (Σ × [k]) → Σ, πk : {0} ∪ (Σ × [k]) → [k] to be the natural
restriction maps. Define πΣ(0) = πk(0) = 0 to extend the function to its
full domain. By abuse of notation, define πΣ, πk on ({0} ∪ (Σ × [k]))N by
applying the functions pointwise.
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ˆWe now define (f, ŵ) as follows. Take an x ∈ ({0}∪(Σ×[k]))N . If f(πΣ(x)) =
ˆ0, define f(x) = 0. Otherwise, let T denote a UPdt certificate for πΣ(x), and

let S ⊆ [N ] be the inputs that the certificate T looks at. Note that xs 6= 0
for all s ∈ S, as the certificate is 0-avoiding. If there exists an i such that

ˆπk(xs) = i for all s ∈ ˆS, define f(x) = i, otherwise set f(x) = 0. Finally,
define ŵ : Σ× [k]→ N as ŵ(σ, i) = i · w(σ), where σ is a character in Σ.

Proposition 6.2. There is a 0-avoiding UPdt decision tree certifying that
f̂ŵ(·) = i that has complexity at most i · UPdt

? (fw). Also, certifying that

f̂ŵ(~0) 6= i, requires complexity at least i · coNPdt
? (fw).

Proof. To prove the upper bound, we do the most natural thing. More specif-
ically, let T be the original certificate for fw. We check the exact same thing
as T tells us to check, except we also recursively check whether πk(xs) = i
for all s ∈ S. This costs i ·UPdt

? (fw) as the weights are now exactly i times
heavier by construction.

ˆTo prove the lower bound, note that certifying that fŵ(~0) 6= i is the exact

same as certifying whether fw(~0) 6= 0. More specifically, consider the restric-
ˆ ˆtion of fŵ onto the domain 0∪ (Σ∪ {i}). It isn’t hard to see that fŵ on this

ˆdomain behaves exactly as fw on this domain, and the output of fŵ is i if
and only if the corresponding output of fw is 1. Now, since the weights were
all multiplied by i, the necessary cost here is at least i · coNPdt

? (fw). �

Second step: Making the output binary, Composition with h

Define the function h to be the same as the function f defined in Section
5. As a reminder, h : (0 ∪ [k])n → {0, 1} is defined so that h(x) = 1 if and

ˆonly if x satisfies some edge. I claim that setting f ′ = h ◦ fnŵ, and w′ := ŵ
satisfies the properties in Proposition 6.1.

Proof. For both parts we will simulate the proof of Proposition 5.4.
We first show the upper bound. For the edge e and i from 1 to k, we have
to check whether i-th node incident to e points to e. To do this, we have

ˆto recursively check whether fŵ(·) = i, which requires cost i ·UPdt
? (fw) by

Proposition 6.2. Therefore, the total cost is at most

∑k
i

i=1

·UPdt k(k + 1)
? (fw) = .

2
·UPdt

? (fw)

To prove the lower bound, we once again lower bound the cost needed to
certify that fw

′ (~0) = 0. In order to stay as close as possible to our proof of′

ˆProposition 5.4, it will be useful to think of the fŵ as “gadgets”. We prove
a variation of the lemma from the proof of Proposition 5.4.

ˆLemma 6.3. The certificate complexity of showing that fŵ(~0) 6∈ S is at

least |S| · coNPdt ˆ
? (fŵ).
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ˆProof. Let m = max ~
s∈S s. Then we must certify that fŵ(0) = m, which

· dt ˆ ≥ | | · dt ˆ
6

requires cost at least m coNP? (fŵ) S coNP? (fŵ), by Proposition
6.2. �

Now we can follow through with the proof in the same way as in Proposi-
ˆtion 5.4. Indeed, say that qv queries are made to the v-th gadget in fnŵ. Since

every edge contributes a pointer, q 2
v = n = k

ˆ
−k+1. Since each gadget is

ˆindependent, we need at least qv ·coNPdt
? (fŵ) = (k2−k+1) ·coNPdt

? (fŵ)
queries by Lemma 6.3.

∑∑
�

Overall Analysis and Wrap-Up
Define (f i, wi) to be the functions gotten from the i-th stage of recursive

composition as described. The following claims are easy to see from the
construction.

• The largest weight in wi is ki.
• The alphabet has size 1+ki, where the 1 comes from the 0 character.
• f i takes ni = ((k2 − k + 1)i inputs.

• UPdt
? (f iwi) ≤ k(k+1)

i

2

)
.

• coNPdt
? (f iwi) ≥ (k2 − k + 1)i.

Therefore, as we take i to be large, we get an infinite class of graphs such
that

coNPdt
? (f iwi) ≥ UPdt

? (f iwi)β

for β = logk(k+1)/2(k2−k+ 1). Choosing k = 8, we can β = log36 57 > 1.128.
Before we are completely done, we need to note a slightly technicality: our
alphabets are not binary sized. Luckily, this is easily resolvable: the query
complexity increases by at a factor of log Σ = O(i log k) when we convert to
binary alphabets. Therefore, the other terms in our final inequality domi-
nate. Specifically, we can still achieve a separation exponent of α for any
α < β. This is enough to finish.

7. CI and CIS

First we’ll need some preliminaries. We define a CI-separator for a graph G
to be a set of cuts of G such that for every disjoint clique and independent set
in the graph, there exist a cut that separates them. If there is a CI-separator
of size m for some graph G, then coNPcc(CISG) = O(log(m)), because an
external verifier can convince Alice and Bob their clique and independent
set are separated with O(log(m)) bits. As such if there is a CI-separator
of polynomial size for some graph G, coNPcc(CISG) = O(log(n)). Until
recently, it was only a conjecture (the CI conjecture) whether or not every
graph had a polynomial size separator. Of course, because coNPcc(CISG)
can be superlogarithmic this conjecture is known to be false by the above
work. It turns out it is an unsolved conjecture that every graph containing
a fixed subgraph H has a polynomial size separator, and random graphs are
known to have polynomial size separators in general.
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8. Alon-Saks-Seymour and motivations from Graham-Pollak

Here a proper coloring of a graph is one where no two adjacent vertices have
the same color, χ(G) is the minimal number of colors needed to properly color
G, and a bipartite graph has chromatic number 2. Also bp(G) is the minimal
number of complete bipartite graphs the edges of G can be paritioned into.

The Alon-Saks-Seymour conjecture in its weakest (polynomial) form states
that if bp(G) = k, χ(G) is at most polynomial in k, i.e. there is some
polynomial P so that χ(G) ≤ P (bp(G)). The initial stronger version states
that χ(G) ≤ bp(G) + 1 and was motivated by the complete graph case,
the result that you need n − 1 complete bipartite graphs to partition the
edges of the completele graph Kn. This is an extremely nice result known
as Graham-Pollak.

Proposition 8.1. A complete graph Kn cannot be partitioned into fewer
than n− 1 complete bipartite graphs.

Proof. Assume that at most n− 2 complete bipartite graphs paritioned the
edges of Kn. We assign weights vi to the vertices of Kn so that

∑
vi = 0,

and for any of the complete bipartite graphs H between S ⊂ {1, 2, ...n} and
some other set of vertices, i∈S vi = 0. There are at most n− 1 equations,
so we can find some values
the sum of the weights on ev

∑
of vi not all 0 which satisfies all this. But then
ery edge is∑ ( )

viv =

∑
v 2
i −

∑
v2
i

j
2

=
−
∑
v2
i < 0.

2

Yet the sum of the weights of the edges on any complete bipartite graph is
0 so the sum of the weights on all edges must also be 0, contradiction.

�

Note a Kn can be partitioned into n−1 bipartite graphs. If vi is connected
to vj for i < j, put the edge between them in the ith bipartite graph.

9. Alon-Saks-Seymour from CI

We will now prove that the polynomial Alon-Saks-Seymour conjecture
implies the CI conjecture. It actually turns out that the two results are
equivalent, but it is useless to show that something is implied by a state-
ment we have already established to be false. Because we have that the CI
conjecture is false, we will get the polynomial Alon-Saks-Seymour conjecture
is also false.

First, an oriented complete bipartite graph is one on a set of vertices Ai
and Bi so that there is a directed edge from every Aj to every Bk. We say a
set of oriented complete bipartite graphs are properly packed into G if every
edge XY in G is such that e appears in some oriented bipartite graph, but
there do not exist two different ordered bipartite graphs which both have a
directed edge from X to Y or from Y to X. It is permissible that one has a
directed edge from X to Y and another from Y to X.

Let bpOR(G) be the minimal number of oriented complete bipartite graphs
that are necessary to properly pack G.
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Also define bp2(G) to be the minimal of complete bipartite graphs needed
to cover the edges of G so that every edge is covered at least once and at
most twice. Clearly bp2(G) ≤ bpOR(G) ≤ bpG.

We call the assertion that bpOR(G) is at most polynomial in χ(G) the
oriented Alon-Saks-Seymour conjecture.

Proposition 9.1. We have bp(G) ≤ P (bp2(G)) for some polynomial P ,
assuming the Alon-Saks-Seymour conjecture.

Proof. Say bp2(G) = k, so we have k complete bipartite graphs B1,... Bk

that cover the edges of G, with every edge covered at least once and at most
twice. Let H be the graph formed by taking G and removing edges that are
covered by the Bi only once.

We first claim bp(H) ≤ k2− k. We also direct the edges of each complete
bipartite graph Bi arbitrarily from Bi

− to B+
i to make it an oriented complete

bipartite graph. If some edge e of H is covered by the two bipartite graphs
Bi and Bj, label the edge with (Bi, Bj, u) where i < j. Assign u = 1 if
e is directed the same way in Bi and Bj, and u = −1 else otherwise. Of
course here u depend on the choice of i, j, and the edge and are not absolute
constants. Note there are k2 − k possible labels.

Now, for every labeling (Bi, Bj, u) with i < j, consider the subgraph of H
with this labeling. I claim it is a complete bipartite graph. We consider the
subgraph with (Bi, Bj, 1) - the u = −1 case is analogous (after all, Bi and
Bj were directed arbitrarily). Now, this subgraph is the complete bipartite
graph going from B + +

i
− ∩Bj

− to Bi ∩Bj .
Every edge of H is uniquely labeled, so the disjoint union of these sub-

graphs is all of H. Hence, bp(H) ≤ k2 − k, the number of labels.
By the Alon-Saks-Seymour conjecture the chromatic number of H is poly-

nomial in k2 − k, and thus polynomial in k. We can therefore partition the
common vertex set V of G and H into sets (S1, ...St) which are independent
in H, where t is polynomial in k. So every edge with both vertices inside Si
is covered exactly once by B1,... Bk. For each 1 ≤ i ≤ t, the sets Bj ∩ Si for
1 ≤ j ≤ k thus properly pack into the induced graph G[Si] on the vertices
of Si. Now, we use Alon-Saks-Seymour again, so χ(G[Si]) is at most poly-
nomial in k. Say we color all Sj with a polynomial number of colors in k so
that every χ(G[Si]) is properly colored.

To finish, we define a coloring on G, the product of this coloring and the
coloring from H. We give the vertex v ∈ Si the color (a, b) where a is the
color of Si ∈ H and b is the color of v ∈ G[Si]. Clearly this gives us a number
of colors that is polynomial in k. Now, if v and w are incident but have the
same color, then they lie in the same Si. Since v, w are incident and are
both in Si, we have that v and w are incident in G[Si]. But then v and w
do not have the same color in G[Si], a contradiction. Hence, this coloring of
G is proper and uses a number of colors that is polynomial in k. We obtain
the desired result.

�
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Assuming the polynomial Alon-Saks-Seymour conjecture, we then have
that since χ(G) is polynomial in bp(G), it is also polynomial in bp2(G) and
hence in bpOR(G).

As such, the polynomial Alon-Saks-Seymour conjecture implies the poly-
nomial oriented Alon-Saks-Seymour conjecture.

Proposition 9.2. The polynomial oriented Alon-Saks-Semyour conjecture
implies the CI conjecture.

Proof. Given a graph G on n vertices, we desire to verify the CI conjecture
on it - to find a polynomial size family of cuts.

Again we will construct a graph H, but this time with different properties.
The vertices of H are pairs of cliques and independent sets from G that do
not share a common vertex. Two vertices h1 corresponding to clique K1 and
independent set I1 and h2 of H corresponding to K2 and I2 are connected if
and only if K1 intersects I2 or K2 intersects I1.

I claim bpOR(H) ≤ n. For any v ∈ G, let Av be the set of vertices of H
of the form (K, I) with x ∈ K and let Bv be the vertices of H of the form
(K, I) with x ∈ I. Let Hv be the oriented complete bipartite graph going
from Av to Bv. I claim that the graphs Hv for the n vertices v form a proper
packing of H. So some edge of H will be covered by a directed edge of Hv

from (K1, I1) to (K2, I2) exactly if v ∈ K1 and v ∈ I2, which happens for at
most one vertex v. But of course one of (K1, I1) and (K2, I2) will be covered
by a directed edge, because either K1 meets I2 or K2 meets I1. This yields
a proper packing of H of size n. Asssuming oriented Alon-Saks-Seymour,
χ(H) ≤ P (n) for some polynomial n. Examine the vertices of H which have
a specific color, say blue, in G. Let Kb be the union of all K for which (K, I)
is blue for some I, and Ib is the union of all I for which (K, I) is blue for
some K. Since these (K, I) are the same color in H, they an independent
set of H. It follows that Kb and Ib are disjoint, since if (K1, I1) and (K2, I2)
are in an independent set K1 cannot intersect I2. Thus, we have can find a
single cut that separates all of Kb from Ib. For every blue vertex (K, I) of
H, the cut separates K from I. Continuing in this fashion, we have a cut for
every color, and every clique K and independent set I in G are separated
by the cut corresponding to the color of (K, I) in H. Thus, we have a P (n)
size separator for G for any graph G on n vertices and the CI conjecture is
established.

�

The results above prove that the polynomial Alon-Saks-Seymour conjec-
ture implies the CI conjecture. Since we know the CI conjecture is false, the
polynomial Alon-Saks-Seymour conjecture is false. A result in communica-
tion complexity implies a result in graph theory.

10. Further Directions

We know that coNPdt(f) ≤ UPdt(f)α always holds for α ≥ 2, and it
fails to hold for α ≤ log36 57, so naturally one can inquire the infimum of α
for which this statement is true. It would be very surprising if the constant
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log36 57 was optimal. Any lower bound better than log36 57 ≈ 1.128 or any
upper bound less than 2 would be a breakthrough.

We can ask similar questions about NP vs UP. Certainly we know that
NPdt(f) ≤ UPdt(f) with equality for CIS. But can NP be much smaller
than UP? Do there exist f such that NPdt(f) ≤ UPdt(f)c for any α > 0,
and if not what is the infimum of α for which this holds?

11. Thanks and Bibliography
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