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Assume we have samples z1 = (21,¥1), ..., 2n = (Tn,yn) as well as a new sample z,41. The classifier trained
on the data z1,...,2, is foy . 2,-

The error of this classifier is

EI‘I"OI"(Zl, e »Zn) - Ezn+1-[(le,..,,zn (anrl) 7é yn+1) - ]Pzn+1 (le,...,zn (xn+1) 7& yn+1)

and the Average Generalization Error

A.G.E. = E Error(z1,...,2,) =EE.  I(f2, .. 2, (Tny1) 7# Ynt1)-

Since z1,...,2n, 2n+1 are iid., in expectation training on z1,...,2;,...,2, and evaluating on 2,41 is the

same as training on 21, ..., 2p41,--., 2, and evaluating on z;. Hence, for any i,

AGE = EEZiI(le,~~,2n+1,m,2n (CEZ) 7é yz)

and

1 n+1
AGE =E | —— ; I(forozur e () # 0)

leave-one-out error
Therefore, to obtain a bound on the generalization ability of an algorithm, it’s enough to obtain a bound

on its leave-one-out error. We now prove such a bound for SVMs. Recall that the solution of SVM is

_\ntl 0o
Y= Zi:1 Y.

Theorem 4.1.
min(# support vect., D?/m?)
n+1

where D is the diameter of a ball containing all x;, i < n—+1 and m is the margin of an optimal hyperplane.

L.O.0.E. <

Remarks:

e dependence on sample size is %

e dependence on margin is

e number of support vectors (sparse solution)
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Lemma 4.1. If x; is a support vector and it is misclassified by leaving it out, then o > ﬁ,

Given Lemma 4.1, we prove Theorem 4.1 as follows.

Proof. Clearly,
# support vect.

LO.OE. <
n+1

Indeed, if x; is not a support vector, then removing it does not affect the solution. Using Lemma 4.1 above,
D2
Z I(x; is misclassified) < Z a?D? = D? Z ol = =.

m
iesupp.vect iesupp.vect

In the last step we use the fact that 3" af = -L;. Indeed, since |p| =

m? %a
1 2 0
m2 [ ZW'WZ@'Z%%%

= i)

=Y Awilp-wi+b) —1)+> al —bY ady
0 0

_§ 0
= Q;

O

We now prove Lemma 4.1. Let u*v = K(u,v) be the dot product of u and v, and |Ju| = (K(u,u))l/2 be
the corresponding Ly norm. Given x1,--- ,2,11 € R and 41, ,yns1 € {—1,+1}, recall that the primal
problem of training a support vector classifier is argminw%|\¢||2 subject to y; (¢ x x; +b) > 1. Tts dual
problem is argmax, > a; — % > oziyixiHZ subject to a; > 0 and Y a;y; = 0, and ¢ = > a;y;2;. Since the
Kuhn-Tucker condition can be satisfied, miny 14 * ¢ = max, Y- a; — 2 |3 iyiz||? = 7, where m is the

margin of an optimal hyperplane.

Proof. Define w(a) =Y, a;— 3 [|3 oiyii||?. Let a® = argmax, w(a) subject to o > 0 and 3" ci;y; = 0. Let

o' = argmax,w(a) subject to o, = 0, a; > 0 for i # p and > ayy; = 0. In other words, a® corresponds to

the support vector classifier trained from {(x;,y;) : 4 =1,--+ ,n+1} and o’ corresponds to the support vector
1 p—1 p p+1 n+1
) ) , ! Lol 1
classifier trained from {(x;,y;):i=1,---,p—1,p+1,--- ,n+1}. Lety=1{0,---, 0,1, 0 ,---, O |. It
follows that w(a® — g -v) < w(a) < w(a®). (For the dual problem, o’ maximizes w() with a constraint
that a;, = 0, thus w(a’) is no less than w(a® — oy - ), which is a special case that satisfies the constraints,

including o, = 0. o’ maxmizes w(a) with a constraint ap > 0, which raises the constraint a,, = 0, thus

w(a’) < w(a®). For the primal problem, the training problem corresponding to o' has less samples (z;,;),

where i # p, to separate with maximum margin, thus its margin m(a’) is no less than the margin m(a®),
7
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and w(a’) < w(a). On the other hand, the hyperplane determined by o — 042 -~ might not separate (x;,y;)
for i # p and corresponds to a equivalent or larger “margin” 1/[|¢(a® — o - ~)|| than m(c/)).

Let us consider the inequality
Intaxw(o/ +t-7) —w(@) <w@®) —w(@) <w@®) —wd - oeg ).
For the left hand side, we have
(o +ty) = Za +t— = HZaQyi:ci—}—t.ypxp‘r
= Z ai+t— = HZ by —t (Z O%?Jﬂz) (Ypp) — Hypxp”Q

t2
= w(a)+t- (1=yp- (Y afyias) wap) = 5
—_————
,L/)l

and w(a' +ty) —w() =t (1 —y, - P * ) — % |#,]|>. Maximizing the expression over ¢, we find

t=(1- Yp - (S zp)/||xp||27 and

mtaxw(o/ +ty) —w(a') =

For the right hand side,

1
we® —ap-9) = Y a?—ap— S| Y alyiw; —afy,r, |
N————

o

1 1 2
= al—al— Sl + abupuio x mp — 5 (a2)”

1 2
w(ap) — 0‘2(1 —Yp - o * Tp) — 5 (ag) ||33p||2

1 2
= w(ao)— 5 (a9)° P

The last step above is due to the fact that (z,,y,) is a support vector, and y, - 1 * 2, = 1. Thus w(a®) —
1—yptp x2p)°
w(a® — ag ) = % ( ) |z, )% and 1 (1oypveey) <1 ( ) |z, Thus

llzp[12 =2
0 |1 —yp - ' x 2y
ap Z p 5 p
(e
1
= D

The last step above is due to the fact that the support vector classifier associated with ¢’ misclassifies (z,, yp)

according to assumption, and y, - ¥’ * 2, < 0, and the fact that ||z,| < D. O



