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BWT in Linear Time and Linear Bits 

Three main parts to the result. 

Least common ancestor calculation in constant time after 
O(n) preprocessing and O(n) bits (already presented), which

enables...


Suffix tree construction for integer alphabets in O(n) time and

O(n log n) bits, which enables...


Burrows Wheeler transformation in O(n) time and O(n) bits.




1: Least Common Ancestors in Constant TimePart 

Presented by Peter Lee. 

Basic idea 

encode node id in O(log n) bits as path through tree 

find LCA by computing greatest common prefix of node ids 

some encoding tricks to handle lopsided trees 

Many encoding tricks; see, for example, [Alstrup, Gavoille, Kaplan, 
and Rauhe, 2002] 



2: Suffix in Linear Time and Linear BitsPart Trees 
[Farach] 

Compute odd suffix tree of paired text. 

rewrite text in new character-pair alphabet (catdog ⇒ catdog) 

recurse on this tree, half as big, to compute tree of odd 
suffixes 

Compute even suffix tree from odd suffix tree. Merge odd and even 
suffix trees to produce full suffix tree. 



Compute Odd Suffix ofTree Paired Text 

Construct paired text 

assume text T = t1t2 . . .  tn is over alphabet {1, . . .  ,  k }
two-pass radix sort list of all character pairs {t1t2, t3t4, . . .}, 
remove duplicates, and assign mapping to {1, 2, . . .  ,  k ′}

Recursively compute suffix tree of paired text. 
Process suffix tree to yield odd suffix tree for original text. 

already mostly there 

node with children ab , ac: create new child a and hang b and 
c off it 



Suffix from Odd SuffixConstruct Even Tree Tree 

Observe: in-order leaf listing and depth of lca of adjacent leaves is 
sufficient to reconstruct tree structure. 

reconstruct each separately, then build tree 



Leaf List from Odd Leaf ListConstruct Even 

Treat even suffixes as (char, odd-suffix) pairs. 

already have sorted list of odd suffixes 

already know sort order of individual characters 

make pairs from sorted odd suffix list; then stable sort by 
character 



Leaf List from Odd Leaf ListConstruct Even 

Consider abracadabra$.


odd suffix array rotate stable sort


a$abracadabr 

abracadabra$ 

bra$abracada ⇒ 
cadabra$abra 

dabra$abraca 

racadabra$ab 

r a$abracadab 

$ abracadabra 

a bra$abracad 

a cadabra$abr 

a dabra$abrac 

b racadabra$a 

$ abracadabra 

a bra$abracad 

a cadabra$abr ⇒ 
a dabra$abrac 

b racadabra$a 

r a$abracadab 



LCP List from Odd LCP ListConstruct Even 

Length of longest common prefix = depth of least common

ancestor.

Let suffix si = ti ti+1 . . . tn.


⎧ ⎪ ⎪1 + lcp(s2i+1, s2j+1) if t2i = t2j⎨
lcp(s2i , s2j) = ⎪ ⎩0⎪ otherwise 



Merge Odd and SuffixEven Trees 

Toy example: merging suffix tries is trivial 

recurse on commonly-labeled subtries 

add uniquely labeled subtries 

Merging suffix trees is harder 

O(n2) edges in the equivalent trie 

label comparison in suffix tree is not O(n). 

Solution: sloppy merge then fix 



Merging and Fixing ItSloppy 

Sloppy merge: treat edge labels as identical if first letters match. 
Overmerged nodes with correctly-merged parents form antichain 
across tree. Fix tree by unmerging at these points. 

odd and even overmerged fixed 

aa 

ba 

+ 
ab 

b c  

aa 

ba 

ab 

b c  

a 

a b 

ba b c  



Identifying NodesOvermerged 

Reversed suffix links form an overlay tree. 

depth in suffix link tree equals length of suffix represented by 
node 

(suffix length of node = 1 +  suffix length of suffix link node) 

overmerged nodes claim excess suffix length 

Can compute suffix link tree in O(n) time. 

suppose node has two children �2i and �2j−1 

suffix link is LCA of �2i+1 and �2j 

Leads to checking procedure for overmerged nodes. 

compute suffix link tree in O(n) time 

compute suffix link depths for tree in O(n) time 

look for incorrect nodes with correct parents and fix them 

Total unmerging time O(n) 



Suffix in Linear Time and Linear BitsTrees 

Let time for text of length n be time(n). 

Compute odd suffix tree of paired text. 

time(n/2) time, O(n log n) bits 

Compute even suffix tree from odd suffix tree. 

O(n) time, O(n log n) bits 

Overmerge odd and even suffix trees. 

O(n) time, O(n log n) bits 

Unmerge overmerged tree. 

O(n) time, O(n log n) bits 

Total: O(n) time, O(n log n) bits 



3: in Linear Time and 
Bits [Hon et al.] 
Part Burrows-Wheeler Transform 

Recurse to compute “odd CSA” of character pairs (Ψo) a la Farach.

Build “even CSA” of shifted character pairs (Ψe) a la Farach.

Merge odd and even CSAs to construct BWT of full text.

The hard work is in encodings and computation tricks


clever encoding of Ψ in O(n) bits 

convert between Ψ and BW text C in linear time 

augment Ψ for O(log log |Σ|) backward step time 

once recursion has reduced text length to n/ log n, switch to 
suffix tree computation (faster than above, but has

super-linear space requirement)




Encoding Ψ in O(n log |Σ|) bits 

Compressed suffix array Ψ[i] = SA−1[SA[i] + 1]. 

link from suffix index to next smaller suffix index 

Ψ increasing along runs corresponding to each alphabet character. 

shown in class 

Can make completely increasing: 
Ψ′[i] = ρ(t[SA[i]], Ψ[i]) = t[SA[i]]n + Ψ[i]. 

Encode Ψ′ in O(n) bits, reconstruct Ψ on demand. 



Encoding Ψ′ in O(n log |Σ|) bits 

Divide each value of Ψ′ into Ψ′[i] = qi × |Σ| + ri . 

qi has size log n bits 

ri has size log |Σ| bits 

Have n values in sequence of qi ≤ n, monotonically increasing 

encode deltas q1, q2 − q1, q3 − q2, . . .  using unary codes 
(0 = 1, 1 = 01, 2 = 001, . . .) 

requires n 1 bits and q1 + q2 − q1 + . . . + qn − qn−1 = qn 0 bits 

total 2n bits maximum 

Store ri in simple array 

total n log |Σ| bits 

Total O(n log |Σ|) bits. 

Constant time access to qi requires building O(n/ log log n) 
auxiliar y structure taking O(n) time. 



Duality Ψ and Cbetween 

Can convert Ψ to C and vice versa in O(n) time. 

Ψ is easier to work with; C is easier to compute. 



Converting Ψ to C 

Applying Ψ to an index of SA yields the suffix array index of the 
next shortest suffix. 

suffixes sorted suffixes 
abracadabra$ 
bracadabra$a 
racadabra$ab 
acadabra$abr 
cadabra$abra 
adabra$abrac 
dabra$abraca 
abra$abracad 
bra$abracada 
ra$abracadab 
a$abracadabr 
$abracadabra 

$abracadabra

a$abracadabr

abra$abracad

abracadabra$

acadabra$abr

adabra$abrac

bra$abracada

bracadabra$a

cadabra$abra

dabra$abraca

ra$abracadab

racadabra$ab


Can iterate Ψ to learn suffix array slots of each suffix 

Ψk [1] = suffix array slot of sk = tk . . . tn 

i ΨΨ[i] 

1  4

 2  1

 3  7

 4  8

 5  9

6 10

7 11

8 12

 9  6

10 3

11 2

12  5


if the suffix sk is in slot i in the suffix array, then C[i] = tk−1 

Iterate Ψ, filling in one C entry at each step. 



C to ΨConverting 

Can build Ψ during backward search of text T in C 

on problem set 

use lo(σw) = block (σ) + occ(σ, lo(w)), where σ = C[lo(w)] 

Note that lo(w) is index of string w in sorted suffix array. 

so Ψ[lo(C[lo(w)]w)] = lo(w) 

so Ψ[block (C[i]) + occ(C[i], i)] = i 

Can compute all Ψ values in order of i, filling in occ row as we go. 

compute block array (O(n) time)

set occ array to zeros

for i = 1 to n


record Ψ[block (C[i]) + occ(C[i])] = i 
increment occ(C[i]) 

(Skipping details about storing Ψ′ using O(n)-bits encoding during 
construction to avoid O(n log n) work space.) 



Ψ SearchAugmented for Improved Backward 

Can preprocess Ψ into a handful of complicated multi-level tables 

levels and levels and levels and levels 

G. Jacobson. “Space-efficient Static Trees and Graphs.” 
FOCS 1989. 

J. I. Munro. “Tables.” Conf. on Foundations of Software 
Technology and Theoretical Computer Science. 1996. 

T. Hagerup, P. B. Miltersen, and R. Pagh. “Deterministic 
Dictionaries.” J. Algs 41(1), 2001. 

section 3 of Hon et al. paper 

Net result is O(log log |Σ|) backward steps. 



Computing Ce from Ψo 

Remember abracadabra$.


odd suffix array rotate stable sort


a$abracadabr r a$abracadab $ abracadabra 

abracadabra$ $ abracadabra a bra$abracad 

bra$abracada a bra$abracad a cadabra$abr ⇒ ⇒ 
cadabra$abra a cadabra$abr a dabra$abrac 

dabra$abraca a dabra$abrac b racadabra$a 

racadabra$ab b racadabra$a r a$abracadab 

Compute stable sort order of first column, permuting last two 
columns in same way. (Requires O(n log |Σ|) space.) 

Have to use Ψ to extract columns for sort. 

just like using Ψ to extract C (last column of odd suffix array) 



Merging Ψo and Ψe 

Backward search for To on Ψo and Ψe. 

at each step have rank of suffix of To among odd and even 
suffixes of T 

set C[sum of ranks] = char preceding current suffix 

Backward search for Te on Ψo and Ψe. 

same 

From C, compute Ψ. 
O(n) backward steps of O(log log |Σ|) time each. 
Merging: O(n log log |Σ|) time. 



⌈ ⌉ 

BWT in Linear Time and Bits 

Let i = log log|Σ| n . 
Apply BWT recursion to depth i, then call suffix tree construction. 
Suffix tree runs on text of length n log|Σ| n/ log n = O(n/ log n). 

o(n) time and O(n log|Σ| n) bits 

Recursion runs on texts of size 
n, n/2, n/22 , . . . , n/2j , . . . , n/2i = n/ log|Σ| n. 

O(n/2j log |Σ|j) bits in each step 

O(n/2j + |Σ|j) time for odd to even 

O(n/2j log log |Σ|j + |Σ|j) time for merge 

Total is O(n log log |Σ|) time and O(n log |Σ|) space. 
Q.E.D. 



MessagesTake-Home 

Can do LCA in constant time. 

Can compute suffix trees of integer alphabets in O(n) time with 
O(n log n) bits. 

Can compute Burrows-Wheeler transform in O(n) time and O(n) 
bits. 

seems more theoretical than practical 

assumes constant |Σ| (unlike suffix tree result!) 

isn’t self-suppor ting (requires suffix tree result) 



References 

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. 
“Identifying nearest common ancestors in a distributed 
environment,” Tech. Rep. IT-C Series 2001-6, ISSN 1600-6100, 
The IT University of Copenhagen, Aug. 2001. 
http://www.it-c.dk/people/stephen/Papers/ITU-TR-2001-6.ps 

Martin Farach. “Optimal Suffix Tree Construction with Large 
Alphabets.” FOCS 1997. 

http://portal.acm.org/citation.cfm?id=796326 

Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. “Breaking 
a Time-and-Space Barrier in Constructing Full-Text Indices.” FOCS 
2003. 
http://tcslab.csce.kyushu-u.ac.jp/˜sada/focs03.ps 

http://www.it-c.dk/people/stephen/Papers/ITU-TR-2001-6.ps
http://www.it-c.dk/people/stephen/Papers/ITU-TR-2001-6.ps
http://portal.acm.org/citation.cfm?id=796326
http://portal.acm.org/citation.cfm?id=796326
http://tcslab.csce.kyushu-u.ac.jp/~sada/focs03.ps
http://tcslab.csce.kyushu-u.ac.jp/~sada/focs03.ps

