Let $\mathcal{X} = \{0, 1\}, (x_1, \dots, x_n) \in \{0, 1\}^n, \mathbb{P}(x_i = 1) = p$, and $\mathbb{P}(x_i = 0) = 1 - p$. Suppose $A \subseteq \{0, 1\}^n$. What is d(A, x) in this case?

For a given x, take all $y \in A$ and compute s:

$$x = (x_1, x_2, \dots, x_n)$$

= $\neq \dots =$
 $y = (y_1, y_2, \dots, y_n)$
 $s = (0, 1, \dots, 0)$

Build convV(A,x)=U(A,x). Finally, $d(A,x)=\min\{|x-u|^2; u\in {\rm conv}\; A\}$

Theorem 34.1. Consider a convex and Lipschitz $f : \mathbb{R}^n \mapsto \mathbb{R}, |f(x) - f(y)| \le L|x - y|, \forall x, y \in \mathbb{R}^n$. Then

$$\mathbb{P}\left(f(x_1,\ldots,x_n) \ge M + L\sqrt{t}\right) \le 2e^{-t/4}$$

and

$$\mathbb{P}\left(f(x_1,\ldots,x_n)\leq M-L\sqrt{t}\right)\leq 2e^{-t/4}$$

where M is median of $f \colon \mathbb{P}(f \ge M) \ge 1/2$ and $\mathbb{P}(f \le M) \ge 1/2$.

Proof. Fix $a \in \mathbb{R}$ and consider $A = \{(x_1, \dots, x_n) \in \{0, 1\}^n, f(x_1, \dots, x_n) \leq a\}$. We proved that

$$\mathbb{P}\left(\underbrace{d(A,x) \ge t}_{\text{event } E}\right) \le \frac{1}{\mathbb{P}(A)}e^{-t/4} = \frac{1}{\mathbb{P}(f \le a)}e^{-t/4}$$
$$d(A,x) = \min\{|x-u|^2; u \in \text{conv } A\} = |x-u_0|^2$$

for some $u_0 \in \text{conv } A$. Note that $|f(x) - f(u_0)| \le L|x - u_0|$.

Now, assume that x is such that $d(A, x) \leq t$, i.e. complement of event E. Then $|x - u_0| = \sqrt{d(A, x)} \leq \sqrt{t}$. Hence,

$$|f(x) - f(u_0)| \le L|x - u_0| \le L\sqrt{t}.$$

92

So, $f(x) \leq f(u_0) + L\sqrt{t}$. What is $f(u_0)$? We know that $u_0 \in \text{conv } A$, so $u_0 = \sum \lambda_i a_i$, $a_i \in A$, and $\lambda_i \geq 0$, $\sum \lambda_i = 1$. Since f is convex,

$$f(u_0) = f\left(\sum \lambda_i a_i\right) \le \sum \lambda_i f(a_i) \le \sum \lambda_i a = a.$$

This implies $f(x) \leq a + L\sqrt{t}$. We proved

$$\{d(A, x) \le t\} \subseteq \{f(x) \le a + L\sqrt{t}\}.$$

Hence,

$$1 - \frac{1}{\mathbb{P}(f \ge a)} e^{-t/4} \le \mathbb{P}(d(A, x) \le t) \le \mathbb{P}\left(f(x) \le a + L\sqrt{t}\right).$$

Therefore,

$$\mathbb{P}\left(f(x) \ge a + L\sqrt{t}\right) \le \frac{1}{\mathbb{P}\left(f \ge a\right)}e^{-t/4}.$$

To prove the first inequality take a = M. Since $\mathbb{P}(f \le M) \ge 1/2$,

$$\mathbb{P}\left(f(x) \ge M + L\sqrt{t}\right) \le 2e^{-t/4}.$$

To prove the second inequality, take $a = M - L\sqrt{t}$. Then

$$\mathbb{P}(f \ge M) \le \frac{1}{\mathbb{P}\left(f \le M - L\sqrt{t}\right)} e^{-t/4},$$

which means

$$\mathbb{P}\left(f(x) \le M - L\sqrt{t}\right) \le 2e^{-t/4}.$$

Example 34.1. Let $H \subseteq \mathbb{R}^n$ be a bounded set. Let

$$f(x_1,\ldots,x_n) = \sup_{h\in\mathcal{H}} \left| \sum_{i=1}^n h_i x_i \right|.$$

Let's check:

(1) convexity:

$$f(\lambda x + (1 - \lambda)y) = \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i (\lambda x_i + (1 - \lambda)y_i) \right|$$
$$= \sup_{h \in \mathcal{H}} \left| \lambda \sum_{i=1}^{n} h_i x_i + (1 - \lambda) \sum_{i=1}^{n} h_i y_i \right|$$
$$\leq \lambda \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i x_i \right| + (1 - \lambda) \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i y_i \right|$$
$$= \lambda f(x) + (1 - \lambda) f(y)$$

18.465

$$\begin{aligned} |f(x) - f(y)| &= \left| \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i x_i \right| - \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i y_i \right| \\ &\leq \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i (x_i - y_i) \right| \\ &\leq (\text{by Cauchy-Schwartz}) \quad \sup_{h \in \mathcal{H}} \sqrt{\sum h_i^2} \sqrt{\sum (x_i - y_i)^2} \\ &= |x - y| \underbrace{\sup_{h \in \mathcal{H}} \sqrt{\sum h_i^2}}_{L = \text{Lipschitz constant}} \end{aligned}$$

We proved the following

Theorem 34.2. If M is the median of $f(x_1, \ldots, x_n)$, and x_1, \ldots, x_n are i.i.d with $\mathbb{P}(x_i = 1) = p$ and $\mathbb{P}(x_i = 0) = 1 - p$, then

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|\sum_{i=1}^{n}h_{i}x_{i}\right|\geq M+\sup_{h\in\mathcal{H}}\sqrt{\sum h_{i}^{2}}\cdot\sqrt{t}\right)\leq 2e^{-t/4}$$
$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|\sum_{i=1}^{n}h_{i}x_{i}\right|\leq M-\sup_{h\in\mathcal{H}}\sqrt{\sum h_{i}^{2}}\cdot\sqrt{t}\right)\leq 2e^{-t/4}$$

and