
Chapter 6 

Gaussian Mixture Models 

In this chapter we will study Gaussian mixture models and clustering. The basic 
problem is, given random samples from a mixture of k Gaussians, we would like 
to give an efficient algorithm to learn its parameters using few samples. If these 
parameters are accurate, we can then cluster the samples and our error will be 
nearly as accurate as the Bayes optimal classifier. 

6.1 History 

The problem of learning the parameters of a mixture of Gaussians dates back to the 
famous statistician Karl Pearson (1894) who was interested in biology and evolution. 
In fact, there was a particular species of crab called the Naples crab that inhabited 
the region around him. He took thousands of samples from this population and 
measured some physical characteristic of each sample. He plotted the frequency 
of occurrence, but the resulting density function surprised him. He expected that 
it would be Gaussian, but in fact it was not even symmetric around its maximum 
value. See Figure 6.1. He hypothesized that maybe the Naples crab was not one 
species but rather two, and that the density function he observed could be explained 
as a mixture of Gaussians. 

In this remarkable study Pearson introduced the method of moments. His basic 
idea was to compute empirical moments from his samples, and use each of these 
empirical moments to set up a system of polynomial equations on the parameters 
of the mixture. He solved this system by hand! In fact, we will return to his basic 
approach later in this unit. 
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Basics 

Here we formally describe the problem of learning mixtures of Gaussians. Recall 
that for a univariate Gaussian we have that its density function is given by:   

1 −(x − µ)2 
N (µ, σ2) = √ exp

2σ22πσ2 

The density of a multidimensional Gaussian in Rn is given by:   
1 −(x − µ)�Σ−1(x − µ)N (µ, Σ) = exp

(2π)n/2det(Σ)1/2 2

Here Σ is the covariance matrix. If Σ = In and µ = 00 then the distribution is just: 
N (0, 1) ×N (0, 1) × ... ×N (0, 1). 

A mixture of two Gaussians is a distribution whose density function is: 

F (x) = w1F1(x) + (1 − w1)F2(x) 

where F1 and F2 are Gaussians. We can generate a random sample as follows: with 
probability w1 we output a random sample from F1, and otherwise we output a 
random sample from F2. Our basic problem is to learn the parameters that describe 
the mixture given random samples from F . We note that we will measure how good 
an algorithm is by both its sample complexity and its running time. 

Method of Moments 

Pearson used the method of moments to fit a mixture of two Gaussians to his data. 
The moments of a mixture of Gaussians are themselves a polynomial in the unknown 
parameters, which we will denote by Mr. 

E [x r] = Mr(µ, σ2) 
x←F1(x) 

Then we can write 

E [x r] = w1Mr(µ1, σ1
2) + (1 − w1)Mr(µ2, σ2

2) = Pr(w1, µ1, σ1, µ2
2 , σ2

2) 
x←F (x) 

And hence the rth raw moment of a mixture of two Gaussians is itself a degree r +1 
polynomial (Pr) in the unknown parameters. 
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Figure 6.1: A fit of a mixture of two univariate Gaussians to the Pearson’s data on 

W

Naples crabs, created by Peter Macdonald using R 

Pearson’s Sixth Moment Test: We can estimate Ex←F [x
r] from random sam

ples: Let S be our set of samples. Then we can compute: 

Mr 

Mr 

1 r  
r = x 

|S| 
x∈S 

And given a polynomial number of samples (for any r = O(1)), will be additively  
close to Ex←F (x) [x

r]. Pearson’s approach was: 

•	 Set up a system of polynomial equations  W 
MrPr(w1, µ1, σ1, µ 2

2, σ2
2) = , r = 1, 2, ...5  

W

•	 Solve this system. Each solution is a setting of all five parameters that explains 
the first five empirical moments. 

Pearson solved the above system of polynomial equations by hand, and he 
found a number of candidate solutions. Each solution corresponds to a simultaneous 
setting of the parameters so that the moments of the mixture would match the 
empirical moments. But how can we choose among these candidate solutions? Some 
of the solutions were clearly not right; some had negative values for the variance, 
or a value for the mixing weight not in the range [0, 1]. But even after eliminating 
these solutions, Pearson was still left with more than one candidate. His approach 
was to choose the root whose prediction is closest to the empirical sixth moment 
M6. This is called the sixth moment test.  
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Expectation-Maximization 

Much of modern statistics instead focuses on the maximum likelihood estimator, 
which would choose to set the parameters to as to maximize the probability that 
the mixture would generate the observed samples. Unfortunately, this estimator 
is NP -hard to compute [18]. The popular alternative is known as expectation-
maximization and was introduced in a deeply influential paper of Dempster, Laird, 
Rubin [50]. The basic approach is to repeat the following steps until convergence: 

• For each x ∈ S, calculate the posterior probability: 

w1F1(x) 
w1(x) = 

w1F1(x) + (1 − w1)F2(x) 

• Update the mixing weights: 

w1(x) 
w1 ← x∈S 

|S| 

• Re-estimate the parameters: 

µi ← x∈S wi(x)x 

x∈S wi(x) 
, Σi ← x∈S wi(x)(x − µi)(x − µi) 

x∈S wi(x) 

This approach gets stuck in local optima, and is in general quite sensitive to how it 
is initialized (see e.g. [105]). 

6.2 Clustering-Based Algorithms 

Our basic goal will be to give algorithms that provably compute the true parame
ters of a mixture of Gaussians, given a polynomial number of random samples. This 
question was introduced in the seminal paper of Dasgupta [45], and the first gener
ation of algorithms focused on the case where the components of the mixture have 
essentially no “overlap”. The next generation algorithms are based on algebraic 
ideas, and avoid clustering altogether. 

Before we proceed, we will discuss some of the counter-intuitive properties of 
high-dimensional Gaussians. To simplify the discussion, we will focus on spherical 
Gaussians N (µ, σ2I) in Rn . 

Fact 6.2.1 The maximum value of the density function is at x = µ. 

∑

∑∑ ∑ >∑
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Fact 6.2.2 Almost all of the weight of the density function has Ix − µI2 = σ2n ±√ 2 
σ2 n log n 

These facts seem to be inconsistent, but the explanation is that the surface area 
increases faster as the radius R increases than the value of the density function 
decreases, until we reach R2 ≈ σ2n. Hence we should think about a high-dimensional √ 
spherical Gaussian as being a ball of radius σ n with a thin shell. 

√ADasgupta [45] – Ω( n) Separation 

Dasgupta gave the first provable algorithms for learning mixtures of Gaussians, and 
required that Iµi − µj I2 ≥ A √ 

nσmax is the maximum variance of any Ω( ) where σmax 
Gaussian in any direction (e.g. if the components are not spherical). Note that the 
constant in the separation depends on wmin, and we assume we know this parameter 
(or a lower bound on it). 

The basic idea behind the algorithm is to project the mixture onto log k di
mensions uniformly at random. This projection will preserve distances between each 
pair of centers µi and µj with high probability, but will contract distances between 
samples from the same component and make each component closer to spherical, 
thus making it easier to cluster. We can then cluster all of the samples into which 
component generated them, and then for each cluster we can choose the empirical 
mean and empirical covariance which will with high probability be a good estimate 
of µi and Σi. Additionally we can estimate wi by how large each cluster is. 

Informally, we can think of this separation condition as: if we think of each 
Gaussian as a spherical ball, then if the components are far enough apart then these 
balls will be disjoint. 

Arora and Kannan [18], Dasgupta and Schulman [53] – A 1/4) SeparationΩ(n

√ 
We will describe the approach in [18] in detail. The basic question is, if n separa
tion is the threshold when we can think of the components as disjoint, then how can 
we learn when the components are much closer? In fact, even if the components are 
only A 1/4) separated then it is still true that every pair of samples from the same Ω(n
component is closer than every pair of samples from different components. How can 
this be? The explanation is that even though the balls representing each component 
are no longer disjoint, we are still very unlikely to sample from their overlap region. 

Consider x, x ' ← F1 and y ← F2. 



 

 

�
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Claim 6.2.3 All of the vectors x − µ1, x ' − µ1, µ1 − µ2, y − µ2 are nearly orthogonal 
(whp) 

This claim is immediate since the vectors x − µ1, x ' − µ1, y − µ2 are uniform from a 
sphere, and µ1 − µ2 is the only fixed vector. In fact, any set of vectors in which all 
but one is uniformly random from a sphere are nearly orthogonal. 

Now we can compute: 
' I2Ix − x ' I2 ≈ Ix − µ1I2 + Iµ1 − x 

≈ 2nσ2 ± 2σ2 n log n 

And similarly: 

Ix − yI2 ≈ Ix − µ1I2 + Iµ1 − µ2I2 + Iµ2 − yI2 

≈ 2nσ2 + Iµ1 − µ2I2 ± 2σ2 n log n AHence if Iµ1 −µ2I = Ω(n1/4, σ) then Iµ1 −µ2I2 is larger than the error term and each 
pair of samples from the same component will be closer than each pair from different 
components. Indeed we can find the right threshold τ and correctly cluster all of 
the samples. Again, we can output the empirical mean, empirical covariance and 
relative size of each cluster and these will be good estimates of the true parameters. 

AVempala and Wang [117] – Ω(k1/4) Separation 

Vempala and Wang [117] removed the dependence on n, and replaced it with a 
separation condition that depends on k – the number of components. The idea is 
that if we could project the mixture into the subspace T spanned by {µ1, . . . , µk}, 
we would preserve the separation between each pair of components but reduce the 
ambient dimension. 

So how can we find T , the subspace spanned by the means? We will restrict 
our discussion to a mixture of spherical Gaussians with a common variance σ2I. Let 
x ∼ F be a random sample from the mixture, then we can write x = c + z where 
z ∼ N(0, σ2In) and c is a random vector that takes the value µi with probability wi 
for each i ∈ [k]. So: 

kr 
E[xx T ] = E[cc T ] + E[zz T ] = wiµiµi + σ2In 

i=1 

Hence the top left singular vectors of E[xxT ] whose singular value is strictly larger 
than σ2 exactly span T . We can then estimate E[xxT ] from sufficiently many random 
samples, compute its singular value decomposition and project the mixture onto T 
and invoke the algorithm of [18]. 

√

√

>
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Brubaker and Vempala [32] – Separating Hyperplane 

What if the largest variance of any component is much larger than the separation 
between the components? Brubaker and Vempala [32] observed that none of the 
existing algorithms succeed for the parallel pancakes example, depicted in Figure ?? 
even though there is a hyperplane that separates the mixture so that almost all 
of one component is on one side, and almost all of the other component is on the 
other side. [32] gave an algorithm that succeeds, provided there is such a separating 
hyperplane, however the conditions are more complex to state for mixtures of more 
than two Gaussians. Note that not all mixtures that we could hope to learn have 
such a separating hyperplane. See e.g. Figure ??. 

6.3 Discussion of Density Estimation 

The algorithms we have discussed so far [45], [53], [18], [117], [1], [32] have focused 
on clustering; can we give efficient learning algorithms even when clustering is im
possible? Consider a mixture of two Gaussians F = w1F1 + w2F2. The separation 
conditions we have considered so far each imply that dTV (F1, F2) = 1 − o(1). In 
particular, the components have negligible overlap. However if dTV (F1, F2) = 1/2 
we cannot hope to learn which component generated each sample. 

More precisely, the total variation distance between two distributions F and 
G measures how well we can couple them: 

Definition 6.3.1 A coupling between F and G is a distribution on pairs (x, y) so 
that the marginal distribution on x is F and the marginal distribution on y is G. 
The error is the probability that x = y. 

Claim 6.3.2 There is a coupling with error ε between F and G if and only if 
dTV (F, G) ≤ ε. 

Returning to the problem of clustering the samples from a mixture of two Gaussians, 
we have that if dTV (F1, F2) = 1/2 then there is a coupling between F1 and F2 
that agrees with probability 1/2. Hence instead of thinking about sampling from a 
mixture of two Gaussians in the usual way (choose which component, then choose 
a random sample from it) we can alternatively sample as follows: 

(a) Choose (x, y) from the best coupling between F1 and F2 

(b) If x = y, output x 

6=
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(c) Else output x with probability w1, and otherwise output y 

This procedure generates a random sample from F , but for half of the samples we 
did not need to decide which component generated it at all! Hence even if we knew 
the mixture there is no clustering procedure that can correctly classify a polynomial 
number of samples into which component generated them! So in the setting where 
dTV (F1, F2) is not 1 − o(1), the fundamental approach we have discussed so far does 
not work! Nevertheless we will be able to give algorithms to learn the parameters 
of F even when dTV (F1, F2) = o(1) and the components almost entirely overlap. 

Next we will discuss some of the basic types of goals for learning algorithms: 

(a) Improper Density Estimation 

Throughout we will assume that F ∈ C where C is some class of distributions (e.g. 
mixtures of two Gaussians). Our goal in improper density estimation is to find 
any distribution FA so that dTV (F, FA) ≤ ε. This is the weakest goal for a learning 
algorithm. A popular approach (especially in low dimension) is to construct a kernel 
density estimate; suppose we take many samples from F and construct a point-mass 
distribution G that represents our samples. Then we can set FA = G ∗N (0, σ2), and 
if F is smooth enough and we take enough samples, dTV (F, FA) ≤ ε. However FA
works without learning anything about the components of F ; it works just because 
F is smooth. We remark that such an approach fails badly in high dimensions where 
even if F is smooth, we would need to take an exponential number of samples in 
order to guarantee that FA = G ∗ N (0, σ2I) is close to F . 

(b) Proper Density Estimation 

Here, our goal is to find a distribution FA ∈ C where dTV (F, FA) ≤ ε. Note that if 
C is the set of mixtures of two Gaussians, then a kernel density estimate is not a 
valid hypothesis since it will in general be a mixture of many Gaussians (as many 
samples as we take). Proper density estimation is in general much harder to do than 
improper density estimation. In fact, we will focus on an even stronger goal: 

(b) Parameter Learning 

Here we require not only that dTV (F, FA) ≤ ε and that FA ∈ C, but we want FA to be 
a good estimate for F on a component-by-component basis. For example, our goal 
specialized to the case of mixtures of two Gaussians is: 
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Definition 6.3.3 We will say that a mixture F = w1F1 + w2F2 is ε-close (on a 
component-by-component basis) to F if there is a permutation π : {1, 2} → {1, 2} so 
that for all i ∈ {1, 2}: 

A A A A A
  ∣∣∣∣ wi − wAπ(i) 

∣∣∣ ∣  , dTV (Fi, FAπ(i)) ≤ ε 

Note that F and F must necessarily be close as mixtures too: dTV (F, F ) ≤ 4ε. 
However we can have mixtures F and F that are both mixtures of k Gaussians, 
are close as distributions

A
 but are not close on a component-by-component

AA
 basis. It 

is better to learn F on a component-by-component basis than to do only proper 
density estimation, if we can. Note that if FA is ε-close to F , then even when we 
cannot cluster samples we will still be able to approximately compute the posterior 
[79] and this is one of the main advantages of parameter learning over some of the 
weaker learning goals. 

But one should keep in mind that lower bounds for parameter learning do not 
imply lower bounds for proper density estimation. We will give optimal algorithms 
for parameter learning for mixtures of k Gaussians, which run in polynomial time 
for any k = O(1). Moreover there are pairs of mixtures of k Gaussians F and F 
that are   not close on a component-by-component basis, but have dTV (F, F ) ≤ 2−k
[95]. Hence there is no algorithm for parameter learning that takes poly(

A
n, k, 1/ε

A
) 

samples – because we need to take at least 2k samples to distinguish F and F . But 
in the context of proper density estimation, we do not need to distinguish these two 
mixtures. 

A

Open Question 2 Is there a poly(n, k, 1/ε) time algorithm for proper density es
timation for mixtures of k Gaussians in n dimensions? 

6.4 Clustering-Free Algorithms 

Recall, our goal is to learn FA that is ε-close to F . In fact, the same definition can 
be generalized to mixtures of k Gaussians: 

6.4.1  Definition We will say that a mixture F = k
i=1 wiFi is ε-close (on a 

component-by-component basis) to F if there is 
{1, 2, ..., k} so that for all i ∈ {1, 2, ..., k}: 

A
a permutation

∑ A A
 π : {1, 2, ..., k} → 

∣∣ ∣   ∣∣∣ wi − wAπ(i) 
∣∣∣∣  , dTV (Fi, FAπ(i)) ≤ ε 
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When can we hope to learn an ε close estimate in poly(n, 1/ε) samples? In 
fact, there are two trivial cases where we cannot do this, but these will be the only 
things that go wrong: 

(a) If wi = 0, we can never learn FAi that is close to Fi because we never get any 
samples from Fi. 

In fact, we need a quantitative lower bound on each wi, say wi ≥ ε so that if we 
take a reasonable number of samples we will get at least one sample from each 
component. 

(b) If	 dTV (Fi, Fj ) = 0 we can never learn wi or wj because Fi and Fj entirely 
overlap. 

Again, we need a quantitive lower bound on dTV (Fi, Fj ), say dTV (Fi, Fj ) ≥ ε for 
each i = j so that if we take a reasonable number of samples we will get at least 
one sample from the non-overlap region between various pairs of components. 

Theorem 6.4.2 [79], [95] If wi ≥ ε for each i and dTV (Fi, Fj ) ≥ ε for each i = j, Athen there is an efficient algorithm that learns an ε-close estimate F to F whose 
running time and sample complexity are poly(n, 1/ε, log 1/δ) and succeeds with prob
ability 1 − δ. 

Note that the degree of the polynomial depends polynomially on k. Kalai, Moitra 
and Valiant [79] gave the first algorithm for learning mixtures of two Gaussians with 
no separation conditions. Subsequently Moitra and Valiant [95] gave an algorithm 
for mixtures of k Gaussians, again with no separation conditions. 

In independent and concurrent work, Belkin and Sinha [23] gave a polynomial 
time algorithm for mixtures of k Gaussians too, however there is no explicit bound 
given on the running time as a function of k (since their work depends on the basis 
theorem, which is provably ineffective). Also, the goal in [79] and [95] is to learn AF so that its components are close in total variation distance to those of F , which 
is in general a stronger goal than requiring that the parameters be additively close 
which is the goal in [23]. The benefit is that the algorithm in [23] works for more 
general learning problems in the one-dimensional setting, and we will describe this 
algorithm in detail at the end of this chapter. 

Throughout this section, we will focus on the k = 2 case since this algorithm 
is conceptually much simpler. In fact, we will focus on a weaker learning goal: We 
will say that FA is additively ε-close to F if |wi − wAπ(i)|, Iµi − µAπ(i)I, IΣi − ΣAπ(i)IF ≤ ε 
for all i. We will further assume that F is normalized appropriately: 

6=

6=
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Definition 6.4.3 A distribution F is in isotropic position if 

(a) Ex←F [x] = 0 

(b) Ex←F [xx
T ] = I 

Alternatively, we require that the mean of the distribution is zero and that its 
variance in every direction is one. In fact this condition is not quite so strong as it 
sounds: 

Claim 6.4.4 If Ex←F [xx
T ] is full-rank, then there is an affine transformation that 

places F in isotropic position 

Proof: Let µ = Ex←F [x] and let Ex←F [(x − µ)(x − µ)T ] = M . It is easy to see 
that M is positive semi-definite, and in fact is full rank by assumption. Hence we 
can write M = BBT where B is invertible (this is often referred to as the Cholesky 
decomposition [74]). Then set y = B−1(x − µ), and it is easy to see that E[y] = 0 
and E[yyT ] = B−1M(B−1)T = I. • 

Our goal is to learn an additive ε approximation to F , and we will assume that F 
has been pre-processed so that it is in isotropic position. 

Outline 

We can now describe the basic outline of the algorithm, although there will be many 
details to fill: 

(a) Consider a series of projections down to one dimension 

(b) Run a univariate learning algorithm 

(c) Set up a system of linear equations on the high-dimensional parameters, and 
back solve 

Isotropic Projection Lemma 

We will need to overcome a number of obstacles to realize this plan, but let us work 
through the details of this outline: 

Claim 6.4.5 projr[N (µ, Σ)] = N (rT µ, rT Σr) 
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Alternatively, the projection of a high-dimensional Gaussian is a one-dimensional 
Gaussian, and its mean and variance are rT µ and rT Σr respectively. This implies 
that if we knew the parameters of the projection of a single Gaussian component 
onto a (known) direction r, then we could use these parameters to set up a linear 
constraint for µ and Σ. If we follow this plan, we would need to consider about n2 

projections to get enough linear constraints, since there are Θ(n2) variances in Σ 
that we need to solve for. Now we will encounter the first problem in the outline. 
Let us define some notation: 

Definition 6.4.6 dp(N (µ1, σ
2), N (µ2, σ

2)) = |µ1 − µ2| + |σ2 − σ22|1 2 1 

We will refer to this as the parameter distance. Ultimately, we will give a univariate 
algorithm for learning mixtures of Gaussians and we would like to run it on projr[F ]. 

Problem 4 But what if dp(projr[F1], projr[F2]) is exponentially small? 

This would be a problem since we would need to run our univariate algorithm with 
exponentially fine precision just to see that there are two components and not one! 
How can we get around this issue? In fact, this almost surely never happens provided 
that F is in isotropic position. For intuition, consider two cases: 

(a) Suppose Iµ1 − µ2I ≥ poly(1/n, ε). 

If the difference between the means of F1 and F2 is at least any fixed inverse poly
nomial, then with high probability IrT µ1 − rT µ2I is at least poly(1/n, ε) too. Hence 
projr[F1] and projr[F2] will have different parameters due to a difference in their 
means. 

(b) Suppose Iµ1 − µ2I ≤ poly(1/n, ε). 

The key observation is that if dTV (F1, F2) ≥ ε and their means are almost identical, 
then their covariances Σ1 and Σ2 must be noticeably different when projected on a 
random direction r. In this case, projr[F1] and projr[F2] will have different parame
ters due to a difference in their variances. This is the intuition behind the following 
lemma: 

Lemma 6.4.7 If F is in isotropic position and wi ≥ ε and dTV (F1, F2) ≥ ε, then 
with high probability for a random r 

dp(proj [F1], proj [F2]) ≥ 2ε3 = poly(1/n, ε)r r
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Note that this lemma is note true when F is not in isotropic position (e.g. consider 
the parallel pancakes example), and moreover when generalizing to mixtures of k > 2 
Gaussians this is the key step that fails since even if F is in isotropic position, it 
could be that for almost all choices of r the projection onto r results in a mixtures 
that is exponentially closet to a mixture of < k Gaussians! (The approach in [95] 
is to learn a mixture of < k Gaussians as a proxy for the true mixture, and later 
on find a direction that can be used to cluster the mixture into sub mixtures and 
recurse). 

Pairing Lemma 

Next we will encounter the second problem: Suppose we project onto direction r 
F r 1 FAr 1 FAr F s 1 FAs 1 FAsand s and learn A = 1 + 2 and A = 1 + 2 respectively. Then the mean 

2 2 2 2 Aand variance of F1 
r yield a linear constraint on one of the two high-dimensional 

Gaussians, and similarly for FA1 
s . 

Problem 5 How do we know that they yield constraints on the same high-dimensional 
component? 

Ultimately we want to set up a system of linear constraints to solve for the 
parameters of F1, but when we project F onto different directions (say, r and s) 
we need to pair up the components from these two directions. The key observation 
is that as we vary r to s the parameters of the mixture vary continuously. See 
Figure ??. Hence when we project onto r, we know from the isotropic projection 
lemma that the two components will either have noticeably different means or vari
ances. Suppose their means are different by ε3; then if r and s are close (compared 
to ε1) the parameters of each component in the mixture do not change much and 
the component in projr[F ] with larger mean will correspond to the same component 
as the one in projs[F ] with larger mean. A similar statement applies when it is the 
variances that are at least ε3 apart. 

Lemma 6.4.8 If Ir − sI ≤ ε2 = poly(1/n, ε3) then 

(a) If |rT µ1 − rT µ2| ≥ ε3 then the components in projr[F ] and projs[F ] with the 
larger mean correspond to the same high-dimensional component 

(b) Else if |rT Σ1r −rT Σ2r| ≥ ε3 then the components in proj [F ] and proj [F ] withr s

the larger variance correspond to the same high-dimensional component 

Hence if we choose r randomly and only search over directions s with Ir − sI ≤ ε2, 
we will be able to pair up the components correctly in the different one-dimensional 
mixtures. 
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Condition Number Lemma 

Now we encounter the final problem in the high-dimensional case: Suppose we choose 
r randomly and for s1, s2, ...., sp we learn the parameters of the projection of F onto 
these directions and pair up the components correctly. We can only hope to learn the 
parameters on these projection up to some additive accuracy ε1 (and our univariate 
learning algorithm will have running time and sample complexity poly(1/ε1)). 

Problem 6 How do these errors in our univariate estimates translate to errors in 
our high dimensional estimates for µ1, Σ1, µ2, Σ2? 

Recall that the condition number controls this. The final lemma we need in the 
high-dimensional case is: 

Lemma 6.4.9 The condition number of the linear system to solve for µ1, Σ1 is 
poly(1/ε2, n) where all pairs of directions are ε2 apart. 

Intuitively, as r and s1, s2, ...., sp are closer together then the condition number of 
the system will be worse (because the linear constraints are closer to redundant), 
but the key fact is that the condition number is bounded by a fixed polynomial 
in 1/ε2 and n, and hence if we choose ε1 = poly(ε2, n)ε then our estimates to the 
high-dimensional parameters will be within an additive ε. Note that each parameter 
ε, ε3, ε2, ε1 is a fixed polynomial in the earlier parameters (and 1/n) and hence we 
need only run our univariate learning algorithm with inverse polynomial precision 
on a polynomial number of mixtures to learn an ε-close estimate FA! 

But we still need to design a univariate algorithm, and next we return to 
Pearson’s original problem! 

6.5 A Univariate Algorithm 

Here we will give a univariate algorithm to learning the parameters of a mixture of 
two Gaussians up to additive accuracy ε whose running time and sample complexity 
is poly(1/ε). Note that the mixture F = w1F1 + w2F2 is in isotropic position (since 
the projection of a distribution in isotropic position is itself in isotropic position), 
and as before we assume w1, w2 ≥ ε and dTV (F1, F2) ≥ ε. Our first observation is 
that all of the parameters are bounded: 

√ √ 
Claim 6.5.1 (a) µ1, µ2 ∈ [−1/ ε, 1/ ε] 
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(b) σ12, σ22 ∈ [0, 1/ε] 

This claim is immediate, since if any of the above conditions are violated it would 
imply that the mixture has variance strictly larger than one (because w1, w2 ≥ ε 
and the mean of the mixture is zero). 

Hence we could try to learn the parameters using a grid search: 

Grid Search 
Input: samples from F (Θ)  
Output: parameters Θ = ( A wA1, µA1, σA1

2 , µA2, σA2
2)  

For all valid AΘ where the parameters are multiples of εC 

Test A ΘΘ using the samples, if it passes output A
End 

For example, we could test out AΘ by computing the first six moments of F (Θ) from 
enough random examples, and output AΘ if its first six moments are each within an 
additive τ of the observed moments. (This is a slight variant on Pearson’s sixth 
moment test). 

It is easy to see that if we take enough samples and set τ appropriately, then 
if we round the true parameters Θ to any valid grid point whose parameters are 
multiples of εC , then the resulting AΘ will with high probability pass our test. This 
is called the completeness. The much more challenging part is establishing the 
soundness; after all why is there no other set of parameters AΘ except for ones close 
to Θ that pass our test? 

Alternatively, we want to prove that any two mixtures F and FA whose param
eters do not match within an additive ε must have one of their first six moments 
noticeably different. The main lemma is: 

(AMr(Θ) − Mr Θ) 

Lemma 6.5.2 For any F and AF that are not ε-close in parameters, there is an 
r ∈ {1, 2, ..., 6} where 

≥ εO(1) 

where Θ and ΘA are the parameters of F and FA respectively, and Mr is the rth raw 
moment. 

Let W be the empirical moments. Then Mr 

Mr(A Mr(A Mr MrΘ) − Mr(Θ) ≤ W Θ) − W + W − Mr(Θ) ≤ 2τ 

≤τ ≤τ 

∣∣∣ ∣∣∣

∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣︸ ︷︷ ︸
∣∣∣ ∣∣∣︸ ︷︷ ︸
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1

p(x)

f(x) = F(x) − F(x)^

F (x)

F (x)

F (x)

F (x)

^
^

2

1

2

Figure 6.2: If f(x) has at most six zero crossings, we can find at most degree six 
polynomial that agrees with its sign 

where the first term is at most τ because the test passes and the second term is 
small because we can take enough samples (but still poly(1/τ)) so that the empirical 
moments and the true moments are close. Hence we can apply the above lemma in 
the contrapositive, and conclude that if the grid search outputs A ΘΘ then Θ and A
must be ε-close in parameters, which gives us an efficient univariate algorithm! ASo our main goal is to prove that if F and F that are not ε-close, then one 
of their first six moments is noticeably different. In fact, even the case of ε = 0 is 
challenging: If F and FA are different mixtures of two Gaussians, why is one of their 
first six moments necessarily different? Our main goal is to prove this statement, 
using the heat equation. 

In fact, let us consider the following thought experiment. Let f(x) = F (x) − A AF (x) be the point-wise difference between the density functions F and F . Then, 
the heart of the problem is: Can we prove that f(x) crosses the x-axis at most six 
times? See Figure 6.2. 

Lemma 6.5.3 If f(x) crosses the x-axis at most six times, then one of the first six 
moments of F and FA are different 
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Proof: In fact, we can construct a (non-zero) degree at most six polynomial p(x) 
that agrees with the sign of f(x) – i.e. p(x)f(x) ≥ 0 for all x. Then   6r 

0 < p(x)f(x)dx = prx rf(x)dx 
x x r=1 

6r 
≤ 

r=1 

|pr| Mr(Θ) − Mr(AΘ) 

And if the first six moments of F and FA match exactly, the right hand side is zero 
which is a contradiction. • 

So all we need to prove is that F (x) − FA(x) has at most six zero crossings. Let 
us prove a stronger lemma by induction: 

Lemma 6.5.4 Let f(x) = i
k 
=1 αiN (µi, σi 

2, x) be a linear combination of k Gaus
sians (αi can be negative). Then if f(x) is not identically zero, f(x) has at most 
2k − 2 zero crossings. 

We will rely on the following tools: 

Theorem 6.5.5 Given f(x) : R → R, that is analytic and has n zero crossings, then 
for any σ2 > 0, the function g(x) = f(x) ∗ N (0, σ2) has at most n zero crossings. 

This theorem has a physical interpretation. If we think of f(x) as the heat profile 
of an infinite one-dimensional rod, then what does the heat profile look like at some 
later time? In fact it is precisely g(x) = f(x) ∗N (0, σ2) for an appropriately chosen 
σ2 . Alternatively, the Gaussian is the Green’s function of the heat equation. And 
hence many of our physical intuitions for diffusion have consequences for convolution 
– convolving a function by a Gaussian has the effect of smoothing it, and it cannot 
create a new local maxima (and relatedly it cannot create new zero crossings). 

Finally we recall the elementary fact: 

Fact 6.5.6 N (0, σ12) ∗ N (0, σ22) = N (0, σ12 + σ22) 

Now we are ready to prove the above lemma and conclude that if we knew the 
first six moments of a mixture of two Gaussians exactly, then we would know its 
parameters exactly too. Let us prove the above lemma by induction, and assume 
that for any linear combination of k = 3 Gaussians, the number of zero crossings is 

∣∣ ∣∣∣ ∣∣∣ ∣
∣∣ ∣

∑

∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣
∣∣∣ ∣∣∣
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(a)	   (b)	  

(d)	   (c)	  

Figure 6.3: (a) linear combination of four Gaussians (b) subtracting σ2 from each 
variance (c) adding back in the delta function (d) convolving by N (0, σ2) to recover 
the original linear combination 



  

101 6.6. A VIEW FROM ALGEBRAIC GEOMETRY 

at most four. Now consider an arbitrary linear combination of four Gaussians, and 
let σ2 be the smallest variance of any component. See Figure 6.3(a). We can consider 
a related mixture where we subtract σ2 from the variance of each component. See 
Figure 6.3(b). 

Now if we ignore the delta function, we have a linear combination of three 
Gaussians and by induction we know that it has at most four zero crossings. But 
how many zero crossings can we add when we add back in the delta function? We 
can add at most two, one on the way up and one on the way down (here we are 
ignoring some real analysis complications of working with delta functions for ease of 
presentation). See Figure 6.3(c). And now we can convolve the function by N (0, σ2) 
to recover the original linear combination of four Gaussians, but this last step does 
not increase the number of zero crossings! See Figure 6.3(d). 

This proves that 

Mr(A (Θ) r = 1, 2, ..., 6Θ) = Mr , 

has only two solutions (the true parameters and we can also interchange which is 
component is which). In fact, this system of polynomial equations is also stable and 
there is an analogue of condition numbers for systems of polynomial equations that 
implies a quantitative version of what we have just proved: if F and FA that are not 
ε-close, then one of their first six moments is noticeably different. This gives us our 
univariate algorithm. 

6.6 A View from Algebraic Geometry 

Here we will present an alternative univariate learning algorithm of Belkin and Sinha 
[23] that also makes use of the method of moments, but gives a much more general 
analysis using tools from algebraic geometry. 

Polynomial Families 

We will analyze the method of moments for the following class of distributions: 

Definition 6.6.1 A class of distributions F (Θ) is called a polynomial family if 

∀r, EX∈F (Θ) [X
r] = Mr(Θ) 

where Mr(Θ) is a polynomial in Θ = (θ1, θ2, ...., θk). 

{ }
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This definition captures a broad class of distributions such as mixtures models whose 
components are uniform, exponential, Poisson, Gaussian or gamma functions. We 
will need another (tame) condition on the distribution which guarantees that it is 
characterized by all of its moments. 

Fact 6.6.2 If the moment generating function (mgf) of X defined as E [Xn] t
n

n 

! 
converges in a neighborhood of zero, it uniquely determines the probability distribu
tion, i.e. 

∀r, Mr(Θ) = Mr Θ) ⇒ F (Θ) = F (Θ)A .(A =

Our goal is to show that for any polynomial family, a finite number of its moments 
suffice. First we introduce the relevant definitions: 

Definition 6.6.3 Given a ring R, an ideal I generated by g1, g2, · · · , gn ∈ R denoted 
by I = g1, g2, · · · , gn is defined as 

r 
I = rigi where ri ∈ R . 

i 

Definition 6.6.4 A Noetherian ring is a ring such that for any sequence of ideals 

I1 ⊆ I2 ⊆ I3 ⊆ · · · , 

there is N such that IN = IN+1 = IN+2 = · · · . 

Theorem 6.6.5 (Hilbert’s Basis Theorem) If R is a Noetherian ring, then R[X] 
is also a Noetherian ring. 

It is easy to see that R is a Noetherian ring, and hence we know that R[x] is also 
Noetherian. Now we can prove that for any polynomial family, a finite number of 
moments suffice to uniquely identify any distribution in the family: 

Theorem 6.6.6 Let F (Θ) be a polynomial family. If the moment generating func
tion converges in a neighborhood of zero, there exists N such that 

(AF (Θ) = F (Θ)A if and only if Mr(Θ) = Mr Θ) ∀r ∈ 1, 2, · · · , N 

A (AProof: Let Qr(Θ, Θ) = Mr(Θ) − Mr Θ). Let I1 = Q1 , I2 = Q1, Q2 , · · · . AThis is our ascending chain of ideals in R[Θ, Θ]. We can invoke Hilbert’s basis 

∑

〈 〉 {

〈 〉 〈 〉
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theorem and conclude that R[X] is a Noetherian ring and hence, there is N such 
that IN = IN+1 = · · · . So for all N + j, we have 

Nr A A AQN+j (Θ, Θ) = pij (Θ, Θ)Qi(Θ, Θ) 
i=1 Afor some polynomial pij ∈ R[Θ, Θ]. Thus, if Mr (A · ·(Θ) = Mr Θ) for all r ∈ 1, 2, · , N , 

then Mr(Θ) = Mr Θ) for all r and from Fact 6.6.2 we conclude that F (Θ) = F (A(A Θ). 

The other side of the theorem is obvious. • 

The theorem above does not give any finite bound on N , since the basis theorem 
does not either. This is because the basis theorem is proved by contradiction, but 
more fundamentally it is not possible to give a bound on N that depends only on 
the choice of the ring. Consider the following example   
Example 1 Consider the Noetherian ring R[x]. Let Ii = xN−i for i = 0, · · · , N . 
It is a strictly ascending chain of ideals for i = 0, · · · , N . Therefore, even if the ring 
R[x] is fixed, there is no universal bound on N . 

Bounds such as those in Theorem 6.6.6 are often referred to as ineffective. Consider 
an application of the above result to mixtures of Gaussians: from the above theorem, 
we have that any two mixtures F and FA of k Gaussians are identical if and only if 
these mixtures agree on their first N moments. Here N is a function of k, and N is 
finite but we cannot write down any explicit bound on N as a function of k using the 
above tools. Nevertheless, these tools apply much more broadly than the specialized 
ones based on the heat equation that we used to prove that 4k − 2 moments suffice 
for mixtures of k Gaussians in the previous section. 

Systems of Polynomial Inequalities 

In general, we do not have exact access to the moments of a distribution but only 
noisy approximations. Our main goal is to prove a quantitive version of the previous 
result which shows that any two distributions F and FA that are close on their first 
N moments are close in their parameters too. The key fact is that we can bound 
the condition number of systems of polynomial inequalities; there are a number of 
ways to do this but we will use quantifier elimination. Recall: 

Definition 6.6.7 A set S is semi-algebraic if there exist multivariate polynomials 
p1, ..., pn such that 

S = {x1, ..., xr|pi(x1, ..., xr) ≥ 0} 
or if S is a finite union or intersection of such sets. 
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Theorem 6.6.8 (Tarski) The projection of a semi-algebraic set is semi-algebraic. 

We define the following helper set: 

AH(ε, δ) = ∀(Θ, Θ) : (Θ) − Mr Θ)| ≤ δ for r = 1, 2, ...N ⇒ IΘ − A .|Mr (A = ΘI ≤ ε 

Let ε(δ) be the smallest ε as a function of δ: 

Theorem 6.6.9 There are fixed constants C1, C2, s such that if δ < 1/C1 then 
ε(δ) < C2δ

1/s. 

Proof: It is easy to see that we can define H(ε, δ) as the projection of a semi-
algebraic set, and hence using Tarski’s theorem we conclude that H(ε, δ) is also 
semi-algebraic. The crucial observation is that because H(ε, δ) is semi-algebraic, 
the smallest that we can choose ε to be as a function of δ is itself a polynomial 
function of δ. There are some caveats here, because we need to prove that for a 
fixed δ we can choose ε to be strictly greater than zero and moreover the polynomial 
relationship between ε and δ only holds if δ is sufficiently small. However these 
technical issues can be resolved without much more work, see [23] and the main 
result is the following. • 

Corollary 6.6.10 If |Mr(Θ) − Mr Θ)| ≤ ε Θ| ≤ ε.(A s 
then |Θ − A

C2 

Hence there is a polynomial time algorithm to learn the parameters of any uni
variate polynomial family (whose mgf converges in a neighborhood of zero) within 
an additive accuracy of ε whose running time and sample complexity is poly(1/ε); 
we can take enough samples to estimate the first N moments within εs and search 
over a grid of the parameters, and any set of parameters that matches each of the 
moments is necessarily close in parameter distance to the true parameters. 

{ }
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