Lecture 26 Comparison inequality for Rademacher processes. 18.465

Define the following processes:

fer

2(x) = sup (Ef - iZf(m))

and

R(z) = sup ~ 3 esf (a).

feF i

Assume a < f(z) < b for all f,z. In the last lecture we proved Z is concentrated around its expectation:

Z<EZ+(bfa)w%.
n

1 n
EZ(x) = E;lelg (Ef - ; f(%))
Iem,, n| 1¢
] )

< E sup 1 Z(f(ﬂﬂi) — f(=))

feFrn i

with probability at least 1 — e~ ¢,

Furthermore,

=Esup (E
feF

= [E sup l Z&(f(fE;) — f(z))

fer i3
<Esupli5»f(x’-)+sup —liaf(x)
T feFrni Yger\ n&
< 2ER(x).

Hence, with probability at least 1 — e~ ¢,

/2t

It can be shown that R is also concentrated around its expectation: if —M < f(x) < M for all f,z, then

ER§R+MM§.
n

with probability at least 1 — e~ ¢,

Hence, with high probability,

Z(x) <2R(z) + 4M\/§.
n
Theorem 26.1. If —1 < f <1, then
2t »
P|Z(z) <2ER(z)+24/— | >1—e"".
n
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If0 < f <1, then

P (Z(;E) < 2ER(z) + 2t> >1—e "

n

Consider E. R(z) = E. sup ;¢ £ % i &if(x;). Since x; are fixed, f(z;) are just vectors. Let F CR™, f € F,
where f = (f1,..., fn).

Define contraction ¢; : R — R for i = 1,...,n such that ¢;(0) = 0 and |p;(s) — @i(t)] < |s —t|.

Let G : R — R be convex and non-decreasing.

The following theorem is called Comparison inequality for Rademacher process.

Theorem 26.2.

]EEG (sup ZE“&AL)) < EEG (sup Z&L‘fi> .
fer

fer

Proof. Tt is enough to show that for T C R?, t = (t1,t3) € T

E.G <sup t1 + 6(,0(t2)> <E.G (sup t + <€t2> ,
teT teT

i.e. enough to show that we can erase contraction for 1 coordinate while fixing all others.

Since P (e = +£1) = 1/2, we need to prove

1 1 1 1
§G <supt1 + go(tg)) + §G <supt1 — go(tg)) < iG (sup 1 —|—t2) + §G <supt1 — t2> .

teT teT teT teT

Assume sup,cr t1 + ¢(t2) is attained on (¢1,t2) and sup,crt1 — (t2) is attained on (s1,s2). Then
t1 4 @(t2) > 51+ p(s2)
and
51— p(s2) = t1 — o(ta).
Again, we want to show
Y =Gty + p(t2) + G(s1 — p(s2)) < G(t1 + t2) + Gty — t2).
Case 1: 15 <0,50 >0
Since ¢ is a contraction, p(t2) < |ta] < —ta, —p(s2) < so.

E = G(tl + (P(tz)) + G(51 — @(82)) S G(tl — t2) —+ G(51 + 52)

<G (suptl —tg) +G (supt1 —l—tg) .

teT teT
Case 2: 15 > 0,5, <0
Then ¢(ts) < to and —p(s2) < —so. Hence

by S G(tl +t2) + G(51 - 82) S G (supt1 + tg) + G <supt1 — t2> .
teT teT
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Case 3: t3 > 0,5, >0
Case 3a: s9 < tq

It is enough to prove
Gt + ¢(t2)) + G(s1 — p(s2)) < Gt +12) + G(s1 — 52).
Note that s; — ¢(s2) > 0 since s3 > 0 and ¢ — contraction. Since |p(s)| < |s|,
51— 82 < 81+ 0(s2) <t + o(ta),

where we use the fact that ¢1,ts attain maximum.

Furthermore,

G (51— s2) + (s2 = pls2)) ) = G (51 = 52) < G ({01 +eo(t2) + (52— (52)) ) = G (12 +0(t2))

u x
Indeed, ¥(u) = G(u+2z)— G(u) is non-decreasing for 2 > 0 since ¥’ (u) = G'(u+2x) — G’ (u) > 0 by convexity
of G.

Now,

(t1+ @(t2)) + (s2 — @(s2)) < t1 + b2
since

P(ta) — p(s2) < [ta — s2| = t2 — s2.
Hence,

G(51 — go(sz)) — G<31 — 52> = G((31 — S9) + (s2 — go(sz))> — G<31 — 52)
< G(tl - tg) - G(tl - «p(tz))

Case 3a: ty < s9

< G(81 + 82> + G(tl — tQ)
Again, it’s enough to show
Gt + p(t2)) — G(t1 — t2) < G(s1 + 52) — G(s1 — p(s2))
‘We have
t1—ta <t —p(t2) < 51— @(s2)

since $1, 2 achieves maximum and since ts + ¢(t2) > 0 (p is a contraction and to > 0).

Hence,

G (h = ta)+ (ta + (1)) ) = Gt~ t2) < G((s1 = pls2)) + (t2 + 9(t2))) = G (51— p(s2)

u x
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Since
p(ta) — p(s2) < [ta — s2| = 59 — ta,
we get
P(t2) = p(s2) < 52 — o
Therefore,
51— @(s2) + (t2 + p(t2) < 51+ 52
and so
G(t1+ ¢(t2)) — G(t1 — t2) < G(s1+ 52) — G(s1 — p(s2))
Case 4: 13 <0, <0
Proved in the same way as Case 3. O
We now apply the theorem with G(s) = (s)*.
Lemma 26.1.
Esup S i) < 2Bgup <
Proof. Note that
|z = (&) + (2)” = (2)" + (-2)".
We apply the Contraction Inequality for Rademacher processes with G(s) = (s)™.
+ n +
E?lelg Zﬁz% Esup (Z&Z% i ) (;(—sl)wz(m))
n +
< 2[[*3:161113 (Z gipi(ts )
n +
< 2E§1él$ <; Eiti> < 2E§1611T) ;61 i
O
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