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VC-subgraph classes of functions 

Let F = {f : X �→ R} and 

Cf = {(x, t) ∈ X × R : 0 ≤ t ≤ f(x) or f(x) ≤ t ≤ 0}. 

Define class of sets C = {Cf : f ∈ F}. 

Definition 12.1. If C is a VC class of sets, then F is VC-subgraph class of functions and, by definition, 

V C(F) = V C(C). 

Note that equivalent definition of Cf is 

Cf
� = {(x, t) ∈ X × R : |f(x)| ≥ |t|}. 

Example 12.1. C = {C ⊆ X}, F(C) = {I(X ∈ C) : C ∈ C}. Then F(C) is VC-subgraph class if and only 

if C is a VC class of sets. 

Assume d functions are fixed: {f1, . . . , fd} : X �→ R. Let 

d

F = αifi(x) : α1, . . . , αd ∈ R . 
i=1 

Then V C(F) ≤ d + 1. To prove this, it’s easier to use the second definition. 

Packing and covering numbers 

Let f, g ∈ F and assume we have a distance function d(f, g). 

Example 12.2. If X1, . . . , Xn are data points, then 
n1 � 

d1(f, g) = 
n 

|f(Xi) − g(Xi)|
i=1 

and � �1/2n

d2(f, g) = 
1 � 

(f(Xi) − g(Xi))
2 

. 
n 

i=1 

Definition 12.2. Given ε > 0 and f1, . . . , fN ∈ F , we say that f1, . . . , fN are ε-separated if d(fi, fj ) > ε


for any i =� j.


Definition 12.3. The ε-packing number, D(F , ε, d), is the maximal cardinality of an ε-separated set.


Note that D(F , ε, d) is decreasing in ε.


Definition 12.4. Given ε > 0 and f1, . . . , fN ∈ F , we say that the set f1, . . . , fN is an ε-cover of F if for


any f ∈ F , there exists 1 ≤ i ≤ N such that d(f, fi) ≤ ε.


Definition 12.5. The ε-covering number, N (F , ε, d), is the minimal cardinality of an ε-cover of F .
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Lemma 12.1. 

D(F , 2ε, d) ≤ N (F , ε, d) ≤ D(F , ε, d). 

Proof. To prove the first inequality, assume that D(F , 2ε, d) > N (F , ε, d). Let the packing corresponding to 

the packing number D(F , 2ε, d) = D be f1, . . . , fD. Let the covering corresponding to the covering number 

N (F , ε, d) = N be f1
� , . . . , f � Since D > N , there exist fi and fj such that for some f �

N . k 

d(fi, f
� ) ≤ ε and d(fj , f

� ) ≤ ε.k k

Therefore, by triangle inequality, d(fi, fj ) ≤ 2ε, which is a contradiction.


To prove the second inequality, assume f1, . . . , fD is an optimal packing. For any f ∈ F , f1, . . . , fD, f


would also be ε-packing if d(f, fi) > ε for all i. Since f1, . . . , fD is optimal, this cannot be true, and,


therefore, for any f ∈ F there exists fi such that d(f, fi) ≤ ε. Hence f1, . . . , fD is also a cover. Hence,


N (F , ε, d) ≤ D(F , ε, d). �


1+ε/2
1

Example 12.3. Consider the L1-ball {x ∈ Rd , |x| ≤ 1} = B1(0) and d(x, y) = |x − y|1. Then � �d � �d2 + ε 3 D(B1(0), ε, d) ≤ 
ε 

≤ 
ε

, 

where ε ≤ 1. Indeed, let f1, . . . , fD be optimal ε-packing. Then the volume of the ball with ε/2-fattening 

(so that the center of small balls fall within the boundary) is � � � �dε ε
Vol 1 + = Cd 1 + .

2 2 

Moreover, the volume of each of the small balls � ε � � ε �d 
Vol = Cd2 2 

and the volume of all the small balls is � ε �d 
DCd .

2 
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Therefore, � �d2 + ε 
.D ≤ 

ε 

Definition 12.6. log N (F , ε, d) is called metric entropy. 

For example, log N (B1(0), ε, d) ≤ d log 3 .ε 
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