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In Lecture 7 we hinted at Symmetrization as a way to deal with the unknown PP (C).
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Theorem 10.1. If VC(C) =V, then
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The first equality is due to the fact that X; and X/ are i.i.d., and so switching their names (i.e. introducing
random signs g;, P (¢; = £1) = 1/2) does not have any effect. In the last line, it’s important to see that the
probability is taken with respect to €;’s, while X; and X/’s are fixed.

By Sauer’s lemma,
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In other words, any class will be equivalent to one of C1,...,Cx on the data, where N < (267”)‘/ Hence,
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