If we substitute $f - \mathbb{E}f$ instead of f, the result of Lecture 37 becomes:

$$\sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} (f(x_i) - \mathbb{E}f) \right| \le \mathbb{E} \sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} (f(x_i) - \mathbb{E}f) \right| + \sqrt{\left(4(b-a)\mathbb{E} \sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} (f(x_i) - \mathbb{E}f) \right| + 2n\sigma^2 \right) t} + (b-a)\frac{t}{3}$$

with probability at least $\geq 1 - e^{-t}$. Here, $a \leq f \leq b$ for all $f \in \mathcal{F}$ and $\sigma^2 = \sup_{f \in \mathcal{F}} \operatorname{Var}(f)$. Now divide by n to get

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f \right| \le \mathbb{E} \sup_{f \in \mathcal{F}} |\ldots| + \sqrt{\left(4(b-a)\mathbb{E} \sup_{f \in \mathcal{F}} |\ldots| + 2\sigma^2 \right) \frac{t}{n} + (b-a)\frac{t}{3n}}$$

Compare this result to the Martingale-difference method (McDiarmid):

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f \right| \le \mathbb{E} \sup_{f \in \mathcal{F}} |\ldots| + \sqrt{\frac{2(b-a)^2 t}{n}}$$

The term $2(b-a)^2$ is worse than $4(b-a)\mathbb{E}\sup_{f\in\mathcal{F}}|\ldots|+2\sigma^2$.

An algorithm outputs $f_0 \in \mathcal{F}$, f_0 depends on data x_1, \ldots, x_n . What is $\mathbb{E}f_0$? Assume $0 \leq f \leq 1$ (loss function). Then

$$\left|\mathbb{E}f_0 - \frac{1}{n}\sum_{i=1}^n f_0(x_i)\right| \le \sup_{f \in \mathcal{F}} \left|\mathbb{E}f - \frac{1}{n}\sum_{i=1}^n f(x_i)\right| \le \text{ use Talagrand's inequality}$$

What if we knew that $\mathbb{E}f_0 \leq \varepsilon$ and the family $\mathcal{F}_{\varepsilon} = \{f \in \mathcal{F}, \mathbb{E}f \leq \varepsilon\}$ is much smaller than \mathcal{F} . Then looking at $\sup_{f \in \mathcal{F}} |\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(x_i)|$ is too conservative.

Pin down location of f_0 . Pretend we know $\mathbb{E}f_0 \leq \varepsilon$, $f_0 \in \mathcal{F}_{\varepsilon}$. Then with probability at least $1 - e^{-t}$,

$$\left| \mathbb{E}f_0 - \frac{1}{n} \sum_{i=1}^n f_0(x_i) \right| \le \sup_{f \in \mathcal{F}_{\varepsilon}} \left| \mathbb{E}f - \frac{1}{n} \sum_{i=1}^n f(x_i) \right|$$
$$\le \mathbb{E}\sup_{f \in \mathcal{F}_{\varepsilon}} \left| \mathbb{E}f - \frac{1}{n} \sum_{i=1}^n f(x_i) \right| + \sqrt{\left(4\mathbb{E}\sup_{f \in \mathcal{F}_{\varepsilon}} |\dots| + 2\sigma_{\varepsilon}^2 \right) \frac{t}{n}} + \frac{t}{3n}$$

where $\sigma_{\varepsilon}^2 = \sup_{f \in \mathcal{F}_{\varepsilon}} \operatorname{Var}(f)$. Note that for $f \in \mathcal{F}_{\varepsilon}$

$$\operatorname{Var}(f) = \mathbb{E}f^2 - (\mathbb{E}f)^2 \le \mathbb{E}f^2 \le \mathbb{E}f \le \varepsilon$$

since $0 \le f \le 1$.

Denote $\varphi(\varepsilon) = \mathbb{E} \sup_{f \in \mathcal{F}_{\varepsilon}} \left| \mathbb{E} f - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \right|$. Then

$$\left|\mathbb{E}f_0 - \frac{1}{n}\sum_{i=1}^n f_0(x_i)\right| \le \varphi(\varepsilon) + \sqrt{\left(4\varphi(\varepsilon) + 2\varepsilon\right)\frac{t}{n}} + \frac{t}{3n}$$

with probability at least $1 - e^{-t}$.

104

Take $\varepsilon = 2^{-k}$, $k = 0, 1, 2, \dots$ Change $t \to t + 2\log(k+2)$. Then, for a fixed k, with probability at least $1 - e^{-t} \frac{1}{(k+2)^2}$,

$$\left|\mathbb{E}f_0 - \frac{1}{n}\sum_{i=1}^n f_0(x_i)\right| \le \varphi(\varepsilon) + \sqrt{\left(4\varphi(\varepsilon) + 2\varepsilon\right)\frac{t + 2\log(k+2)}{n}} + \frac{t + 2\log(k+2)}{3n}\right|$$

For all $k \ge 0$, the statement holds with probability at least

$$1 - \underbrace{\sum_{k=1}^{\infty} \frac{1}{(k+2)^2}}_{\frac{\pi^2}{6} - 1} e^{-t} \ge 1 - e^{-t}$$

For f_0 , find k such that $2^{-k-1} \leq \mathbb{E}f_0 < 2^{-k}$ (hence, $2^{-k} \leq 2\mathbb{E}f_0$). Use the statement for $\varepsilon_k = 2^{-k}$, $k \leq \log_2 \frac{1}{\mathbb{E}f_0}$.

$$\left| \mathbb{E}f_0 - \frac{1}{n} \sum_{i=1}^n f_0(x_i) \right| \le \varphi(\varepsilon_k) + \sqrt{\left(4\varphi(\varepsilon_k) + 2\varepsilon_k\right) \frac{t + 2\log(k+2)}{n}} + \frac{t + 2\log(k+2)}{3n} \\ \le \varphi(2\mathbb{E}f_0) + \sqrt{\left(4\varphi(2\mathbb{E}f_0) + 4\mathbb{E}f_0\right) \frac{t + 2\log(\log_2\frac{1}{\mathbb{E}f_0} + 2)}{n}} + \frac{t + 2\log(\log_2\frac{1}{\mathbb{E}f_0} + 2)}{3n} \\ = \Phi(\mathbb{E}f_0)$$

Hence, $\mathbb{E}f_0 \leq \frac{1}{n} \sum_{i=1}^n f_0(x_i) + \Phi(\mathbb{E}f_0)$. Denote $x = \mathbb{E}f_0$. Then $x \leq \overline{f} + \Phi(x)$.

Theorem 38.1. Let $0 \leq f \leq 1$ for all $f \in \mathcal{F}$. Define $\mathcal{F}_{\varepsilon} = \{f \in \mathcal{F}, \mathbb{E}f \leq \varepsilon\}$ and $\varphi(\varepsilon) = \mathbb{E}\sup_{f \in \mathcal{F}_{\varepsilon}} |\mathbb{E}f - \frac{1}{n}\sum_{i=1}^{n} f(x_i)|$. Then, with probability at least $1 - e^{-t}$, for any $f_0 \in \mathcal{F}$, $\mathbb{E}f_0 \leq x^*$, where x^* is the largest solution of

$$x^* = \frac{1}{n} \sum_{i=1}^n f_0(x_i) + \Phi(x^*).$$

Main work is to find $\varphi(\varepsilon)$. Consider the following example.

Example 38.1. If

$$\sup_{x_1,\dots,x_n} \log \mathcal{D}(\mathcal{F}, u, d_x) \le \mathcal{D}(\mathcal{F}, u),$$

then

$$\mathbb{E}\sup_{f\in\mathcal{F}_{\varepsilon}}\left|\mathbb{E}f-\frac{1}{n}\sum_{i=1}^{n}f(x_{i})\right|\leq\frac{k}{\sqrt{n}}\int_{0}^{\sqrt{\varepsilon}}\log^{1/2}\mathcal{D}(\mathcal{F},\varepsilon)d\varepsilon.$$

105