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Gibbs Sampling 

Introduction 

Let’s first recall the Motif Finding Problem: given a set of n DNA sequences each of 
length t, find the profile (a set of l-mers, one from each sequence) that maximizes the 
consensus score. 

We have already seen various naive brute-force approaches for solving this problem. 

In this lecture, we will apply a probabilistic method known as Gibbs Sampling to 
solve this problem. 

A probabilistic approach to Motif Finding 

We can generalize the Motif Finding Problem as follows: given a multivariable scoring 
function f(y1, y2, . . . , yn), find the vector �y that maximizes f . 

Consider a probability distribution p where p � f . Intuitively, if f is relatively large 
at the optimum, then if we repeatedly sample from the probability distribution p, 
then we are likely to quickly encounter the optimum. 

Gibbs Sampling provides us a method of sampling from a probability distribution 
over a large set. 

We will use a technique known as simulated annealing to transform a probability 
distribution into one that has a relatively tall peak at the optimum, to ensure that 
Gibbs sampling is likely to quickly encounter the optimum. In particular, we will 
observe visually that the probability distribution p � f 1/T , for a sufficiently small T , 
is a good choice. 
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Gibbs Sampling 

Gibbs Sampling solves the following problem. 

•	 Input: a probability distribution p(y1, y2, . . . , yn), where each yi � S.

|S|n may be big, but |S| is assumed to be manageable.


•	 Output: a random �y chosen from the probability distribution p. 

Gibbs Sampling uses the technique of Monte Carlo Markov Chain simulation. The 
idea is to set up a Markov Chain having p as its steady-state distribution, and then 
simulate this Markov Chain for long enough to be confident that an approximation of 
the steady-state has been attained. The final state of the simulation approximately 
represents a sample from the steady-state distribution. 

Let’s now define our Markov Chain. The set of states of our Markov Chain is Sn . 
Transitions exist only between states differing in at most one coordinate. For states 
�y = (y1, . . . , ym, . . . , yn) and �y� = (y1, . . . , ym, . . . , yn), we define the transition prob-

� p(y1,...,ym,...,yn)ability T (�y � �y ) = 1 � 

n 
P

ym 
p(y1 ,...,ym,...,yn) . 

We now show that the distribution p is a steady-state distribution of our Markov 
Chain. 

Recall that the definining property of a steady-state distribution � is 

�T = � 

This property is known as global balance. 
The stronger property 

�(�y)T (�y � �y ) = �(�y )T (�y � � �y) 

is known as detailed balance. We can see that detailed balance implies global balance 
by summing both sides of the detailed balance condition over �y�: 

�(�y)T (�y � �y �) = �(�y )T (�y � � �y) 
�y �y 

�(�y) T (�y � �y �) = �(�y )T (�y � � �y) 
�y �y 

�(�y) = (�T )(�y) 

Therefore, let’s just check whether p satisfies detailed balance. If �y differs from �y in 
zero or more than one place, then detailed balance trivially holds (in the latter case, 
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both sides of the detailed balance condition evaluate to zero). So, suppose that �y
differs from �y in only one place, say coordinate m. The left-hand-side of the detailed 
balance condition evaluates to p(�y) 1 

n 
�(p y 

P

ym 
p(y1,...,ym,...,yn) . The right-hand-side evaluates 

to p(�y�) 1 
n 

�(p y) 
P

ym 
p(y1 ,...,ym,...,yn) . The two sides are equal, as desired. 

Therefore, p is indeed the steady-state distribution of our Markov Chain. 

Scoring profiles 

Let’s investigate a probabilistic approach to scoring profiles, as an alternative to 
simply using the consensus score. 

We assume a background frequency Px for character x. 

Let Cx,i denote the number of occurences of character x in the ith column of the 
profile. We call this the profile matrix. 

Then, in the background, the probability that a profile has profile matrix C is given 
by 

l−1 � 
 

C
prob(C) = 

n
P Ca,i P Cc,i Pg

Cg,i Pt
Ct,i 

a,i Cc,i Cg,i Ct,i
a c 

i=0 
� 1 

C
� P Cx,i 

x,i! 
x 

x,i 

Since the profile corresponding to the actual motif locations should have small back
ground probability, we assign 

score(C) � 1/prob(C) 

� Cx,i!P −Cx,i 
x 

x,i 

Now, log (n!) = �(n log n). Therefore, 
� Cx,i 

P
score(C) � exp ( Cx,i log ) 

xx,i 

The exponent is known as the entropy of the profile. 

In summary, maximizing the entropy, rather than the consensus score, is a statistically 
more adequate approach of finding motifs. 
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Motif finding via Gibbs Sampling 

Here is pseudocode for Motif Finding using the Gibbs Sampling technique. 

1. Randomly generate a start state y1, . . . , yn. 

2. Pick m uniformly at random from 1, . . . , n. 

3. Replace ym with y� picked randomly from the distribution that assigns relative m 

weight 1/prob(C(y1, . . . , ym, . . . , yn)) to y� .m

4. <do whatever with the sample> 

5. Goto step 2. 

Note that we are just doing a simulation of the Markov Chain defined by the Gibbs 
Sampling technique. 

Simulated Annealing 

Annealing is a process by which glass is put into a highly durable state by a process 
of slow cooling. 

We can use the same idea here: to amplify the probability of sampling at the optimum 
of a probability distribution p, we instead sample from p1/T where T � 0. 

Figure 19.1 shows us a graph of a probability distribution p. The optimum occurs at 
state 4, but there are other peaks that have significantly large height. 

Figure 19.1: Graph of a probability distribution p.
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Figures 19.2 and 19.3 show the graphs of the probability distributions p5 and p50 

respectively. The height of the peak at state 4 has increased considerably with respect 
to the heights of the other peaks. 

Figure 19.2: Graph of p5 . 

Figure 19.3: Graph of p50 . 

How do we find the right T ? Here are two possible approaches: we can either drop T 
by a small amount after reaching steady-state, or we can drop T by a small amount 
at each step. 

Some questions that we didn’t answer 

• For how long should we run the Markov Chain? 

• How often can we sample? 


