Lecture 24 Bounds in terms of sparsity (example). 18.465

In this lecture, we give another example of margin-sparsity bound involved with mixture-of-experts type
of models. Let H be a set of functions h; : X — [—1,41] with finite VC dimension. Let Cy,---,Cp,
be partitions of H into m clusters H = [J;~, C;. The elements in the convex hull convH takes the form
F=l0 M = i oy O onee Ny - by where T3> m, 5,0 = 1, ae = Y, An, and Af = A /o
for h € c. We can approximate f by g as follows. For each cluster ¢, let {Y) }r=1,... n be random variables
such that VA € ¢ C H, we have P(YY = h) = A;. Then EY;* = >, Aj -h. Let Z = > a/Y) and
9=t SN Ve =LV | 7. Then EZ), = Eg = f. We define o2 = var(Zi) = . a2var(Y)S), where
var(Yye) = [V = EYE[|2 = 3, c. A (b — IEYhC)2. (If we define {Yj}x=1.. n be random variables such that
Vh € H, P(Y), = h) = A, and define g = % E,JLI Y%, we might get much larger var(Yy)).
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Recall that a classifier takes the form y = sign(f(x)) and a classification error corresponds to yf(z) < 0. We

can bound the error by
(24.1) P(yf(x) < 0) < P(yg < 8) + P(oF > 1) + Plyg > dlyf(x) < 0,07 < 7).

The third term on the right side of inequality 24.1 can be bounded in the following way,
P(yg > olyf(z) < 0,07 <r) = P ( (yZx —EByZy) > 6 —yf(x)|yf(z) <0,07 < 7‘)

(yZe — ByZy) > dlyf(x) < 0,07 < 7")
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As a result, YN > % logn, inequality 24.2 is satisfied.
To bound the first term on the right side of inequality 24.1, we note that Ey, ... v, P(yg < 0) < Ey, ... yyE¢s(yg)

and E,¢5(yg) < Pn(yg < 26) for some ¢s:
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Any realization of g = ngvjl Zy., where N, depends on the number of clusters (C4y,---,C,,), is a linear

combination of h € H, and g € convy, H. According to lemma 20.2,

(Eds(yg) — Ends(yg)) /VEds(yg) < K (\/W + \/uTn>

with probability at least 1 — e™". Using a technique developed earlier in this course, and taking the union

bound over all m, §, we get, with probability at least 1 — Ke™"
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(Since EP,(yg < 26) < EP,(yf(z) < 36) + EP,(6? > r) + 1 with appropriate choice of N, based on
the same reasoning as inequality 24.1, we can also control P, (yg < 26) by P, (yf < 35) and P, (02 > r)
probabilistically).

To bound the second term on the right side of inequality 24.1, we approximate o2 by

2
0% = % ij:l % (Z,(Cl) - Z,(f)) where Z,gl) and Z,(CZ) are independent copies of Z; . We have

Eyom ok = o0
1 1 2)\ 2 1 1 2)\ 2
vary, 2)N§ (Z,(C ) Z,g )) = —var (Zl(C ) Z,g )>
1 4
< JE(Z-2%)

2
(-1 <20, 2 <1 and (2 - 2} < 4)

2
< E(zV -2
= 202
< 2.02.
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Pyas (0% >3r) +Puas (02 > drlod < 3r)
1,---,N 1,---,N

1
< Eyoo ¢r(ok 23r) +

with appropriate choice of N, following the same line of reasoning as in inequality 24.1. We note that

Py, ....yy (0% = 3r) < Ey, ... yy&r(0%), and Ep¢5(0%) < Py(o3 > 2r) for some ¢;.
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Since

N 2
1
% € {55 <Z a. (h,g{g - h,fi)) chil) h?) € HY € convyy, {hi - hy < hishy € HY,
k=1

C

and log D({h; - h; : hi,h; € H},€e) < KV log 2 by the assumption of our problem, we have log D(convy,, {h; -
hj :hi,hj € H},e) < KV - Ny, - log% by the VC inequality, and

(E¢T(UJZV) - En¢r(012v)) / E¢T(012\/) < K <\/ V- Ny, log ;/n + vV u/”)

u

with probability at least 1 — e™". Using a technique developed earlier in this course, and taking the union

bound over all m, J§, r, with probability at least 1 — Ke™",

u

As a result, with probability at least 1 — Ke™, we have

. V - min(ry, /62, Np) n

u
log —logn + )
n é n

Pyf(r)<0) < K- inf (mgsza)wn(a%m)

r,8,m

for all f € convH.
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