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1 Abstract 
 
 The paper “Turbo Equalization Using Non-Systematic and Recursive Systematic 

Convolutional Codes”, by Vladimir D Trajkovic and Pradrag B. Rapajic, has somewhat 

unusual results.  In this paper, the authors state that although systematic codes are known 

to have lower bit error rates (BERs) than non-systematic ones, in turbo equalization they 

perform equally well.  This seems to be a non-intuitive result, and so we decided to 

reproduce their results, in order to test this phenomenon for ourselves.   

 Turbo equalization, which will be explained in more detail later in the paper, is 

the form of turbo encoding that is used when working with intersymbol interference (ISI) 

channels.  ISI channels are different from ideal channels such as binary erasure, 

Gaussian, or binary symmetric crossover channels, in that the value that the channel 

outputs depends not only on the most recent input to the channel, but also on the values 

of past inputs.  This is a realistic scenario in cases where electrical signals take time to 

dissipate, or in cases of magnetic storage of information, where there might remain some 

noise from whatever bits were previously stored in a given spot.  The first is an example 

of  a finite impulse response (FIR) ISI channel, while the latter is an example of an 

infinite response.  The difference will be described in the next section.   

 
 
2 The Channel 
 
 An ISI channel is characterized by its length L, and by a polynomial H of degree 

L.  The coefficients h0 to hL-1 from that polynomial are multiplied by the message bits to 

get the channel output symbol.  For example, if the channel had length two, and the 

inputs so far were x1, x2, and x3, then the third output symbol, y3, would be y3 = x3*h0 

+ x2*h1 + x1*h2.  In a channel of infinite length, all of the previous input symbols are 

taken into account.  If L is finite however, only the last L symbols affect the next symbol, 

and the rest can be safely ignored.   



In most cases where an ISI channel appears, the channel has additive Gaussian 

white noise (AGWN) as well.  The combination of ISI and AGWN produces a channel 

that simulates some actual physical channels, which is why it is used in error correcting 

codes research.   The paper we are using as the basis for our project follows this 

convention, so we will use AGWN in our channel.  In this part, a random Gaussian 

number is produced using the Java Random class, and this number is then added to the 

current channel value.   

 Suppose the vector x is the message going into the channel, with x(k) as its kth 

symbol.  Similarly, let y be the set of outputs from the channel.  We will let n(k) be the 

value of the Gaussian noise added to the kth symbol.  Then, this gives us the equation: 

 Y(k) =( ∑x(k-i)*h(i)) + n(k) (1) 

(where i goes from 1 to L). 

 We will use the same three channels that were used in the paper we are basing our 

experiment on [1].*  They have the following polynomials: 

H1 = [0.5, 0.71, 0.5] 

H2 = [0.407, 0.815, 0.407] 

H3= [0.227, 0.46, 0.688, 0.46, 0.227] 

As can be seen, the first two are channels of length three, while the third has length five.  

Also, all three are symmetrical.   

 

3. Turbo Equalization 

 

When working with channels that do not have ISI, the turbo code has met with 

significant success.  Turbo encoding is a process in which a code word is passed through 

an outer code, a random interleaver, and then an inner code.  The outer and inner codes 

are often convolutional codes.  In the decoding process, soft data is passed between the 

convolutional decoders for the outer and inner code for a certain number of iterations, 

                                                 
* The H3 given here is actually different from the H3 in the paper.  However, the paper says that the ISI 
channels were obtained from the Proakis textbook. [4] In that textbook, H3 has the values given above.  
Therefore, we think the H3 in the paper has a typo. 



eventually converging on some final value for each of the bits of the original message.  

The following figures show the very basics of how turbo encoding and decoding work.  
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Turbo equalization is similar to turbo decoding, but slightly altered in order to be 

more effective in the presence of ISI.  In turbo equalization, the ISI part of the channel is 

treated as the inner code.  Equalization refers to the process of getting from the real 

numbers that come off the channel to probabilities for the likelihood that each given bit 

was a 1, which is the form of information that the outer code’s decoder will need as input.  

Originally, people attempted to completely separate the equalization and decoding 

processes, but in doing so some information that would have otherwise helped the 

decoding process was lost in the equalization process.  So instead, here we repeatedly 



pass data between the decoder for our convolutional code and the equalizer for the ISI 

channel. [2] 

 
 
4. The NSC and RSC Convolutional codes 
 

The only difference between the two Turbo Equalizers that we are simulating is 

the convolutional codes that are used as the outer code for the turbo equalizer.  The two 

convolutional codes are related, but with the major difference that one is a non-systematic 

(NSC) covolutional code, whereas the other is a systematic code (RSC).  Systematic 

means that the original message is repeated in the output of the encoder.  On the other 

hand, to get the original message using the output of an NSC, one has to first decode.  In 

both of these codes, 2 output bits are produced for every input bit.  Also, the basic 

structures of both codes are very similar, as can be seen in the following diagrams.  The 

squares are delays, and the circles are addition (modulo 2) nodes. 

The NSC, which we got from [1] is:  
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in 
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The RSC is similar to the NSC, but of course not exactly the same: 
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A convolutional code can be represented as a state machine, where each state represents a 

possible configuration of the delay values.  The transitions that are possible in this 

machine can later be used to perform the decoding.  In this case, there are 16 possible 

states, because there are 4 delays.  One can imagine a trellis, in which the transitions from 

one state to the next are all represented, and any particular path on the trellis represents a 

particular possible sequence of states.  Each path, then, would correspond to a specific 

and unique sequence of ones and zeroes.  To decode an n-bit code word, we need to 

figure out what sequence of states the code went through.  We will have a known start 

state, in which all of the delay values are zeros.  If we have probabilities for which state 

we were in at step k, and we know all of the possible transitions, then we can get 

probabilities for what state we were in at step k+1.  For example, the NSC has a transition 

from state 0011 to state 1001, in which the output bit values are 00.  The other way to 

transition into 1001 is from 0010, with an output value of 11.  We have values for pr(state 

k=0011) and pr(state k=0010).  Also, we have as input to the decoder pr(b=1) for every 

bit b in the encoded message.  The output bits that would correspond to the kth transition 

are b[2k] and b[2k+1].  From all these probabilities, we can use the following formula to 

calculate the probability that the k+1th state was 1001:  

pr(state k+1=1001) = pr(state k=0011)*pr(b[2k]=0)*pr(b[2k+1]=0) + (2) 

  pr(state k=0010)*pr(b[2k]=1)*pr(b[2k+1]=1) 

in

out 



We can make similar calculations to get the probabilities for every other possible value of 

state k+1.  Once we do that, we can likewise calculate what state k+2 was, and just keep 

making forward calculations until we reach the final state.  In a very similar manner, 

probabilities can be calculated for each state at each transition by using the k+1 

probabilities to calculate probabilities for k.  This will be done in an almost identical way, 

except that the transitions in the trellis will reverse directions.   

Now, we can use these probabilities to calculate the probabilities that the decoder 

will output.  In turbo equalization, there are two different outputs that the convolutional 

decoder needs to compute.  First, it needs to compute values to send back to the 

equalizer.  These values will be pr(b=1) for each bit b[i] in the encoded message.  

Second, the decoder will at the end have to compute final guesses for what each bit a[k] 

in the original message was.  To get this probability, we will calculate the probability of 

each possible transition from state k to state k+1.  The probabilities corresponding to 

transitions where a[k]=1 will be summed up to be the numerator, and the probabilities for 

all of the transitions will be summed up to make a denominator.  The probability for the 

transition from state i to state j, where the output bits are = b1 and b2, is found usuing the 

following formula: 

pr(state i to state j) = fwd pr(kth state was i) *pr(b[2k]=b1)* (3) 

pr(b[2k+1]=b2)*bkwd pr(k+1th state was j)  

 The transition probabilities for the b calculations are the same.  The only 

difference is that instead of having the numerator being a sum of all transitions with a 

certain value for a, we will sum up all transitions with a particular value of b[i].  After 

these probabilities for b are computed, they are interleaved and then sent to the equalizer.  

For an alternative description of the decoding process, see [2]. 

 For the RSC, the calculations are slightly different.  The overall process will stay 

the same.  The only difference is that in order for the forward and backwards probabilities 

to be considered extrinsic, they cannon take the systematic bit into account.  Therefore, 

equation 2 would omit one of the pr(b[i]=x) values (the one for the systematic bit b).  

Other than this, the process should be identical to that of the NSC convolutional decoder.   

 

5. Equalization 



 The equalization algorithm looks very similar to the convolutional decoder’s 

algorithm, because in turbo equalization the ISI channel is essentially treated as a 

convolutional code.  The ISI effects can be represented by a circuit diagram that looks 

like this:  

input 

 
The nodes in the diagram represent multiplication and addition nodes.  As can be seen 

here, if the ISI channel has length n, then there are n-1 delays in the circuit.  As with the 

convolutional codes, a certain combination of values in the delays can represent a certain 

state in a state diagram.  The primary difference between this code and the ones in the 

previous section is that the output values are no longer bits, but rather real numbers.  

However, each transition does have a particular output symbol associated with it, so this 

is not as much of a complication as one might initially expect.  As before, we move 

forward on the trellis, computing probabilities for each state.  We will use essentially the 

same equation as equation (2).  The only difference is that each transition has only one 

output symbol associated with it, and the probability for that symbol’s value is obtained 

differently.  We have two inputs in the equalizer: the channel, and the decoder.  From the 

decoder, we get probabilities for each b[i] that b[i]=1.  From the channel, we get the real 

numbers that are a sum of the ISI outputs plus the AWGN.  We are assuming that the 

equalizer knows what the ISI coefficients are.  We can use the Gaussian distribution 

function to calculate pr(b[k]=x|state k=y).  We will use the function g(n) to represent the 

probability of having the random Gaussian number =n.  We then combine the two b 

probabilities, and produce the equalizer’s equivalent of equation (2), which looks like this 

(for state k=i, input b[k]=1, output = x,  

h0
h1 h2



unchosen output=z, and channel value for output =y): 

pr(state k+1=j)= pr(state k=i)* (4) 

pr(b[k]=1)*g(y-x)/( pr(b[k]=1)*g(y-x) + pr(b[k]=0)*g(z-x)) 

The equalizer then calculates for each b[i] the probability that b[i]=1.  This is done just as 

it is done in the convolutional decoder.  These values are then de-interleaved and sent to 

the decoder.  For an alternative description of the equalization process, see [2]. 

  

6. Conclusion 

 Unfortunately, we were unable to produce satisfactory results with our simulation 

code.  We tested each component individually and they all seemed to be performing 

reasonably well, but when we combined all the components we were only able to produce 

results with bit error rates very close to ½, which implies that our turbo equalizer would 

have been equally well off just randomly guessing values.  The most recent versions of 

our project code can be found at http://web.mit.edu/sarahl/Public, or at 

http://web.mit.edu/thinker/courses/18.413/finalproject/final/. 

We tried to get information from Trajkovic and Rapajic with regards to their experiments 

and result data, but we have yet to receive the data that they said they would send us.  

Apparently, the end of the term is every bit as hectic in Australia as it is here.   

 

The experimental results that Trajkovic and Rapajic reached are surprising, but I have not 

yet gathered enough information to determine whether my findings correspond to theirs.  

Perhaps, the reason why no significant difference was noticed between the two 

convolutional codes was because the equalization process ended up being the limiting 

factor.  I would imagine that if it was significantly worse than the decoders, then the two 

different turbo codes might end up with similar results.   

http://web.mit.edu/sarahl/Public
http://web.mit.edu/thinker/courses/18.413/finalproject/final/
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