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How this Problem Set Works 

Just like the first problem set, I’ll put some hints online a few days after I post the problem set. Use as 
many of the hints as you like; just note in your solution whether you are doing so. Also, recall that you need 
not do all of the problems on the problem set. Only do as many as is helpful for you to learn the material. 

As was the case last time, many of these problems have solutions that can easily be found by web 
searching. Please don’t do that. It’s not very nice. 

Note: Problems 3 and 4 relate to material that will be covered in lecture this coming Thursday. 

Iterative Methods for Linear Algebra 

Problem 1: Computing Eigenvalues with the Power Method 

In this question, we’ll examine the power method, which is a common technique used to approximately 
compute the biggest eigenvalue of a matrix and its corresponding eigenvector. 

Let M be a positive definite symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn and corresponding 
eigenvectors v1, . . . , vn (normalized to be on the unit sphere), and suppose that λn−1 �= λn. Let x0 ∈ Rn be 
a uniformly random vector of norm 1. Inductively define 

Axi 
xi+1 = . 

||Axi|| 

(a) Show that the xi converge to vn with high probability over the choice of x0. Are there any starting 
vectors x0 for which this method fails? What happens if λn−k = = λn?· · · 

(b) How quickly does the power method converge? That is, approximately how many steps does it take 
before ||vn − xi||2 ≤ � for some given � > 0 (and on which of the given parameters and variables does this 
rate depend)? 

(c) Suppose that you just want to know the largest eigenvalue of M and don’t care about the corresponding 
eigenvector. Describe how to use a method like this to find it, and give a bound on how many iterations you 
need to get an estimate within a factor of 1 ± � of the correct answer with high probability. 

(d) What (if anything) changes about the above analysis if M is allowed to have negative eigenvalues? 
What about if M is not required to be symmetric? 

(e) How might you use a procedure like this to compute the smallest eigenvalue of M (in absolute value)? 
There are two answers to this (that I see). One of them only works when I promise you that all of the 
eigenvalues of M are positive, whereas the other works for any symmetric M but is computationally more 
difficult. 
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(f) Design a procedure like the method from part (d) that computes the eigenvalue of M that is closest 
to some given value λ. How quickly does it converge? You may assume that you can quickly solve linear 
systems of the form Mx = b. 

Problem 2: Speeding up Eigenvalue Computation and the Lanczos Method 

In this problem, we’ll see how to do better than the power method under certain circumstances. Everything 
below will use the notation set forth in problem 1. 

(a) The eigenvector of A corresponding to the smallest eigenvalue is the unit vector that minimizes the 
quadratic form xT Ax (with an analogous statement for the biggest eigenvalue too). We showed in class 
how to minimize a quadratic form using the conjugate gradient method. Why can’t we just use this exact 
algorithm to find the biggest/smallest eigenvalue? 

(b) Suppose that I promised you in advance that λn = 1 and that all of the other eigenvalues lie in some 
interval [λmin, λmax], with λmin > 0. Describe an iterative procedure to obtain a good approximation of v 
that converges significantly faster than the power method and uses the word “Chebyshev.”1 How quickly 
can you make this converge? 

(c) In this and the following parts, we will develop the Lanczos method, which is, to some extent, the 
proper analogue of conjugate gradient for computing eigenvalues. As with conjugate gradient, Lanczos will 
perform as well as the Chebyshev construction, but without requiring you to know in advance what λmin 

and λmax are. 
For a vector x, let K(A, x, k) = span(x, Ax, A2x, . . . , Ak−1x). Show how to use a procedure like the 

conjugate gradient method to produce an orthonormal basis for K(A, x, k). Note that I am asking for an 
actual orthonormal basis, not an A-orthonormal basis. You should do this iteratively, producing a new vector 
qi in each step that is orthogonal to those produced in previous steps. As in conjugate gradient, you should 
be able to express qi+1 using a recurrence that involves only the vectors qi, qi−1, and Aqi. 

(d) Show how to use the recurrence and the vectors from the previous part to find a tridiagonal matrix T 
(i.e., a matrix with nonzero terms only on the diagonal and the off-diagonals directly above and below) and 
an orthogonal matrix Q such that QT AQ = T . Deduce that we can find the eigenvalues and eigenvectors 
of A by finding the eigenvalues and eigenvectors of T . Why should it be any faster to find approximate 
eigenvalues of T than it is to find those of A? 

(e) Suppose that we just want to approximately find the largest and smallest eigenvalues of A, and that 
we stop the Lanczos method after t < n iterations. Show how to get a good estimate by finding the 
maximum/minimum eigenvalues of a t × t submatrix of the tridiagonal matrix from part (c) (or slight 
variant thereof, if you like) that we have already computed. Why should this be a good estimate? If we 
apply it to the problem in part (b), how will it compare to the answer you obtained using variants of 
Chebyshev polynomials? 

Problem 3: Reducing Diagonally Dominant Linear Systems to Laplacians 

Let M be any n × n symmetric diagonally dominant matrix with all positive diagonal entries. Our goal 
is to solve Mx = b. We noted in class that, if all of the off-diagonal entries of M are nonpositive, M 
can be thought of as the Laplacian of some weighted graph (possibly with self-loops), and we can use the 
preconditioning techniques that we’ve been discussing. 

1Note: The following is not the sort of solution that I have in mind: “Compute the eigenvalues using an exact method in 
one iteration. Chebyshev.” 
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Suppose now that I give you a black box for solving linear systems of the form Lx = b, where L is 
the Laplacian of a weighted graph. Show how to use this to solve Mx = b for any symmetric, diagonally 
dominant M , even if M has positive off-diagonals. (Hint: you’ll need to build a 2n × 2n matrix from M .) 

Problem 4: Building Augmented Spanning Tree Preconditioners 

In this problem, we’ll fill in some of the details about the construction of preconditioners from augmented 
spanning trees. Assume throughout the problem we’ve already sparsified our graph, so the degree is at most 
polylogarithmic. 

(a) Suppose that we have an unweighted graph G and a subgraph H. Suppose that every edge (i, j) of G 
is routed along some path π(i, j) in H. Let st(i, j) be the length of the path π(i, j), and let 

Γ = max st(i, j). 
e∈H 

(i,j)∈EG s.t. 
e∈π(i,j) 

Call the inner summation the “total stretch over e.” Show that 

H � G � ΓH. 

(b) Suppose that we take H to be a low-stretch spanning tree, so that 

st(i, j) ≤ mpolylog(n). 
(i,j)∈EG 

Call this sum the “total stretch” of G. Show that 

H � G � mpolylog(n)H. 

(c) Suppose that we cut G into pieces G1, . . . , Gt and use this to induce a similar partition of the low-
stretch spanning tree H into H1, . . . ,Ht. Suppose further that the total stretch of each Gi is about the 
same, i.e., it is, up to polylogarithmic factors, the total stretch of G divided by t, and that all of the Hi are 
connected. Show that edges internal to Gi (i.e., that don’t cross this partition) can be routed along edges 
in Hi so that the average stretch of such edges in Hi is at most polylogarithmic in n. (Don’t be alarmed if 
this strikes you as essentially immediate from the definitions.) 

(d) Now add at most t(t − 1)/2 edges to H as follows. For every pair (Gi, Gj ) such that there is at least 
one edge in G connecting a vertex in one set to the other, add the one of these edges with largest total 
stretch. Let the resulting graph be called H �. Show that 

H � � G � (m/t) polylog(n)H �.· 

This has therefore produced a preconditioner with n + O(t2) edges that yields a condition number (of the 
preconditioned system) of O�(n/t). 

Non-Problem: Chebyshev Polynomials 

I was going to put a problem on the problem set that developed the properties of Chebyshev polynomials, but 
they are quite nicely laid out in Shewchuk’s survey, and it seems silly to assign a problem that is answered 
in the course readings. Instead, I will just encourage you to read about them therein. 
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Lattices 

Problem 1: General Lattice Problems 

(a) Let Λ ⊆ Zn be a full-rank lattice. Prove that Λ ⊇ det(Λ) Zn .· 

(b) In class, we showed that LLL results eventually in a pretty good basis consisting of short vectors. 
Show, however, that just running the reduction step once can actually make some of the vectors in a lattice 
basis much longer. More precisely, construct a set of basis vectors b1, . . . , bn such that the result of running 
the LLL reduction step once contains a basis vector that is Ω(

√
n) times longer than the longest of the bis. 

(c) Let b1, . . . , bn be a reduced basis for some lattice Λ. In class, we showed that the length b1 is within 
a factor of 2O(n) of the length of the shortest vector in Λ. Show that this is tight by producing a reduced 
basis that meets this bound. 

Problem 2: Small Solutions to Modular Polynomial Equations and Attacking 
Low-Exponent RSA Encryption 

Let p(x) = c0 + c1x + + cd−1x
d−1 + xd be a monic polynomial with integer coefficients c0, . . . , cd−1 ∈ Z,· · · 

let cd = 1, and let M ∈ Z be a positive integer. In this problem, we will try to find an integer m such that: 

• p(m) ≡ 0 mod M , and 

d• |m| ≤
√

M . 

We will use this to attack the RSA cryptosystem when it is used with a small public exponent. 
Finding the roots of a (reasonable) univariate polynomial over R is not very difficult, and it can be 

accomplished using standard techniques. The difficulty comes from the fact that we need to solve the 
equation mod M , where M is an arbitrary (not necessarily prime) integer that we don’t know how to factor. 
(If we knew how to factor M , there would be better solutions to this problem. However, we don’t know how 
to factor large numbers in polynomial time, and RSA is based on this problem being difficult.) Our basic 
plan will be to reduce solving the modular equation to finding the roots of a small number of polynomials 
over R. 

(a) Suppose that, for some X ∈ R>0 and h ∈ Z>0, we have 

d

ciX
i < Mh−1 . 

i=0 

Show that any integer solution x to p(x) ≡ 0 mod Mh−1 with |x| ≤ X is also a solution to p(x) = 0 over R. 

(b)	 Let m be any solution to p(m) ≡ 0 mod M , and let 

qij (x) = Mh−i−1 xj p(x)i , i = 0, . . . , h − 1, j = 0, . . . , d − 1. 

Show that αij qij (m) ≡ 0i,j mod Mh−1 for any coefficients αij ∈ Z. 

(c) For each polynomial qij , define a vector bij whose kth coefficient is akXk, where ak is the coefficient 
of xk in qij . [Note the extra factor of Xk in the definition.] Collect these vectors into a matrix B, whose 
columns are the bij . Argue that the matrix B is triangular, and compute its determinant. 
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(d) Let Λ be the lattice generated by the bij . Note that its dimension is dh. Show that LLL finds a vector 
in Λ whose �1 norm is at most 2dh dh M (h−1)/2X(dh−1)/2 . [Note that we are looking at �1, while LLL gives · · 
you a bound on �2.]


Remark 1. The input size for the problem is O(d log M ), so we can construct the above lattice and run LLL

when h = poly(d, log M). It will suffice for the rest of the question to take h = log(M).


(e) Use the above to find all m such that p(m) ≡ 0 mod M and |m|
√

M for some constant C.≤ C d Then, 
show how to achieve this for any fixed constant C by running your algorithm a constant number of times 
(where the constant may depend on C). 

Parts (f) and (g) are for people familiar with the RSA cryptosystem. 

(f) Suppose Alice fixes her public exponent to be 3. (Our attack will work for any small integer. People 
have seriously considered such possibilities to improve the efficiency of encryption.) Suppose that Bob, 
Charlie, and David have pairwise relatively prime public keys NB , NC , and ND, and that Alice sends the 
same message m to each. This gives the ciphertexts ci = m3 mod Ni for i ∈ {B, C, D}. Show that an 
eavesdropper who received cB , cC , and cD (and who knows everyone’s public keys) can recover m. You may 
use without proof that fact that the Chinese Remainder Theorem can be realized as an efficient algorithm 
(i.e., the number it guarantees to exist can be found efficiently). This part of the problem shouldn’t require 
any lattices. [Note: remember that RSA requires the message m to be less than each of the Ni, or else the 
receiver wouldn’t be able to uniquely decrypt. You’ll need to use this.] 

(g) A common solution to the above problem is to concatenate the recipient’s name to the message before 
encrypting it so that you send different messages to B, C, and D. More precisely, you replace the message 
m with M + 2kR, where k is the length of the message and R is some identification number assigned to the 
recipient. Use the algorithm derived earlier in this problem to show that an eavesdropper can still recover 
m from cB , cC , and cD. 

5 



MIT OpenCourseWare
http://ocw.mit.edu 

18.409 Topics in Theoretical Computer Science: An Algorithmist's Toolkit 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

