
Burrows-Wheeler Transforms in Linear Time and
Linear Bits

Russ Cox (following Hon, Sadakane, Sung, Farach, and others)

18.417 Final Project

BWT in Linear Time and Linear Bits

Three main parts to the result.

Least common ancestor calculation in constant time after
O(n) preprocessing and O(n) bits (already presented), which

enables...

Suffix tree construction for integer alphabets in O(n) time and

O(n log n) bits, which enables...

Burrows Wheeler transformation in O(n) time and O(n) bits.

1: Least Common Ancestors in Constant TimePart

Presented by Peter Lee.

Basic idea

encode node id in O(log n) bits as path through tree

find LCA by computing greatest common prefix of node ids

some encoding tricks to handle lopsided trees

Many encoding tricks; see, for example, [Alstrup, Gavoille, Kaplan,
and Rauhe, 2002]

2: Suffix in Linear Time and Linear BitsPart Trees
[Farach]

Compute odd suffix tree of paired text.

rewrite text in new character-pair alphabet (catdog ⇒ catdog)

recurse on this tree, half as big, to compute tree of odd
suffixes

Compute even suffix tree from odd suffix tree. Merge odd and even
suffix trees to produce full suffix tree.

Compute Odd Suffix ofTree Paired Text

Construct paired text

assume text T = t1t2 . . . tn is over alphabet {1, . . . , k }
two-pass radix sort list of all character pairs {t1t2, t3t4, . . .},
remove duplicates, and assign mapping to {1, 2, . . . , k ′}

Recursively compute suffix tree of paired text.
Process suffix tree to yield odd suffix tree for original text.

already mostly there

node with children ab , ac: create new child a and hang b and
c off it

Suffix from Odd SuffixConstruct Even Tree Tree

Observe: in-order leaf listing and depth of lca of adjacent leaves is
sufficient to reconstruct tree structure.

reconstruct each separately, then build tree

Leaf List from Odd Leaf ListConstruct Even

Treat even suffixes as (char, odd-suffix) pairs.

already have sorted list of odd suffixes

already know sort order of individual characters

make pairs from sorted odd suffix list; then stable sort by
character

Leaf List from Odd Leaf ListConstruct Even

Consider abracadabra$.

odd suffix array rotate stable sort

a$abracadabr

abracadabra$

bra$abracada ⇒
cadabra$abra

dabra$abraca

racadabra$ab

r a$abracadab

$ abracadabra

a bra$abracad

a cadabra$abr

a dabra$abrac

b racadabra$a

$ abracadabra

a bra$abracad

a cadabra$abr ⇒
a dabra$abrac

b racadabra$a

r a$abracadab

LCP List from Odd LCP ListConstruct Even

Length of longest common prefix = depth of least common

ancestor.

Let suffix si = ti ti+1 . . . tn.

⎧ ⎪ ⎪1 + lcp(s2i+1, s2j+1) if t2i = t2j⎨
lcp(s2i , s2j) = ⎪ ⎩0⎪ otherwise

Merge Odd and SuffixEven Trees

Toy example: merging suffix tries is trivial

recurse on commonly-labeled subtries

add uniquely labeled subtries

Merging suffix trees is harder

O(n2) edges in the equivalent trie

label comparison in suffix tree is not O(n).

Solution: sloppy merge then fix

Merging and Fixing ItSloppy

Sloppy merge: treat edge labels as identical if first letters match.
Overmerged nodes with correctly-merged parents form antichain
across tree. Fix tree by unmerging at these points.

odd and even overmerged fixed

aa

ba

+
ab

b c

aa

ba

ab

b c

a

a b

ba b c

Identifying NodesOvermerged

Reversed suffix links form an overlay tree.

depth in suffix link tree equals length of suffix represented by
node

(suffix length of node = 1 + suffix length of suffix link node)

overmerged nodes claim excess suffix length

Can compute suffix link tree in O(n) time.

suppose node has two children �2i and �2j−1

suffix link is LCA of �2i+1 and �2j

Leads to checking procedure for overmerged nodes.

compute suffix link tree in O(n) time

compute suffix link depths for tree in O(n) time

look for incorrect nodes with correct parents and fix them

Total unmerging time O(n)

Suffix in Linear Time and Linear BitsTrees

Let time for text of length n be time(n).

Compute odd suffix tree of paired text.

time(n/2) time, O(n log n) bits

Compute even suffix tree from odd suffix tree.

O(n) time, O(n log n) bits

Overmerge odd and even suffix trees.

O(n) time, O(n log n) bits

Unmerge overmerged tree.

O(n) time, O(n log n) bits

Total: O(n) time, O(n log n) bits

3: in Linear Time and
Bits [Hon et al.]
Part Burrows-Wheeler Transform

Recurse to compute “odd CSA” of character pairs (Ψo) a la Farach.

Build “even CSA” of shifted character pairs (Ψe) a la Farach.

Merge odd and even CSAs to construct BWT of full text.

The hard work is in encodings and computation tricks

clever encoding of Ψ in O(n) bits

convert between Ψ and BW text C in linear time

augment Ψ for O(log log |Σ|) backward step time

once recursion has reduced text length to n/ log n, switch to
suffix tree computation (faster than above, but has

super-linear space requirement)

Encoding Ψ in O(n log |Σ|) bits

Compressed suffix array Ψ[i] = SA−1[SA[i] + 1].

link from suffix index to next smaller suffix index

Ψ increasing along runs corresponding to each alphabet character.

shown in class

Can make completely increasing:
Ψ′[i] = ρ(t[SA[i]], Ψ[i]) = t[SA[i]]n + Ψ[i].

Encode Ψ′ in O(n) bits, reconstruct Ψ on demand.

Encoding Ψ′ in O(n log |Σ|) bits

Divide each value of Ψ′ into Ψ′[i] = qi × |Σ| + ri .

qi has size log n bits

ri has size log |Σ| bits

Have n values in sequence of qi ≤ n, monotonically increasing

encode deltas q1, q2 − q1, q3 − q2, . . . using unary codes
(0 = 1, 1 = 01, 2 = 001, . . .)

requires n 1 bits and q1 + q2 − q1 + . . . + qn − qn−1 = qn 0 bits

total 2n bits maximum

Store ri in simple array

total n log |Σ| bits

Total O(n log |Σ|) bits.

Constant time access to qi requires building O(n/ log log n)
auxiliar y structure taking O(n) time.

Duality Ψ and Cbetween

Can convert Ψ to C and vice versa in O(n) time.

Ψ is easier to work with; C is easier to compute.

Converting Ψ to C

Applying Ψ to an index of SA yields the suffix array index of the
next shortest suffix.

suffixes sorted suffixes
abracadabra$
bracadabra$a
racadabra$ab
acadabra$abr
cadabra$abra
adabra$abrac
dabra$abraca
abra$abracad
bra$abracada
ra$abracadab
a$abracadabr
$abracadabra

$abracadabra

a$abracadabr

abra$abracad

abracadabra$

acadabra$abr

adabra$abrac

bra$abracada

bracadabra$a

cadabra$abra

dabra$abraca

ra$abracadab

racadabra$ab

Can iterate Ψ to learn suffix array slots of each suffix

Ψk [1] = suffix array slot of sk = tk . . . tn

i ΨΨ[i]

1 4

 2 1

 3 7

 4 8

 5 9

6 10

7 11

8 12

 9 6

10 3

11 2

12 5

if the suffix sk is in slot i in the suffix array, then C[i] = tk−1

Iterate Ψ, filling in one C entry at each step.

C to ΨConverting

Can build Ψ during backward search of text T in C

on problem set

use lo(σw) = block (σ) + occ(σ, lo(w)), where σ = C[lo(w)]

Note that lo(w) is index of string w in sorted suffix array.

so Ψ[lo(C[lo(w)]w)] = lo(w)

so Ψ[block (C[i]) + occ(C[i], i)] = i

Can compute all Ψ values in order of i, filling in occ row as we go.

compute block array (O(n) time)

set occ array to zeros

for i = 1 to n

record Ψ[block (C[i]) + occ(C[i])] = i
increment occ(C[i])

(Skipping details about storing Ψ′ using O(n)-bits encoding during
construction to avoid O(n log n) work space.)

Ψ SearchAugmented for Improved Backward

Can preprocess Ψ into a handful of complicated multi-level tables

levels and levels and levels and levels

G. Jacobson. “Space-efficient Static Trees and Graphs.”
FOCS 1989.

J. I. Munro. “Tables.” Conf. on Foundations of Software
Technology and Theoretical Computer Science. 1996.

T. Hagerup, P. B. Miltersen, and R. Pagh. “Deterministic
Dictionaries.” J. Algs 41(1), 2001.

section 3 of Hon et al. paper

Net result is O(log log |Σ|) backward steps.

Computing Ce from Ψo

Remember abracadabra$.

odd suffix array rotate stable sort

a$abracadabr r a$abracadab $ abracadabra

abracadabra$ $ abracadabra a bra$abracad

bra$abracada a bra$abracad a cadabra$abr ⇒ ⇒
cadabra$abra a cadabra$abr a dabra$abrac

dabra$abraca a dabra$abrac b racadabra$a

racadabra$ab b racadabra$a r a$abracadab

Compute stable sort order of first column, permuting last two
columns in same way. (Requires O(n log |Σ|) space.)

Have to use Ψ to extract columns for sort.

just like using Ψ to extract C (last column of odd suffix array)

Merging Ψo and Ψe

Backward search for To on Ψo and Ψe.

at each step have rank of suffix of To among odd and even
suffixes of T

set C[sum of ranks] = char preceding current suffix

Backward search for Te on Ψo and Ψe.

same

From C, compute Ψ.
O(n) backward steps of O(log log |Σ|) time each.
Merging: O(n log log |Σ|) time.

⌈ ⌉

BWT in Linear Time and Bits

Let i = log log|Σ| n .
Apply BWT recursion to depth i, then call suffix tree construction.
Suffix tree runs on text of length n log|Σ| n/ log n = O(n/ log n).

o(n) time and O(n log|Σ| n) bits

Recursion runs on texts of size
n, n/2, n/22 , . . . , n/2j , . . . , n/2i = n/ log|Σ| n.

O(n/2j log |Σ|j) bits in each step

O(n/2j + |Σ|j) time for odd to even

O(n/2j log log |Σ|j + |Σ|j) time for merge

Total is O(n log log |Σ|) time and O(n log |Σ|) space.
Q.E.D.

MessagesTake-Home

Can do LCA in constant time.

Can compute suffix trees of integer alphabets in O(n) time with
O(n log n) bits.

Can compute Burrows-Wheeler transform in O(n) time and O(n)
bits.

seems more theoretical than practical

assumes constant |Σ| (unlike suffix tree result!)

isn’t self-suppor ting (requires suffix tree result)

References

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe.
“Identifying nearest common ancestors in a distributed
environment,” Tech. Rep. IT-C Series 2001-6, ISSN 1600-6100,
The IT University of Copenhagen, Aug. 2001.
http://www.it-c.dk/people/stephen/Papers/ITU-TR-2001-6.ps

Martin Farach. “Optimal Suffix Tree Construction with Large
Alphabets.” FOCS 1997.

http://portal.acm.org/citation.cfm?id=796326

Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. “Breaking
a Time-and-Space Barrier in Constructing Full-Text Indices.” FOCS
2003.
http://tcslab.csce.kyushu-u.ac.jp/˜sada/focs03.ps

http://www.it-c.dk/people/stephen/Papers/ITU-TR-2001-6.ps
http://www.it-c.dk/people/stephen/Papers/ITU-TR-2001-6.ps
http://portal.acm.org/citation.cfm?id=796326
http://portal.acm.org/citation.cfm?id=796326
http://tcslab.csce.kyushu-u.ac.jp/~sada/focs03.ps
http://tcslab.csce.kyushu-u.ac.jp/~sada/focs03.ps

