Lecture 32 Applications of random VC inequality to voting algorithms and SVM. 18.465

Recall that the solution of SVM is f(z) = Y i | ;K (x4, %), where (z1,y1),..., (2n, yn) — data, with y; €
{=1,1}. The label is predicted by sign(f(z)) and P (yf(z) < 0) is misclassification error.

Let H =H((z1,¥1);-- -, (Tn,yn)) be random collection of functions, with card H < N'(n). Also, assume that
for any h € H, —h € 'H so that « can be positive.

Define

T T
:{Z)\lh“ T>1, \; >0, Z)\izl, hlEH}

i=1 i=1
For SVM, H = {+K(z;,z) :i=1,...,n} and card H < 2n.
Recall margin-sparsity bound (voting classifiers): algorithm outputs f = EiT:1 Aihi. Take random approxi-
mation g(z) = 3 Z] L Yj(), where Y7,...,Y} iid with P(Y; = hy) = N\, EY(2) = f(x).
Fix § > 0.

P(yf(z) <0) =P (yf(x) <0,yg(x P(yf(x) <0,yg(x) > 9)
< P(yg(x) <90) +Emy1P’y( ;i ) >0, yEyYi(z) <0
| :
<P(yg(x) <0) +EqyPy (k; yY;(x))) 20
< (by Hoeffding) P ) < 6) + By e k072

=P (yg(x) <0) + 6”“52/2

= EyP,, (yg(z) < 8) + e *0/2

Similarly to what we did before, on the data

l ZI vig (@i <5] S (i) < 20) + e 2

Can we bound

for any g7
Define
C={{yg(x) <3}, g € Fi, d € [-1,1]}
where
1k
Fr = EZh](x) hj €H
j=1

Note that H(x1,...,Tn) € H(x1, ..., Ty Tpy1) and H(m(x, ..., 70)) = H(z1,. .., Tn).
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In the last lecture, we proved

P(C -1 " I i C nt?
ny<sup (C) =Ly I(wi € >>t> < 4G4

cec P(C) N
where

G(n) =Elc(zy,.on) (@1, 20).

How many different g’s are there? At most card Fj, < N (n)*. For a fixed g,
card {{yg(z) <d}n{zy,...,z}, 6 €[-1,1]} < (n+1).

Indeed, we can order y1g(z1), ..., Yng(@n) — i, 9(ziy) < ... <y, g(x;,) and level § can be anywhere along
this chain.
Hence,

AC(zl,...,a:n)(xla e ,xn) S N(n)k(n + 1).

sup

P P(C)— >0 I(z; €C) T
Y\ cec P(C)

nt?

<AN(2n)*(2n +1)e” T

Setting the above bound to e~ and solving for ¢, we get

t= \/z(u + klog N (2n) + log(8n + 4))

So, with probability at least 1 — e™*, for all C'

(P(C)~ LY I(zi € 0))’
P(C)

< % (u+ klog N (2n) + log(8n +4)).

In particular,

(P (yg(x) <8) — L0 I(yig(x;) < 6))°
P (yg(z) < 9)

< % (u+ klog N (2n) + log(8n + 4)) .

Since @ is convex with respect to (z,y),

(EyPey (yg(z) <0) —Ey =300 I(yig(a;) < 5))2

Ey P, (yg(z) < 9)
P <) =1 I(yg(ai) <6))°
(32.1) <Ey (P(yg(x) <0) — 5 31 I(yig(wi) < 9))
P(yg(z) <6)

< % (u+ klog N (2n) + log(8n +4)).
Recall that
(32.2) P (yf(x) < 0) < EyP(yg(z) < 8) +e />
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and

1 — 2
. g(x;) <0) < = ) < 28) +e k2,
(32.3) Ey— ;Iy g(:) _ng )+

Choose k such that e *°/2 =1 je k= 21°g" Plug (32.2) and (32.3) into (32.1) (look at (a=b)?y Hence,
a

n 2
(P(yf(fv)g())—%_% zle(yif(xl)SQ(s)) <2 u+2lg
P(yf(z) <0)—2 n 62
with probability at least 1 —e™".

Recall that for SVM, N (n) = card {+K (z;,z)} < 2n.

log N (2n) 4 log(8n + 4))
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