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Abstract

We survey the recent developments in the quantitative relation be-
tween communication and information complexity of interactive tasks.
We briefly present state-of-the-art compression results, and then focus on
an intuitive exposition of impossibility results for compressing protocols
down to their information cost. We discuss which results and assumptions
have room for improvement and pose a series of open questions.

1 Introduction

In the communication complexity setting, two parties, Alice and Bob, are each
given an input and are asked to carry out a computation based on both inputs.
In order to share information and compute the desired output, the parties agree
on a (possibly randomized) protocol π. We measure the efficiency of the protocol
using its communication cost CC(π), that is the maximum (over inputs) number
of bits exchanged during its execution. Naturally, one might wonder how is
the necessary amount of communicated bits related to the required amount of
information exchange.

In order to even define such a notion we need to assume that inputs are
sampled according to some joint, publicly known distribution µ. Then, we
define the internal (resp. external) information cost of a protocol ICµ(π) (resp.
ICoµ(π)), to be the number of information bits revealed to an internal (resp.
external) observer. For one-round, deterministic protocols, any protocol can
be compressed to the amount of information carried. This is a fact know for
more than half a century, from the seminal works of Shannon and Huffman,
[Sha48, Huf52]. However, for interactive communication the answers are not as
clear and elegant, and took a significantly longer time to be found.

A long line of work investigates how the information and communication
complexity task relate to each other. Initially, a series of progressively better
compression schemes were invented, providing incomparably different guaran-
tees under incomparable assumptions. This gave hope that eventually it would
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be possible to construct “optimal” compression schemes, that could compress
protocols all the way down to their information cost. Recently however, in a
surprising line of work Ganor, Kol, and Raz [GKR14] explicitly showed the
existence of a communication task with (extremely long) protocols of informa-
tion cost O(k) for some large k, requiring communication cost at least O(2k)
to simulate with non-trivial error guarantees. The results was later proved also
for boolean functions [GKR15b] and simplified by Rao and Sinha in [RS15].
Moreover, the same separation was shown for the case of external information
complexity in [GKR15a].

The goal of the survey is to focus on the lower bound proofs and provide a
self-contained and intuitive explanation. From there, we plan to investigate the
finer aspects of the protocol that determine whether or not efficient compression
is possible or not. We present insight, and pose open questions about the nature
of guarantees that one could hope for, and under which restrictions these are
achievable.

2 Preliminaries

In this section, we will formally define the notions outlined in the introduction.
We will consider discrete random variables. We denote random variables with
capital letters (e.g. A), and their respective values with lowercase (e.g. a). For
succinctness, when A is distributed according to p we denote Prp[A = a] by
p(a).

2.1 Information Theory

We begin by stating some basic definitions and facts from information theory,
a powerful tool for our analysis. For a complete exposition refer to [CT12].

Definition 2.1 (Entropy). The (Shannon) entropy of a random variable X is
defined as

1
H(X) :=

x

∑
p(x) log

∈X

(
p(x)

)
= E
x∈X

[
log

(
1

p

)]
,

(x)

while the entropy conditioned on Y as, H(X | Y ) := Ey∼Y [H(X | Y = y].

The entropy of a random variable captures the amount of uncertainty of its
distribution and is used to measure the expected amount of information that a
value reveals.

Definition 2.2 (Mutual Information). We define the mutual information be-
tween variables X and Y as

I(X;Y ) := H(X)−H(X | Y ) = I(Y ;X),

and we similarly define the mutual information of X and Y conditioned on Z
as I(X;Y | Z) := H(X | Z)−H(X | Y Z).
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Mutual information is exactly the amount by which the uncertainty of X
decreases, when we condition on the variable Y . As a sanity check, observe that
when X and Y are independent, I(X;Y ) = 0, while I(X;X) = H(X), since
H(X|X) = 0.

We will measure the distance between distribution in two ways:

Definition 2.3 (Statistical Distance). For two distributions p, q, their statisti-
cal distance is defined as

|p− q| = max |p(Q)
Q

− q(Q)|,

and we say that p and q are ε-close, denoted by p 'ε q, if |p− q| ≤ ε.

Definition 2.4 (KL-Divergence). For two distributions p, q, their KL-divergence
is defined as

)
D(p‖q) =

∑
p(a log

a

(
p(a

) .
q(a)

)
Observe that KL-divergence does not have all the properties a norm distance
would have (i.e. it’s not symmetric), but the following fact holds

Fact 2.5. For any p, q distributions, D(p‖q) ≥ 0.

Additionally, by direct calculations one can show that

Fact 2.6. For any random variables A,B,C, we have

I(A : B | C) = E [D (p(A
c,b

| b, c)‖p(A | c))].

In other words, the mutual information between A and B is the expected (over
B) divergence of the distribution of A, when conditioning on a particular value
b. Sometimes, calculating the KL-divergence can be tricky, and the following
fact can simplify the derivations.

Fact 2.7. For any p, q

E [D(p(A | b)‖p(A)] ≤ E [D(p(A | b)
p(b) p(b)

‖q(A)].

Intuively, this property captures the fact that conditioning on some random
variable will cause less expected divergence from the original distribution then
from any other distribution. Finally, the following rule greatly facilitates the
analysis of mutual information when dealing with sequential events.

Fact 2.8 (Chain Rule). For random variables A1, A2, B,C,

I(A1A2 : B | C) = I(A1 : B | C) + I(A2 : B | A1C).

The chain rule states that the information A1A2 reveal about B is equal to
the information A1 reveals about B, plus the information A2 reveals about B,
conditioning on A1.
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2.2 Information and Communication Complexity

We will now formally define that efficiency measures in terms of information
and communication for different protocols.

Definition 2.9 (Protocol Communication Cost). For a protocol π we define the
communication cost of a public coin protocol CC(π), to be the maximum number
of bits that can be transmitted in any execution.

For a function, its communication complexity is the communication cost of
the cheapest protocol computing it.

Definition 2.10 (Function Communication Complexity). Let some function
f : X ×Y → Zk, a distribution µ supported on X ×Y, and an error parameter
ε. We define Dµ

ε (f) to be the minimum over deterministic protocols communi-
cation complexity required to compute f with error probability at most ε when the
inputs are sampled from µ. Moreover we define Rε(f) to be the communication
cost of the cheapest public coin protocol for f with error probability at most ε.

At first glance, the two measures of function complexity seem diffent. This
is not the case when we focus on µ being the worst case distribution.

Theorem 2.11 (Yao’s Minimax). Rε(f) = maxµD
µ
ε (f).

Since often randomized protocols are hard to reason about and thus difficult
to construct lower bounds for, Yao’s theorem allows us to come up with a specific
distribution, for which no protocol can perform good on. This immediately
translates to a lower bound for Rε(f). We will follow exactly this approach in
the lower bounds that follow.

Definition 2.12 (Protocol Information Cost). Let some function f : X ×Y →
{0, 1}, a distribution µ over X × Y, and a (possibly randomized) protocol π for
f . Let Π the random variable for the transcript of the protocol, then the internal
information cost of π is defined as

IC(π) := I(X : Π | Y ) + I(Y : Π | X),

while the external information cost of π is defined as

ICo(π) := I(XY : Π).

In the case of protocol using public coin flips, we modify the definition such
that mutual information is also conditioned on the string of random coins. In-
tuitively, we expect the external cost to be always higher than the internal cost,
since an external observation knew less information about x and y to begin with,
while the participants can possibly infer information about the input of each
other by looking at their own inputs. Moreover, we expect that in the case of
product µ the quantities are indeed equal. This can be made formal as follows

Proposition 2.13. For every protocol π, IC(π) ≤ ICo(π). Additionally, when
µ is a product distribution, IC(π) ≤ ICo(π).

4



3 Known Compression Schemes

In order to facilitate the understanding of what is possible and what is not,
we present a brief outline of the best known compression schemes for various
settings. In [BBCR10], Barak, Braverman, Chen, and Rao show that for any
protocol π and distribution µ, there exist compressed protocol τ equivalent to
π (except with probability some small constant ε), with communication com-
plexity

CC(τ) ≤

{
O
(√

CC(π)ICµ(π) log(CC(π)

O ICoµ(π) log(CC(π) .

)
These guarantees are incomparable,

(
since a priori

)
there are no concrete, quan-

titative bounds for the relation between ICo and IC. For the case of product
distribution µ, we know that ICo = IC and therefore the second compression
schemes is superior. The fact that the cost depends on the original communi-
cation cost only logarithmically does not say much by itself, since this cost can
be e.g. quadratically exponential in the information cost.

An esssentially orthogonal result of Braverman [Bra12], shows the existence
of a protocol τ such that,

CC(τ) ≤ 2O(ICµ(π)).

Note that this compression scheme has no dependence on the communication
cost of the original protocol. This implies that arbitrarily long protocols leaking
a small amount of information bits can still be compressed independently of
their initial length, in contrast to the guarantees from [BBCR10].

Another orthogonal results of Braverman and Rao [BR11] states that if π
has r rounds we can construct a compressed protocol τ with,

CC(τ) ≤ O(IC + r).

While this results may seem interesting for small r, most essentially interactive
protocols have a number of rounds close to the communication cost (or at most
logarithmic factors away).

When focusing on restricted protocols and distributions, two more results
are known. In [Kol15], Kol proves that given any protocol with information
cost I, there is a way to compress it to a protocol with communication cost
of at most O(I2polylog(I)) bits. This is the first known protocol that relates
information and communication cost polynomially. In [BMY15], Bauer, Moran,
and Yehudayoff, show that any public coin protocol with information I and
communication C can be simulated by a protocol with communication cost
O(I2 log logC). We will further discuss the implications of these results towards
the end of the survey.

4 Exponential Separation

In this section we will present an explicit boolean function, along with a distri-
bution over inputs, such that a low information protocol exists, but every cor-
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rect protocol needs communication exponential to that information cost. The
first time such a construction appeared (albeit not for boolean functions) was
in [GKR14]. Soon after, in [GKR15a], the same construction was modified
to work for boolean function, while simultaneously having a simpler analysis.
In [RS15], a construction with a further simplified analysis is presented, while
morally staying close to the original paper. We will present the construction
of [RS15], along with an overview of the analysis. We focus on providing clear
intuition and motivation, and we therefore skip formal and involved proofs. We
briefly present the original construction and follow with a discussion, outlining
the similarities between the two.

4.1 The Problem

We will be concerced with the k-ary pointer jumping problem. Our alphabet
with be [k] = {1, . . . , k

<n
} for some parameter k. The input of the protocol are

functions X,Y : [k] → [k] and boolean functions F,G : [k]n → {0, 1}. Alice
is given X,F and Bob is given Y,G. By definition, there is a unique z ∈ [k]n

such that for every i ∈ {0, . . . , n− 1},

X(z≤i) + Y (z≤i) = zi+1 (mod k).

The parties are asked to compute F (z) + G(z) (mod 2), and are allowed to
err with probability at most ε for some constant parameter ε > 0. The trivial
protocol for this task consists of starting with z being the empty string, and at
step i exchange X(z<i) and Y (z<i) to compute the next letter zi. The commu-
nication cost of this protocol is O(n log k). It is straightforward to see that, for
this protocol, information cost equals communication cost, and no other proto-
col can succeed with probability less than 1/2, for general input distributions
(e.g. X,F, Y,G uniformly random). We will now define that distribution µ over
X × Y, with two goals in mind:

1. we want the output value of a correct protocol to depend on a small num-
ber of critical input bits. This will guarantee, that the parties learn only
a few bits of each others inputs, achieving a communication of O(log k),

2. the only way for a protocol to perform better than the trivial one, is to
figure out these critical bits, which will require at least O(log n) commu-
nication (since there are will be O(n) possible values for them).

Setting n = 2k, will result in a protocol of information cost O(log k) for a
communucation task requiring communication cost O(k). We say that some z ∈
[k]n is consistent with respect to J,X, Y if X(z≤J) + Y (z≤J) = zj+1 (mod k).
The distribution µ is defined according to the following procedure:

• Sample J uniformly at random from {0, . . . , n− 1}.

• Sample X uniformly at random from [k]<n → [k].
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• Sample Y as followsX(z) , if |z| < J

Y (z) =
uar from [k] , if |z| = J

X(z) , if |z| > J and z is consistent

uar from [k] , otherwise.

• Sample a uniformly random bit b ∈ {0, 1}.

• Sample F,G uniformly at random from [k]n → {0, 1}, subject to the
constraint that F (z) +G(z) = b (mod 2) for every consistent z.

When inputs are sampled from this distribution, we can see that the protocols
with error probability less than 1/2 are exactly those that compute a consistent
z. If the parties evaluate F (z) + G(z) (mod 2) for any non-consistent z, they
will compute a uniform value in {0, 1}, while any consistent z will result in the
same output b as the definition of the problem, thus being correct. Finally,
notice that the distribution is symmetric w.r.t. X and Y .

4.2 A Low Information Protocol

Our goal is to design a protocol that utilizes the input distribution to compute
a consistent z with low information cost. Observe that an protocol outputting
some z is correct as long as X(z J) + Y (z J) = zj+1 (mod k). Additionally,≤ ≤
as long as both parties compute a consistent z, for any i 6= J we know that
X(z ≤ i) = Y (z ≤ i), and therefore they know all the relevant inputs of the
other party.

A first attempt: At first glance, it might seem that the trivial protocol has
low information complexity. In fact, at every step, except for the J-th, Alice
and Bob expect their messages to be the same (both X and Y have the same
value), so they obtain no additional information. However, under more careful
examination we see that with probability 1 − 1/k the messages at step J will
be different. This implies that with probability 1− 1/k they will learn J , since
this is the only step where their messages can be different. By learning J , since
J is distributed u.a.r. from n values, they will learn logn bits of information.

Hiding J: In order to prevent themselves from discovering the value of J , the
parties will modify the protocol. Instead of sending the true function value at
every step, they send a uniformly random value in [k] with probability ε, and
the real value otherwise. This implies that in expectation about εn messages
will contain different values, and therefore the information obtained about J is
roughly log(1/ε) (we will make this point formal soon). Notice that for small
enough ε we are still able to compute a consistent z with good probability.
However, we are still not done. With probability ε, Alice and Bob will compute
a non-consistent z. This implies that from this point on their messages will be
different with probability 1 − 1/k and will reveal their inputs. In this case the
information revealed will be O(εn log k), which is prohibitive for our separation.
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Aborting: We will need one last fix for the protocol. Since we cannot hope the
protocol to succeed when the parties compute an inconsistent z, we need to make
sure that they detect this case and abort before they learn too much information.
We therefore set some tolerance r, and insist that if the parties experience
r consecutive messages where their inputs defer, to abort the protocol (and
output some arbitrary answer). We outline the complete protocol in Protocol 1.

Protocol 1 A Low Information Protocol for k-ary Pointer Jumping

z ← [ ]
for i← {1, . . . n} do

ai =

{
X(z<i) , w.p. 1− ε

{u.a.r. from [k] , w.p. ε

Y (z<i) , w.p. 1
bi =

− ε
u.a.r. from [k] , w.p. ε

Exchange mi = ai, bi;
Append ((ai + bi) mod k) to z;
if a 6= b during the last r rounds then

Abort Protocol;

Alice sends f(z);
Bob outputs f(z) + g(z) (mod 2)

We first compute the probability of success for our protocol.

Lemma 4.1. Protocol 1 succeeds with probability at least 1− (2ε+ n(2ε)r).

Proof. The consistency of z is determined only by step J . The probability of
either party sending random values at step J is (by union bound) at most 2ε.
Conditioning on the event that on step J both parties send their correct values,
we will bound the probability of aborting before |z| = n. Since all the values of
X and Y are the same it suffices to bound the number of consecutive rounds in
which random bits were sent. For any fixed round k, the probability of sending
random bits in all the previous r rounds up to k is at most (2ε)r. By union
bounding over all the rounds, we get that the probability of aborting in any of
them is at most n(2ε)r. Union bounding over these two bad event concludes the
proof.

By setting r =
⌈

logn + 1 , the previous lemma implies that the errorlog(1/2ε)

probability is at most 4ε. It re

⌉
mains to bound the information cost of the

protocol.

Lemma 4.2. Let M be the random variable for the messages of Protocol 1.
Then,

I(M : XF | Y G)
}
≤

n

2 log(k/ε)
(

1 + 2ε ·
2 log

log n
I(M : G | X

· 2
Y F )

k log(1/2ε)

)
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Proof. We will prove the bound for Alice and the argument for Bob follows by
symmetry. By applying the chain rule, we can write the total information cost
as the marginal contribution of every message,

I(M : XF | Y G) =
∑

I(Mi : XF
i

| Y GM<i)

=
∑

E [D(p(Mi | xfygm<i) p
xfygm

i

‖ (Mi | ygm<i)].

By using Fact 2.7, we can consider the distribution p(Mi | ygm<i(xi = yi))
instead of p(Mi | ygm<i) in the display above, and still get an upper bound
for the information. It turns out this distribution is easier to understand and
reason about. Therefore we get,

I(Mi : XF | Y GM<i) ≤ E [D(p(Mi xfygm<i) p(Mi ygm<i(xi = yi)].
xfygm

| ‖ |

The divergence can be simply bound in the following way:

• If xi = yi, the distributions are equal and therefore I(Mi : XF | Y GM<i) =
0,

• If i = n+1, I(Mi : XF | Y GM<i) = 1, since players unconditionally learn
the values of F (z), G(z) for each other,

• If xi 6= yi, Alice expects to receive xi w.p. (1 − ε + ε/k) and anything
else w.p. ε/k, while the actual message will be yi w.p. (1 − ε + ε/k) and
anything else w.p. ε/k. By direct calculations.

1 ε+ ε/k
I(Mi : XF Y GM<i) = (1− ε+ ε/k)

−| log
ε/k

+ (ε/k) log
ε/k

1− ε+ ε/k

≤ log(k/ε).

The proof is almost complete. If we define the random variable Qi to be 1
iff X(Z<i) 6= Y (Z<i) and zero otherwise, invoking the case analysis above we
conclude that

I(M : XF | Y G) ≤ 1 + log(k/ε) · E

[∑
Qi

i

]
.

Recall that by definition Qi = 0 for i < J .∑Moreover, when the protocol samples
a consistent z, Qi = 0 for i 6= J , and thus iQi ≤ 1. Finally, the probability of
sampling an inconsistent z is at most 2ε, and in this case we need to bound the
number of steps after the J-th before the protocol termination. The probability
of stopping after r steps is (1− 1/k)r. Thus the expected number of steps until
stopping is at most r

(1−1/k)r . Replacing the value of r concludes the proof.
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4.3 A Lower Bound to the Communication Cost

As mentioned earlier, intuitively, any protocol with error probability less than
1/2, has to output a consistent string z with good probability, otherwise F (z)+
G(z) (mod 2) is uniformly random in {0, 1}. Recall that by Yao’s theorem it
suffices to consider only deterministic protocols, since we are considering inputs
sampled from a distribution. We will prove that any protocol with communica-
tion significantly less than O(log n), learns very little information about which
string are consistent. In order to conclude the lower bound to the communi-
cation complexity of k-ary pointer jumping, one needs to leverage this fact to
show that such low communication protocols produce a distribution over mes-
sages such that

| 'ε 'εp(m b = 0) p(m) p(m | b = 1),

where b is the correct answer, as described in the distribution over inputs (Sec-
tion 4.1). This part of the proof is a rather involved series of technical claims, so
we are not going to go over it (the full proof can be found in Section 4 of [RS15]).
Instead, we will suffice to the following lemma, showing that parties learn little
about the set of consistent string when restricting to low communication cost.

Lemma 4.3. Let any protocol with communication cost at most `, and let S
the (random) set of consistent strings. Then,

I(M : S | Y≤JJ) ≤ I(M : XJ | Y≤JJ) 2`

I(M : S | X≤JJ) ≤ I(M : YJ | X J)≤J

}
≤

n

Proof. We will prove only the first set of inequalities, as the second follows by
symmetry. We know that fixing Y J and J , S depends only on X≤ J , implying
the I(M : S | Y JJ) ≤ I(M : XJ | Y JJ). Moreover, by the definition of µ,≤ ≤
X<J = Y<J and thus, I(M : XJ | Y JJ) = I(M : XJ | YJX<JJ). For every≤
possible transcript m of the protocol, there exists a set Sm × Tm of inputs such
that M = m iff the input of Alice is from the set Sm and the input of Bob from
Tm. Moreover after fixing x<jj, Xj is independent of Y and thus,

I(M : XJ | YJX<JJ) =
∑

p(m) E [D(p(Xj myjx<jj) p(Xj yjx<jj))]
yxj|m∑m | ‖ |

≤ p(Sm) E [D(p(Xj | Smx<jj)‖p(Xj | x<jj))]
xj

m
|Sm

Finally, since J is independent of X (and thus Sm) we can apply chain rule to
rewrite the last display as

1
p(Sm) E [D(p(Xj Sm) p(Xj))]

n

∑
Sm

m

| ‖

which can be further bound by

1 1
p

n

∑
(Sm) log

m
p(Sm)

≤ 2`

n
,
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since there are at most 2` rectangles.

4.4 The original construction

We will briefly discuss the construction of [GKR14, GKR15a] that originally
proved the separation result. The goal is to construct a function that can be
computed with low information cost but cannot have low communication cost.

We define the bursting noise function, defined on a binary tree of depth 24
k

for some parameter k. Each player will receive a bit ∈ {0, 1} (xv for Alice and
yv for Bob) for every node v in the tree. We interpet the inputs of the players
as alternatingly defining a path on the tree, i.e. starting from the root we move
to the left child if xv = 0 and right otherwise, then we move left if yv = 0 and
so on and so forth. This procedure uniquely defines a leaf ` of the tree. The
parties are required to output x` + y` (mod 2). We say that Alice (resp. Bob)
owns vertices at odd (resp. even) depth.

In order to define the distribution over input, we group together tree layers
in groups of O(k) and call these multi-layers.We define an edge from a vertex v
to be correct if it leads to the child indicated by the input of the party owning
v. We say that a vertex is noisy if xv, yv are sampled independently, uniformly
at random from {0, 1}, and noiseless if they are sampled uniformly from {0, 1}
subject to the constraint that xv = yv. The procedure for sampling an input
distribution is as follows.

• sample a random multilayer `∗, we call `∗ the noisy layer

• for vertices v in layers above `∗ we sample v noiselessly,

• for vertices v of layer `∗ we sample v noisily,

• for a node in the final layer of the multilayer `∗, we call it typical if at
least 80% of the edges – on the path to the root – belonging to the noisy
layer, are correct. For every successor v of a typical node we sample v
noiselessly and we sample successors of non-typical vertices noisily.

• for a leaf v, we call v typical if it the successor of a typical vertex. We
sample b uniformly at random from {0, 1} and set yv ← yv + b (mod 2)
for all the typical leaves v

We observe that when inputs are sampled from this distribution, a protocol is
correct with probability more than 1/2, if it outputs a typical leaf with good
probability. This implies that any correct protocol, cannot communicate much

less than log(24
k

) = 4k, otherwise it will have insufficient information about `∗.
On the other hand, a protocol exchanging inputs for every layer of the tree,
will only exchange different bits on the noisy multilayer, which only has O(k)
layers. Similarly to the construction in Section 4.1, we modify this protocol such
that parties don’t learn much about `∗. That is, at every step, with probability
10% they send a random value instead of the real one. By Chernoff bounds,
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the protocol still succeeds with high probability. Finally, the parties abort if
they experience two many different bits, such that they avoid leaking too much
information in the case of sampling a non-typical leaf.

5 Discussion and Open Questions

In the previous section we gave an explicit example of a function and a distri-
bution over input for which communication and information are exponentially
separated. This proves that indeed for general distributions and protocols, one
cannot compress information to communication. It is however interesting to
consider which specific distributions and protocols fall under this theorem. We
discuss two very natural special cases for which this theorem provably fails and
present some natural open questions.

5.1 Product Distributions

When we defined our distribution over inputs in Section 4.1, we correlated the
inputs of the two parties in a very specific way. For the vast majority of relevant
inputs, we setup the distribution such that Alice is almost certain about the
message she will receive from Bob and vice versa. By giving the two parties
almost identical (for consistent strings) functions X and Y , we ensure that only
a small amount of information is leaked during the execution of the protocol.

One might wonder if this still holds when the inputs of Alice and Bob are
sampled independently. This is not the case, as shown in [Kol15]. Given any
protocol with information cost I, there is a way to compress it to a protocol
with communication cost of at most O(I2polylog(I)) bits. This implies that we
cannot hope to separate information and communication exponentially.

Open Question: Is there a communication task with informa-
tion complexity I, for which no protocol with communication cost
O(Ipolylog(I)) exists?

In a strong sense, the result of [Kol15] implies that the strong correlation be-
tween inputs for problems in Sections 4.1,4.4 was necessary to achieve the sep-
aration results.

5.2 Public Randomness

When one wants to construct a low communication protocol, using public coin
flips can reduce communication and is at least as good as using private coin flips.
Additionally, Newman’s Theorem [New91] states that private coin protocols can
be converted to public coin protocols with a mild (logarithmic in input size)
increase in communication cost.

When trying to construct low information protocols, private random coins
can help conceal information and are at least as good than public coin flips,
since they can be published with zero information cost. In the separations of
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Sections 4.1,4.4 private randomness was crucially utilized to prevent the parties
from discovering the critical part of the function. Moving these coin flips to
be public would immediately break the proof. One might hope however that
a slightly different scheme can work. In [BMY15], it is shown that any public
coin protocol with information I and communication C can be simulated by a
protocol with communication cost O(I2 log logC). This implies that in order to
achieve the same (exponential) separation for the k-ary pointer jumping problem
using a public coin protocol of information cost O(k), we need its communication
to be at least triply exponential in k, while the input size is only exponential in k.
However, while this shows that the existing constructions fail when randomness
is made public, it leaves open the possibility that a different construction works.

Open Question: Is there a communication task with information
complexity I, for which no public coin protocol with communication
cost O(2I) succeeds with arbitrarily high probability?

5.3 Simultaneous Information and Communication Guar-
antees

All the approaches that we presented so far, attempt to answer the question
of how small can the communication complexity of a task be, compared to its
information complexity. One might wonder whether one can simultaneously
achieve low information and low communication cost. For the case of external
information complexity current theorems can rule out this possibility to some
extent. Consider a function with information complexity I. By the result of
[Bra12], there exists a protocol π with communication cost 2O(I). If this protocol
has information complexity C = O(I), by the compression scheme of [BBCR10],
there exists a protocol with communication cost O(Ipolylog(C)) = O(poly(I)).
Since there exists an exponential separation between external information and
communication cost, there are tasks with protocols of information cost O(I),
that the compression scheme of [Bra12] compresses to protocols with information
cost 2O(I). This argument will not work for internal information complexity
using theorems currently known.

Open Question: Is there a scheme compressing protocols of infor-
mation cost I to protocols of communication cost 2O(I) and infor-
mation cost 2ω(I)?
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Anup Rao, and José D. P. Rolim, editors, APPROX-RANDOM,
volume 40 of LIPIcs, pages 481–496. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[BR11] Mark Braverman and Anup Rao. Information Equals Amortized
Communication. In Rafail Ostrovsky, editor, FOCS, pages 748–757.
IEEE Computer Society, 2011.

[Bra12] Mark Braverman. Interactive information complexity. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, pages 505–524, 2012.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information the-
ory. John Wiley & Sons, 2012.

[GKR14] Anat Ganor, Gillat Kol, and Ran Raz. Exponential Separation of
Information and Communication. In FOCS, pages 176–185. IEEE
Computer Society, 2014.

[GKR15a] Anat Ganor, Gillat Kol, and Ran Raz. Exponential Separation of
Communication and External Information. Electronic Colloquium
on Computational Complexity (ECCC), 22:88, 2015.

[GKR15b] Anat Ganor, Gillat Kol, and Ran Raz. Exponential Separation of
Information and Communication for Boolean Functions. In STOC,
pages 557–566. ACM, 2015.

[Huf52] David A Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[Kol15] Gillat Kol. Interactive Compression for Product Distributions. Elec-
tronic Colloquium on Computational Complexity (ECCC), 22:168,
2015.

[New91] Ilan Newman. Private vs. common random bits in communication
complexity. Information processing letters, 39(2):67–71, 1991.

[RS15] Anup Rao and Makrand Sinha. Simplified Separation of Informa-
tion and Communication. Electronic Colloquium on Computational
Complexity (ECCC), 22:57, 2015.

[Sha48] Claude E Shannon. A mathematical theory of communication. Bell
System Tech. J, 27:623, 1948.

14



MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Introduction
	Preliminaries
	Information Theory
	Information and Communication Complexity

	Known Compression Schemes
	Exponential Separation
	The Problem
	A Low Information Protocol
	A Lower Bound to the Communication Cost
	The original construction

	Discussion and Open Questions
	Product Distributions
	Public Randomness
	Simultaneous Information and Communication Guarantees




