Lecture 27  Application of Martingale inequalities. Generalized Martingale inequalities. 18.465

Let F C {f € [0,1]} be a class of [0,1] valued functions, Z = sup; (Ef — 231", f(z;)), and R =
supy f % Yo € f(x;) for any given x;,--- ,x, where €1, €, are Rademarcher random variables. For
any f € F unknown and to be estimated, the empirical error Z can be probabilistically bounded by R in the
following way. Using the fact that Z < 2R and by Martingale inequality, P (Z <EZ+ \/> ) >1—e™ ", and

P (ER <R+2 27“) > 1—e~*. Taking union bound, P (Z <R+5 %) > 1—2e~*. Taking union bound

set

again over all (ng),.; and let e = 5,/ 2%, P(Vn € (k)1 VfEF, Z < 2R+6> >1—exp (— 5 "géz) >

1 — 4. Using big O notation, ny = O (E% log 5%)
For voting algorithms, the candidate function to be estimated is a symmetric convex combination of some
base functions F = convH, where H C {h € [0,1]}. The trained classifier is sign(f(z)) where f € F is our

estimation, and the training error is P(yf(x)). The training error can be bounded as the following,

P(yf(z) <0) < Eds(yf(x))
< Bt (@) + sup(Eou(uf (x)) = - 3" 65(0f(x0)
zZ
= Ends(yf(z)) +2- E?gg(i > et (yif(x:))) + %u

with probability 1—e—% i=1

R
2u

2 1 ¢
< z il Yy ) e
= En¢5(yf(x)) + 6E;’l€1£_)_ n Zl Ezyif(xl) + n
contraction =
2u
= En¢s(yf(x)) + 5E Sup Z € f(xi) n
< P, (yf(z) <0) + ]Esup Ze T Jr\/?fu
- " 0 henmn ihlz:) n-

To bound the second term (Esup, ¢y, = 0 €;h(x;)) above, we will use the following fact.
Fact 27.1. IfP(é > a+b-t) < exp(—t?), then B¢ < K - (a +b) for some constant K.

If H is a VC-subgraph class and V is its VC dimension, D(H,e,d,) < K (%)ZV by D. Haussler. By

Kolmogorov’s chaining method (Lecture 14),
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HOREEEE)

Il I
AA
wn wn
>a >a
kel "o‘

S|
Ingbl M
&S S‘
=
I/\ /\

v
[t
|
CB‘

S

71



Lecture 27  Application of Martingale inequalities. Generalized Martingale inequalities. 18.465

Thus Esup L Y €e;h(z;) < K (\/ng \/g) < K\/g, and
P (P(yf(x) <0) <Py (urle) <o)+ K5V ﬁ) S

Recall our set up for Martingale inequalities. Let Z = Z(xy,---,x,) where x1, -+ ,x, are independent
random variables. We need to bound Z —EZ. Since Z is not a sum of independent random variables, certain
classical concentration inequalities is not applicable. But we can try to bound Z — EZ with certain form of

Martingale inequalities.

Z-EZ = Z—Fu(Zlwa, - 20)+Ea, (Z|m2, s 20) — Bgy ag (Z] w3, -, 20) +
di(z1, ,xp) da(z2, ,Tn)
o F By gy (Z)2n) — By 0, (2)
dn(wn)

with the assumptions that E,,d; = 0, and ||d;]|c < .
We will give a generalized martingale inequality below. > " ,d; = Z — EZ where d; = d;(z;, -+ , ),

max; ||di]|ee < C, 07 = 02(xig1, - ,2,) = var(d;), and Ed; = 0. Take € > 0,

]P’(zn:di — ezn:af >t)
i=1 i=1

e MEexp()  Ad; — e0?))

i=1

IN

n—1
= ¢ MEexp(Y_ A(di — co?) - Eexp(Ady) - exp(Ae?)

i=1

The term exp(Ady,) can be bounded in the following way.

Eexp(Ad,,)
A2, N
- E<1+>\dn+2!dn+3!dn+~-~>
Taylor expansion
< 1—|—)\—202 1+£+>‘202+
- 2" 3 3-4

IN

A\ o2 1
P\ a0 )

< de, we get A < —2— and B4, exp(Ad,) - exp(Aec?) < 1. Iterate over

Choose A such that 172:0°

)\2
2.(1-20)

1=mn,---,1, we get

]P’(f:di—ezn:oz-2>t> < exp(=A-t)
i=1 i=1
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. Take t = u/\, we get

n n "
P (Zd7 > GZO'? + %(1 + 260)) < exp(—u)
i=1 i=1

To minimize the sum € Y."" | 07 + 3 (1 + 2¢C), we set its derivative to 0, and get € = , /5<%—. Thus

23 02"
P Zdi23 /uZaf/?—I—C’u < e

. This inequality takes the form of the Bernstein’s inequality.
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