Theorem 13.1. Assume \mathcal{F} is a VC-subgraph class and $VC(\mathcal{F}) = V$. Suppose $-1 \leq f(x) \leq 1$ for all $f \in \mathcal{F}$ and $x \in \mathcal{X}$. Let $x_1, \ldots, x_n \in \mathcal{X}$ and define $d(f,g) = \frac{1}{n} \sum_{i=1}^n |f(x_i) - g(x_i)|$. Then

$$\mathcal{D}(\mathcal{F},\varepsilon,d) \le \left(\frac{8e}{\varepsilon}\log\frac{7}{\varepsilon}\right)^V$$

(which is $\leq \left(\frac{K}{\varepsilon}\right)^{V+\delta}$ for some δ .)

Proof. Let $m = \mathcal{D}(\mathcal{F}, \varepsilon, d)$ and f_1, \ldots, f_m be ε -separated, i.e.

$$\frac{1}{n}\sum_{i=1}^{n}|f_r(x_i)-f_\ell(x_i)|>\varepsilon.$$

Let $(z_1, t_1), \ldots, (z_k, t_k)$ be constructed in the following way: z_i is chosen uniformly from x_1, \ldots, x_n and t_i is uniform on [-1, 1].

Consider f_r and f_ℓ from the ε -packing. Let C_{f_r} and C_{f_ℓ} be subgraphs of f_r and f_ℓ . Then

 $\mathbb{P}(C_{f_r} \text{ and } C_{f_\ell} \text{ pick out different subsets of } (z_1, t_1), \dots, (z_k, t_k))$ $= \mathbb{P}(\text{At least one point } (z_i, t_i) \text{ is picked by } C_{f_r} \text{ or } C_{f_\ell} \text{ but not picked by the other})$ $= 1 - \mathbb{P}(\text{All points } (z_i, t_i) \text{ are picked either by both or by none})$ $= 1 - \mathbb{P}((z_i, t_i) \text{ is picked either by both or by none})^k$

L		L

Since z_i is drawn uniformly from x_1, \ldots, x_n ,

$$\mathbb{P}\left((z_1, t_1) \text{ is picked by both } C_{f_r}, C_{f_\ell} \text{ or by neither}\right)$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{P}\left((x_i, t_1) \text{ is picked by both } C_{f_r}, C_{f_\ell} \text{ or by neither}\right)$$

$$= \frac{1}{n} \sum_{i=1}^n \left(1 - \frac{1}{2}|f_r(x_i) - f_\ell(x_i)|\right)$$

$$= 1 - \frac{1}{2} \frac{1}{n} \sum_{i=1}^n |f_r(x_i) - f_\ell(x_i)|$$

$$= 1 - \frac{1}{2} d(f_r, f_\ell) \le 1 - \varepsilon/2 \le e^{-\varepsilon/2}$$

30

Substituting,

$$\mathbb{P}(C_{f_r} \text{ and } C_{f_\ell} \text{ pick out different subsets of } (z_1, t_1), \dots, (z_k, t_k))$$

$$= 1 - \mathbb{P}((z_1, t_1) \text{ is picked by both } C_{f_r}, C_{f_\ell} \text{ or by neither})^k$$

$$\geq 1 - \left(e^{-\varepsilon/2}\right)^k$$

$$= 1 - e^{-k\varepsilon/2}$$

There are $\binom{m}{2}$ ways to choose f_r and f_ℓ , so

 $\mathbb{P}(\text{All pairs } C_{f_r} \text{ and } C_{f_\ell} \text{ pick out different subsets of } (z_1, t_1), \dots, (z_k, t_k)) \ge 1 - \binom{m}{2} e^{-k\varepsilon/2}.$

What k should we choose so that $1 - {m \choose 2} e^{-k\varepsilon/2} > 0$? Choose

$$k > \frac{2}{\varepsilon} \log \binom{m}{2}.$$

Then there exist $(z_1, t_1), \ldots, (z_k, t_k)$ such that all C_{f_ℓ} pick out different subsets. But $\{C_f : f \in \mathcal{F}\}$ is VC, so by Sauer's lemma, we can pick out at most $\left(\frac{ek}{V}\right)^V$ out of these k points. Hence, $m \leq \left(\frac{ek}{V}\right)^V$ as long as $k > \frac{2}{\varepsilon} \log {\binom{m}{2}}$. The latter holds for $k = \frac{2}{\varepsilon} \log m^2$. Therefore,

$$m \le \left(\frac{e}{V}\frac{2}{\varepsilon}\log m^2\right)^V = \left(\frac{4e}{V\varepsilon}\log m\right)^V,$$

where $m = \mathcal{D}(\mathcal{F}, \varepsilon, d)$. Hence, we get

$$m^{1/V} \leq \frac{4e}{\varepsilon} \log m^{1/V}$$

and defining $m^{1/V} = s$,

$$s \le \frac{4e}{\varepsilon} \log s.$$

Note that $\frac{s}{\log s}$ is increasing for $s \ge e$ and so for large enough s, the inequality will be violated. We now check that the inequality is violated for $s' = \frac{8e}{\varepsilon} \log \frac{7}{\varepsilon}$. Indeed, one can show that

$$\frac{4e}{\varepsilon} \log\left(\frac{7}{\varepsilon}\right)^2 > \frac{4e}{\varepsilon} \log\left(\frac{8e}{\varepsilon} \log\frac{7}{\varepsilon}\right)$$

since

$$\frac{49}{8e\varepsilon} > \log \frac{7}{\epsilon}.$$

Hence, $m^{1/V} = s \leq s'$ and, thus,

$$\mathcal{D}(\mathcal{F},\varepsilon,d) \le \left(\frac{8e}{\varepsilon}\log\frac{7}{\varepsilon}\right)^V$$