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Lecture 03 Support vector machines (SVM). 18.465 

As in the previous lecture, consider the classification setting. Let X = Rd , Y = {+1, −1}, and 

H = {ψx + b, ψ ∈ Rd , b ∈ R} 

where |ψ| = 1.


We would like to maximize over the choice of hyperplanes the minimal distance from the data to the hyper­


plane:


max min d(xi,H), 
H i 

where 

d(xi,H) = yi(ψxi + b). 

Hence, the problem is formulated as maximizing the margin: 

max min yi(ψxi + b) . 
ψ,b i 

m (margin) 

Rewriting, 
yi(ψxi + b) 

yi(ψ�xi + b�) = ≥ 1, 
m 

ψ� = ψ/m, b� = b/m, |ψ�| = |ψ|/m = 1/m. Maximizing m is therefore minimizing |ψ�|. Rename ψ� → ψ, we 

have the following formulation: 

min |ψ| such that yi(ψxi + b) ≥ 1 

Equivalently, 

1
min 

2 
ψ · ψ such that yi(ψxi + b) ≥ 1 

Introducing Lagrange multipliers: 

1 � 
φ =

2 
ψ · ψ − αi(yi(ψxi + b) − 1), αi ≥ 0 

Take derivatives: 
∂φ � 

= ψ − αiyixi = 0 
∂ψ 

∂φ � 
= − αiyi = 0 

∂b 

Hence, 

ψ = αiyixi 

and 

αiyi = 0. 
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Substituting these into φ, ⎛ ⎛ ⎞ ⎞ 

φ = 
1 
2 

�� 
αiyixi 

�2 
− 

n� 
αi ⎝yi ⎝ 

n� 
αj yj xj xi + b⎠ − 1⎠ 

i=1 j=1 

1 � � � � 
= 

2 
αiαj yiyj xixj − αiαj yiyj xixj − b αiyi + αi 

i,j i,j � 1 � 
= αi − 

2 
αiαj yiyj xixj 

The above expression has to be maximized this with respect to αi, αi ≥ 0, which is a Quadratic Programming 

problem. 

Hence, we have ψ = i
n 
=1 αiyixi. 

Kuhn-Tucker condition: 

αi = 0 � ⇔ yi(ψxi + b) − 1 = 0. 

Throwing out non-support vectors xi does not affect hyperplane αi = 0. ⇒ 

The mapping φ is a feature mapping: 

x ∈ Rd −→ φ(x) = (φ1(x), φ2(x), ...) ∈ X � 

where X � is called feature space.


Support Vector Machines find optimal separating hyperplane in a very high-dimensional space. Let K(xi, xj ) =

∞

φk(xi)φk(xj ) be a scalar product in X �. Notice that we don’t need to know mapping x → φ(x). We k=1 

only need to know K(xi, xj ) = ∞
k=1 φk(xi)φk(xj ), a symmetric positive definite kernel. 

Examples: 

(1) Polynomial: K(x1, x2) = (x1x2 + 1)� , � ≥ 1. 

(2) Radial Basis: K(x1, x2) = e−γ|x1−x2|2 
. 

(3) Neural (two-layer): K(x1, x2) = 
1+eαx

1 
1 x2+β for some α, β (for some it’s not positive definite). 

Once αi are known, the decision function becomes �� � �� � 
sign αiyixx · x + b = sign αiyiK(xi, x) + b 
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