Assume we have samples $z_1 = (x_1, y_1), \ldots, z_n = (x_n, y_n)$ as well as a new sample z_{n+1} . The classifier trained on the data z_1, \ldots, z_n is f_{z_1, \ldots, z_n} .

The error of this classifier is

$$\operatorname{Error}(z_1, \dots, z_n) = \mathbb{E}_{z_{n+1}} I(f_{z_1, \dots, z_n}(x_{n+1}) \neq y_{n+1}) = \mathbb{P}_{z_{n+1}} (f_{z_1, \dots, z_n}(x_{n+1}) \neq y_{n+1})$$

and the Average Generalization Error

A.G.E. =
$$\mathbb{E} \operatorname{Error}(z_1, \dots, z_n) = \mathbb{E}\mathbb{E}_{z_{n+1}}I(f_{z_1,\dots,z_n}(x_{n+1}) \neq y_{n+1}).$$

Since $z_1, \ldots, z_n, z_{n+1}$ are i.i.d., in expectation training on $z_1, \ldots, z_i, \ldots, z_n$ and evaluating on z_{n+1} is the same as training on $z_1, \ldots, z_{n+1}, \ldots, z_n$ and evaluating on z_i . Hence, for any i,

A.G.E. =
$$\mathbb{E}\mathbb{E}_{z_i}I(f_{z_1,\dots,z_{n+1},\dots,z_n}(x_i)\neq y_i)$$

and

A.G.E. =
$$\mathbb{E}\left[\underbrace{\frac{1}{n+1}\sum_{i=1}^{n+1}I(f_{z_1,\dots,z_{n+1},\dots,z_n}(x_i)\neq y_i)}_{\text{leave-one-out error}}\right]$$

Therefore, to obtain a bound on the generalization ability of an algorithm, it's enough to obtain a bound on its leave-one-out error. We now prove such a bound for SVMs. Recall that the solution of SVM is $\varphi = \sum_{i=1}^{n+1} \alpha_i^0 y_i x_i.$

Theorem 4.1.

$$L.O.O.E. \le \frac{\min(\# \ support \ vect., D^2/m^2)}{n+1}$$

where D is the diameter of a ball containing all x_i , $i \leq n+1$ and m is the margin of an optimal hyperplane.

Remarks:

- dependence on sample size is $\frac{1}{n}$
- dependence on margin is $\frac{1}{m^2}$
- number of support vectors (sparse solution)

Lemma 4.1. If x_i is a support vector and it is misclassified by leaving it out, then $\alpha_i^0 \geq \frac{1}{D^2}$.

Given Lemma 4.1, we prove Theorem 4.1 as follows.

Proof. Clearly,

$$\text{L.O.O.E.} \le \frac{\# \text{ support vect.}}{n+1}.$$

Indeed, if x_i is not a support vector, then removing it does not affect the solution. Using Lemma 4.1 above,

 $\sum_{i \in \text{supp.vect}} I(x_i \text{ is misclassified}) \le \sum_{i \in \text{supp.vect}} \alpha_i^0 D^2 = D^2 \sum \alpha_i^0 = \frac{D^2}{m^2}.$

In the last step we use the fact that $\sum \alpha_i^0 = \frac{1}{m^2}$. Indeed, since $|\varphi| = \frac{1}{m}$,

$$\frac{1}{m^2} = |\varphi|^2 = \varphi \cdot \varphi = \varphi \cdot \sum \alpha_i^0 y_i x_i$$
$$= \sum \alpha_i^0 (y_i (\varphi \cdot x_i))$$
$$= \underbrace{\sum \alpha_i^0 (y_i (\varphi \cdot x_i + b) - 1)}_0 + \sum \alpha_i^0 - b \underbrace{\sum \alpha_i^0 y_i}_0$$
$$= \sum \alpha_i^0$$

We now prove Lemma 4.1. Let u * v = K(u, v) be the dot product of u and v, and $||u|| = (K(u, u))^{1/2}$ be the corresponding L_2 norm. Given $x_1, \dots, x_{n+1} \in \mathbb{R}^d$ and $y_1, \dots, y_{n+1} \in \{-1, +1\}$, recall that the primal problem of training a support vector classifier is $\operatorname{argmin}_{\psi} \frac{1}{2} ||\psi||^2$ subject to $y_i(\psi * x_i + b) \ge 1$. Its dual problem is $\operatorname{argmax}_{\alpha} \sum \alpha_i - \frac{1}{2} ||\sum \alpha_i y_i x_i||^2$ subject to $\alpha_i \ge 0$ and $\sum \alpha_i y_i = 0$, and $\psi = \sum \alpha_i y_i x_i$. Since the Kuhn-Tucker condition can be satisfied, $\min_{\psi} \frac{1}{2}\psi * \psi = \max_{\alpha} \sum \alpha_i - \frac{1}{2} ||\sum \alpha_i y_i x_i||^2 = \frac{1}{2m^2}$, where m is the margin of an optimal hyperplane.

Proof. Define $w(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \|\sum \alpha_{i} y_{i} x_{i}\|^{2}$. Let $\alpha^{0} = \operatorname{argmax}_{\alpha} w(\alpha)$ subject to $\alpha_{i} \geq 0$ and $\sum \alpha_{i} y_{i} = 0$. Let $\alpha' = \operatorname{argmax}_{\alpha} w(\alpha)$ subject to $\alpha_{p} = 0$, $\alpha_{i} \geq 0$ for $i \neq p$ and $\sum \alpha_{i} y_{i} = 0$. In other words, α^{0} corresponds to the support vector classifier trained from $\{(x_{i}, y_{i}) : i = 1, \cdots, n+1\}$ and α' corresponds to the support vector classifier trained from $\{(x_{i}, y_{i}) : i = 1, \cdots, n+1\}$. Let $\gamma = \begin{pmatrix} 1 & p^{-1} & p & p^{+1} & n^{+1} \\ 0 & \cdots & 0 & 1, 0 & \cdots & 0 \end{pmatrix}$. It follows that $w(\alpha^{0} - \alpha_{p}^{0} \cdot \gamma) \leq w(\alpha') \leq w(\alpha^{0})$. (For the dual problem, α' maximizes $w(\alpha)$ with a constraint that $\alpha_{p} = 0$, thus $w(\alpha')$ is no less than $w(\alpha^{0} - \alpha_{p}^{0} \cdot \gamma)$, which is a special case that satisfies the constraints, including $\alpha_{p} = 0$. α^{0} maxmizes $w(\alpha)$ with a constraint $\alpha_{p} \geq 0$, which raises the constraint $\alpha_{p} = 0$, thus $w(\alpha')$. For the primal problem, the training problem corresponding to α' has less samples (x_{i}, y_{i}) , where $i \neq p$, to separate with maximum margin, thus its margin $m(\alpha')$ is no less than the margin $m(\alpha^{0})$.

and $w(\alpha') \leq w(\alpha^0)$. On the other hand, the hyperplane determined by $\alpha^0 - \alpha_p^0 \cdot \gamma$ might not separate (x_i, y_i) for $i \neq p$ and corresponds to a equivalent or larger "margin" $1/||\psi(\alpha^0 - \alpha_p^0 \cdot \gamma)||$ than $m(\alpha')$).

Let us consider the inequality

$$\max_{t} w(\alpha' + t \cdot \gamma) - w(\alpha') \le w(\alpha^{0}) - w(\alpha') \le w(\alpha^{0}) - w(\alpha^{0} - \alpha_{p}^{0} \cdot \gamma).$$

For the left hand side, we have

$$w(\alpha' + t\gamma) = \sum \alpha'_i + t - \frac{1}{2} \left\| \sum \alpha'_i y_i x_i + t \cdot y_p x_p \right\|^2$$

= $\sum \alpha'_i + t - \frac{1}{2} \left\| \sum \alpha'_i y_i x_i \right\|^2 - t \left(\sum \alpha'_i y_i x_i \right) * (y_p x_p) - \frac{t^2}{2} \left\| y_p x_p \right\|^2$
= $w(\alpha') + t \cdot (1 - y_p \cdot \underbrace{(\sum \alpha'_i y_i x_i)}_{\psi'} * x_p) - \frac{t^2}{2} \left\| x_p \right\|^2$

and $w(\alpha' + t\gamma) - w(\alpha') = t \cdot (1 - y_p \cdot \psi' * x_p) - \frac{t^2}{2} ||x_p||^2$. Maximizing the expression over t, we find $t = (1 - y_p \cdot \psi' * x_p)/||x_p||^2$, and

$$\max_{t} w(\alpha' + t\gamma) - w(\alpha') = \frac{1}{2} \frac{(1 - y_p \cdot \psi' * x_p)^2}{\|x_p\|^2}.$$

For the right hand side,

$$w(\alpha^{0} - \alpha_{p}^{0} \cdot \gamma) = \sum_{i} \alpha_{i}^{0} - \alpha_{p}^{0} - \frac{1}{2} \| \underbrace{\sum_{\psi_{0}} \alpha_{i}^{0} y_{i} x_{i}}_{\psi_{0}} - \alpha_{p}^{0} y_{p} x_{p} \|^{2}$$

$$= \sum_{i} \alpha_{i}^{0} - \alpha_{p}^{0} - \frac{1}{2} \|\psi_{0}\|^{2} + \alpha_{p}^{0} y_{p} \psi_{0} * x_{p} - \frac{1}{2} (\alpha_{p}^{0})^{2} \|x_{p}\|^{2}$$

$$= w(\alpha_{0}) - \alpha_{p}^{0} (1 - y_{p} \cdot \psi_{0} * x_{p}) - \frac{1}{2} (\alpha_{p}^{0})^{2} \|x_{p}\|^{2}$$

$$= w(\alpha_{0}) - \frac{1}{2} (\alpha_{p}^{0})^{2} \|x_{p}\|^{2}.$$

The last step above is due to the fact that (x_p, y_p) is a support vector, and $y_p \cdot \psi_0 * x_p = 1$. Thus $w(\alpha^0) - w(\alpha^0 - \alpha_p^0 \cdot \gamma) = \frac{1}{2} \left(\alpha_p^0\right)^2 \|x_p\|^2$ and $\frac{1}{2} \frac{(1-y_p \cdot \psi' * x_p)^2}{\|x_p\|^2} \leq \frac{1}{2} \left(\alpha_p^0\right)^2 \|x_p\|^2$. Thus $\alpha_p^0 \geq \frac{|1-y_p \cdot \psi' * x_p|}{\|x_p\|^2}$ $\geq \frac{1}{D^2}.$

The last step above is due to the fact that the support vector classifier associated with ψ' misclassifies (x_p, y_p) according to assumption, and $y_p \cdot \psi' * x_p \leq 0$, and the fact that $||x_p|| \leq D$.