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18.409 The Behavior of Algorithms in Practice 9 Apr. 2002 

Lecture 14 

Lecturer: Dan Spielman Scribe: Brian Sutton 

In this lecture, we study the worst-case complexity of the simplex method. We conclude by 

stating, without proof, one of the major theorems in the smoothed analysis of the simplex 

method. 

More common geometric view of the simplex method 

The animation that we saw in an earlier lecture is not the most common way of viewing 

the simplex method geometrically. Here we give a more common interpretation. 

Start with the LP formulation 

Tmax c x 

s.t. ai 
T x ≤ bi. 

Each constraint ai 
T x ≤ bi defines a halfspace, so the complete set of constraints defines a 

polytope P (assuming that the LP is feasible and finite). Solving the LP is equivalent to 

finding the vertex of this polytope that lies farthest in the direction of c. 

The simplex method is 

1. Find some vertex of P . 

2. Move to an adjacent vertex in the direction of c, i.e. which improves the objective 

function, and iterate. 

Definition 1. A basic feasible solution of an LP is a feasible x for which exactly d con

straints are tight. Equivalently x is a vertex of the feasible polytope. 

Note that this definition is equivalent to the definition given in an earlier lecture. 

Observation 2. If the ai’s and bi’s are in general position, then 

1. No x satisfies d + 1 constraints with equality. 
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2. The feasible polytope P is simple. 

3. Exactly d planes meet at any vertex. 

4. Every vertex has exactly d neighbors. 

One can show that under a perturbation of the bi’s, the feasible polytope is simple with high 

probability. 

2 Worst-case complexity of the simplex method 

We will assume that P is a simple polytope. Our definition of the simplex method, 

1. Find some vertex of P , 

2. Move to one of the d neighbors improving the objective function, and iterate, 

is incomplete. It does not specify how to find the initial vertex, nor how to choose the next 

neighbor in the sequence. Finding the initial vertex will be addressed in a later lecture. Now 

we look at pivot rules, which specify which neighbor to choose in step (2) of the algorithm. 

Chvatl’s book is a good reference on pivot rules. 

2.1 Pivot rules 

1. Greedy: Choose the vertex giving the maximal improvement in the objective function. 

2. Bland’s rule: Index the constraints. The current vertex v satisfies exactly d constraints 

with equality, i.e. it lies at the intersection of d faces of the polytope. Any adjacent 

vertex w lies on d − 1 of these faces. So when moving from v to w, exactly one 

constraint is loosened from tightness. Choose w so that the constraint that is loosened 

has least index. 

3. Dantzig’s largest coefficient: Similar to Bland’s. 

4. Steepest edge: Make the most progress per distance travelled. 

5. Random. 
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2.2 Time complexity of deterministic pivot rules 

The simplex method with any of the above four deterministic pivot rules takes exponential 

time in worst-case. There are no known polynomial time pivot rules. We have the belief, 

“Almost all deterministic pivot rules take exponential time in the worst case.” 

A powerful tool for generating polytopes that produce slow behavior for a particular pivot 

rule was provided by Amenta and Ziegler. 

The following question came from the audience: Is the performance bad because the poly

tope has large diameter, or because the algorithm chooses a poor path? 

It seems that the polytope of an LP in d dimensions with n constraints has polynomial 

diameter in n and d. Our best proven result is 

Theorem 3 (Kalai-Kleitman). The diameter of the polytope is ≤ nlog2 n . 

But we have the conjecture 

Conjecture 4 (Hirsch). The diameter of the polytope is ≤ n − d + 1. (Actually, the 

conjecture might be n − d − 1. We don’t remember.) 

2.3 Time complexity of random pivot rules 

We know very little about the time complexity of random pivot rules. We do know that 

there exist random pivot rules that take nO(
√

d) steps. This result was proved independently 

by Kalai and Matoušek-Sharir-Welzl. 

2.4 Worst-case complexity of Bland’s rule 

The initial paper on constructing worst-case inputs for a pivot rule was by Klee-Minty. 

We will construct a deformed hypercube that will cause Bland’s rule to visit every vertex 

when started at a particular vertex. 
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In d dimensions, a hypercube is defined by the 2d constraints 

0 ≤ x1 ≤ 1 

0 ≤ x2 ≤ 1 

. . . 

0 ≤ xi ≤ 1 

. . . 

Our feasible set is 
x10 ≤ ≤ 1 

εx1 1 − εxi≤ x2 ≤ 

P := . . . 

εxi−1 1 − εxi−1≤ xi ≤ 

. . . , 

with ε = 1/3. We will index the constraints as follows: 

1 2 
x10 ≤ ≤ 1 

. . . 
2i 

εxi−1

2i−1 
xi 1 − εxi−1≤ ≤ 

. . . 

Claim: x is a vertex of P if and only if inequality 2i− 1 or 2i is tight for each i. To prove 

the claim, observe that it is impossible to satisfy inequalities 2i− 1 and 2i simultaneously. 

Thus, in order to make d inequalities tight, we must choose one inequality from each pair. 

Theorem 5. Bland’s rule visits every vertex of P when solving 

1. max xd s.t. x ∈ P if started at (0, 0, . . . , 0). 

2. min xd s.t. x ∈ P if started at (0, . . . , 0, 1). 

Proof. The proof is by induction. Assume that the theorem is true for d − 1 dimensions. 

We will prove part (1) of the theorem. The proof of part (2) is very similar. 

The walk around the polytope begins with a sequence of points satisfying xd = εxd−1. 

Because Bland’s rule will not loosen this equality until it is impossible to loosen any equality 

of lower index (without decreasing the objective function), the walk starts by maximizing 

xd−1 over the polytope in d − 1 dimensions that is the projection of P to coordinates 
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x1, . . . , xd−1. Thus, by induction (part (1)), the walk visits every vertex of P satisfying 

xd = εxd−1. 

The next step is to (0, 0, . . . , 0, 1, 1 − ε). Now, xd gets larger as xd−1 gets smaller, so that 

the walk visits every vertex satisfying xd = 1 − εxd−1 by induction (part (2)). 

2.5 Pivot rules under perturbation 

There are two types of perturbations one might consider: 

1. Absolute perturbations: Write the feasible set as Ax ≤ b, and suppose A is subject 

to absolute perturbations. This model seems strange, since A can be so sparse. (In 

our worst-case instance for Bland’s rule, A contained only one nonzero entry in any 

row.) 

2. Zero-preserving perturbations: Our proof for the exponential running time of Bland’s 

rule holds up under zero-preserving perturbations. What about problem instances 

for the greedy pivot rule? The first worst-case instance, provided by Jeroslow, does 

not hold up under perturbation. It is not known whether the instance provided by 

Amenta and Ziegler holds up under perturbation. 

3 Smoothed analysis of the simplex method 

Our smoothed analysis of the simplex method will take advantage of some nice properties 

of the shadow-vertex pivot rule. 

3.1 Definition of the shadow-vertex pivot rule 

The inspiration for this rule comes from the fact that linear programming is easy in two 

dimensions. The idea is to project the feasible polytope to a convex polygon, i.e. “take a 

shadow,” that satisfies 

1. The optimal vertex maps to the exterior, 

2. The start vertex maps to the exterior, 
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and then optimize over the shadow. To construct such a shadow, find a linear function t that 

is optimized by the current vertex and map each vertex v of the polytope to (�v, c� , �v, t�). 

Claim: If a vertex v of the polytope projects to the exterior of the shadow, then one can 

compute which neighbor of v will be visited next on the shadow. 

Thus, algorithmically, the shadow-vertex pivot rule is reasonable. The rule’s major analyt

ical advantage is the fact that we can succinctly describe the vertices that are visited as 

follows. Let optz(A,b) denote the vertex optimizing zT x s.t. Ax ≤ b. Then the vertices 

encountered when optimizing c are 
 
opt(1−λ)t+λc(A,b). 

0≤λ≤1 

3.2 Worst-case complexity of the shadow-vertex pivot rule 

The shadow-vertex pivot rule has exponential worst-case complexity. The following instance 

induces exponential running time: 

x10 ≤ ≤ 1 

εx1 1 − εxi≤	 x2 ≤ 

. . . 

ε(xi−1 − γxi−2)	 1 − ε(xi−1 − γxi−2)≤ xi ≤ 

. . . , 

where ε = 1/3 and γ = 1/12. 

3.3 Smoothed analysis of the shadow-vertex pivot rule 

We will prove the following theorem in upcoming lectures. 

a1, . . . ,ˆTheorem 6. Let t and c be arbitrary vectors, bi ∈ {1,−1}, and ˆ an vectors of norm 

at most 1. If a1, . . . ,an are Gaussian random vectors of variance σ2 centered at âi, then ⎡ ⎤
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0≤λ≤1 

opt(1−λ)t+λc(a1, . . . ,an, b1, . . . , bn)⎣
 ⎦
≤ poly(n, d,
 ).
E 
σ

It is an open problem to prove a similar result for perturbations that preserve feasibility 

(or unfeasibility). 
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