Lecture 03 Support vector machines (SVM). 18.465

As in the previous lecture, consider the classification setting. Let X = R, Y = {+1, —1}, and

H={¢z+b, v eR? beR}

where || = 1.
We would like to maximize over the choice of hyperplanes the minimal distance from the data to the hyper-
plane:
max miin d(xz;, H),
where

d(zs, H) = yi(Yx; + b).

Hence, the problem is formulated as maximizing the margin:

r?p%x miin yi(Yz; +b).
m (margin)
Rewriting,
(o + b)) = BEEED) g
m
' = /m, b =b/m, [¢'| = |v|/m =1/m. Maximizing m is therefore minimizing |¢’|. Rename ¢’ — 1, we

have the following formulation:

min || such that y;(¢Yz; +0) > 1

Equivalently,

1
min §¢ -1 such that y;(¢a; +b) > 1

Introducing Lagrange multipliers:

6= 30— Y oy +b) ~ 1), 0y >0

Take derivatives:

d9 B
@ _I/J_Zazyzxz =0
99
FT Zaiyi =0
Hence,
=Y oy
and

Z agy; = 0.
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Substituting these into ¢,
1 2 n n
¢ = 3 (Z Oéz‘ywi) - Zai Yi Zajlljle‘i +b) -1
i=1 j=1
1
= 3 Y iagyyimirg — Y aiagyiyrim; —b Yy i+ Y
,J

0]
= i ! QOG5 YiY LT 5
T

The above expression has to be maximized this with respect to a;, a; > 0, which is a Quadratic Programming
problem.
Hence, we have ¢ = Y1 | a;y;2;.
Kuhn-Tucker condition:
a; 05 yi(Yar; +b) —1=0.
Throwing out non-support vectors x; does not affect hyperplane = a; = 0.

The mapping ¢ is a feature mapping:

MS Rd — ¢>(9U) = (¢1(£L’),¢2(1’), ) e’

where X’ is called feature space.
Support Vector Machines find optimal separating hyperplane in a very high-dimensional space. Let K (z;,z;) =
> o1 Gk(i)Pr(z;) be a scalar product in X’. Notice that we don’t need to know mapping z — ¢(z). We
only need to know K (z;,2;) = > poy ¢k(2i)¢r(z;), a symmetric positive definite kernel.
Examples:

(1) Polynomial: K (z1,x2) = (z120 +1)%, £> 1.

(2) Radial Basis: K(z1,22) = e~ Vlw1—aal®,

(3) Neural (two-layer): K(x1,z9) = m for some «, B (for some it’s not positive definite).

Once «; are known, the decision function becomes

sign (Z QGYiTy - T+ b) = sign (Z oy K(zi, ) + b)



