Lecture 11 Optimistic VC inequality. 18.465

Last time we proved the Pessimistic VC inequality:
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Hence, the rate is 1/%. In this lecture we will prove Optimistic VC inequality, which will improve on
this rate when P (C') is small.
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As before, we have pairs (X;,Y;), ¥; = +1. These examples are labeled according to some unknown Cj such
that Y =1if X =Cpand Y =0if X ¢ C.
Let C = {C: C C X}, a set of classifiers. C' makes a mistake if

X €C\CyUCy\C =CACy.

Similarly to last lecture, we can derive bounds on

% Y I(X; € CACy) — P(CAC)
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where P (CAC)) is the generalization error.
Let ' = {CACy : C € C}. One can prove that VC(C') < VC(C) and A (C', X1, ..., X)) < A (Cy X1, .00, Xn).
By Hoeffding-Chernoff, if P (C) < %,
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Theorem 11.1. [Optimistic VC inequality/
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Proof. Let C be fixed. Then
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whenever P (C) > 1. Indeed, P (C) > L since }_" | I(X! € C) > nP (C)

[T, P(X! ¢ C)=(1—-P(C))" can be as close to 0 as we want.
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Similarly to the proof of the previous lecture, let

RRELCE W 1)
c P(C)

24



Lecture 11 Optimistic VC inequality. 18.465

Hence, there exists C'x such that

Exercise 1. Show that if

and
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Hint: use the fact that ¢(s) = 5\;5‘1 =./s— % is increasing in s.
From the above exercise it follows that
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Since indicator is 0, 1-valued,

1| POo)-Liyr 1xie0)
-1 | sup >
4 c P(C)

ACx

P (X[ € Cx) — £ Y0 I(X, € Cx)
<Poy | =1 = >
\/g S I(X; €Cx)+ 130 I(X] € Cx)

HCX) -1 (3Cx)

s s Pl (X €0) - iYL IXie0) |t )
CVEZLIE O+ LT 1K e0) V2

Hence,

>7

VAN I(XieO)+ LY I(Xjec) V2

s e (I(X]eC)—I1(Xi€C)) t
= EP. sup — .
¢ AN IO iy, Ixieq) V2

<P(Sup LS (X e Q) - XL I(Xi € C) t)

v

25



Lecture 11 Optimistic VC inequality. 18.465

There exist C1,...,Cn, with N < Ao, (C, X1,...,X,, X],...,X]). Therefore,
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The last expression can be upper-bounded by Hoeffding’s inequality as follows:
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since upper sum in the exponent is bigger than the lower sum (compare term-by-term)
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