In this lecture, we expose the technique of deriving concentration inequalities with the entropy tensorization inequality. The entropy tensorization inequality enables us to bound the entropy of a function of n variables by the sum of the n entropies of this function in terms of the individual variables. The second step of this technique uses the variational formulation of the n entropies to form a differential inequality that gives an upper bound of the log-Laplace transform of the function. We can subsequently use Markov inequality to get a deviation inequality involving this function.

Let $(\mathcal{X}, \mathcal{F}, \mathbb{P})$ be a measurable space, and $u : \mathcal{X} \to \mathbb{R}^+$ a measurable function. The **entropy** of u with regard to \mathbb{P} is defined as $\operatorname{Ent}_{\mathbb{P}}(u) \stackrel{\text{def.}}{=} \int u \log u d\mathbb{P} - \int u \cdot \left(\log\left(\int u d\mathbb{P}\right)\right) d\mathbb{P}$. If \mathbb{Q} is another probability measure and $u = \frac{d\mathbb{Q}}{d\mathbb{P}}$, then $\operatorname{Ent}_{\mathbb{P}}(u) = \int \left(\log \frac{d\mathbb{Q}}{d\mathbb{P}}\right) d\mathbb{Q}$ is the **KL-divergence** between two probability measures \mathbb{Q} and \mathbb{P} . The following lemma gives variational formulations for the entropy.

Lemma 40.1.

$$Ent_{\mathbb{P}}(u) = \inf \left\{ \int \left(u \cdot (\log u - \log x) - (u - x) \right) d\mathbb{P} : x \in \mathbb{R}^+ \right\}$$
$$= \sup \left\{ \int \left(u \cdot g \right) d\mathbb{P} : \int \exp(g) d\mathbb{P} \le 1 \right\}.$$

Proof. For the first formulation, we define x pointsizely by $\frac{\partial}{\partial x} \int (u \cdot (\log u - \log x) - (u - x)) d\mathbb{P} = 0$, and get $x = \int u d\mathbb{P} > 0$.

For the second formulation, the Laplacian corresponding to $\sup \left\{ \int (u \cdot g) d\mathbb{P} : \int \exp(g) d\mathbb{P} \leq 1 \right\}$ is $\mathcal{L}(g, \lambda) = \int (ug) d\mathbb{P} - \lambda \left(\int \exp(g) d\mathbb{P} - 1 \right)$. It is linear in λ and concave in g, thus $\sup_g \inf_{\lambda \geq 0} \mathcal{L} = \inf_{\lambda \geq 0} \sup_g \mathcal{L}$. Define g pointwisely by $\frac{\partial}{\partial g} \mathcal{L} = u - \lambda \exp(g) = 0$. Thus $g = \log \frac{u}{\lambda}$, and $\sup_g \mathcal{L} = \int (u \log \frac{u}{\lambda}) d\mathbb{P} - \int u d\mathbb{P} + \lambda$. We set $\frac{\partial}{\partial \lambda} \sup_g \mathcal{L} = -\frac{\int u d\mathbb{P}}{\lambda} + 1 = 0$, and get $\lambda = \int u d\mathbb{P}$. As a result, $\inf_\lambda \sup_g \mathcal{L} = \operatorname{Ent}_{\mathbb{P}}(u)$.

Entropy $\operatorname{Ent}_{\mathbb{P}}(u)$ is a convex function of u for any probability measure \mathbb{P} , since

$$\operatorname{Ent}_{\mathbb{P}}(\sum \lambda_{i} u_{i}) = \sup \left\{ \int \left(\sum \lambda_{i} u_{i} \cdot g \right) d\mathbb{P} : \int \exp(g) d\mathbb{P} \leq 1 \right\}$$
$$\leq \sum \lambda_{i} \sup \left\{ \int \left(u_{i} \cdot g_{i} \right) d\mathbb{P} : \int \exp(g_{i}) d\mathbb{P} \leq 1 \right\}$$
$$= \sum \lambda_{i} \operatorname{Ent}_{\mathbb{P}}(u_{i}).$$

Lemma 40.2. [Tensorization of entropy] $\mathcal{X} = (\mathcal{X}_1, \dots, \mathcal{X}_n), \mathbb{P}^n = \mathbb{P}_1 \times \dots \times \mathbb{P}_n, u = u(x_1, \dots, x_n),$ $Ent_{\mathbb{P}^n}(u) \leq \int (\sum_{i=1}^n Ent_{\mathbb{P}_i}(u)) d\mathbb{P}^n.$

Proof. Proof by induction. When n = 1, the above inequality is trivially true. Suppose

$$\int u \log u d\mathbb{P}^n \leq \int u d\mathbb{P}^n \log \int u d\mathbb{P}^n + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^n.$$
109

Integrate with regard to \mathbb{P}_{n+1} ,

$$\begin{split} &\int u \log u d\mathbb{P}^{n+1} \\ &\leq \int \left(\overbrace{\int u d\mathbb{P}^n}^v \log \overbrace{\int u d\mathbb{P}^n}^v \right) d\mathbb{P}_{n+1} + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\underset{\operatorname{definition of entropy}}{=} \int \underbrace{\int u d\mathbb{P}^n} d\mathbb{P}_{n+1} \cdot \left(\log \int \overbrace{\int u d\mathbb{P}^n}^v d\mathbb{P}_{n+1} \right) + \operatorname{Ent}_{\mathbb{P}_{n+1}} \left(\underbrace{\int u d\mathbb{P}^n}_v \right) + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\underset{\operatorname{Foubini's theorem}}{=} \int u d\mathbb{P}^{n+1} \cdot \left(\log \int u d\mathbb{P}^{n+1} \right) + \operatorname{Ent}_{\mathbb{P}_{n+1}}(u) d\mathbb{P}^n + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\underset{\operatorname{convexity of entropy}}{=} \int u d\mathbb{P}^{n+1} \cdot \left(\log \int u d\mathbb{P}^{n+1} \right) + \int \operatorname{Ent}_{\mathbb{P}_{n+1}}(u) d\mathbb{P}^{n+1} + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\leq \int u d\mathbb{P}^{n+1} \cdot \left(\log \int u d\mathbb{P}^{n+1} \right) + \int \operatorname{Ent}_{\mathbb{P}_{n+1}}(u) d\mathbb{P}^{n+1} + . \end{split}$$

By definition of entropy, $\operatorname{Ent}_{\mathbb{P}^{n+1}}(u) \leq \int \sum_{i=1}^{n+1} \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1}$.

The tensorization of entropy lemma can be trivially applied to get the following tensorization of Laplace transform.

Theorem 40.3. [Tensorization of Laplace transform] Let x_1, \dots, x_n be independent random variables and x'_1, \dots, x'_n their indepent copies, $Z = Z(x_1, \dots, x_n)$, $Z^i = Z(x_1, \dots, x_{i-1}, x'_i, x_{i+1}, \dots, x_n)$, $\phi(x) = e^x - x - 1$, and $\psi(x) = \phi(x) + e^x \phi(-x) = x \cdot (e^x - 1)$, and I be the indicator function. Then

$$\mathbb{E}\left(e^{\lambda Z} \cdot \lambda Z\right) - \mathbb{E}e^{\lambda Z} \cdot \log \mathbb{E}e^{\lambda Z} \leq \mathbb{E}_{x_1, \cdots, x_n, x'_1, \cdots, x'_n} e^{\lambda Z} \sum_{i=1}^n \phi\left(-\lambda(Z - Z^i)\right) \\
\mathbb{E}\left(e^{\lambda Z} \cdot \lambda Z\right) - \mathbb{E}e^{\lambda Z} \cdot \log \mathbb{E}e^{\lambda Z} \leq \mathbb{E}_{x_1, \cdots, x_n, x'_1, \cdots, x'_n} e^{\lambda Z} \sum_{i=1}^n \psi\left(-\lambda(Z - Z^i)\right) \cdot I(Z \geq Z^i).$$
110

Proof. Let $u = \exp(\lambda Z)$ where $\lambda \in \mathbb{R}$, and apply the tensorization of entropy lemma,

$$\underbrace{\mathbb{E}\left(e^{\lambda Z} \cdot \lambda Z\right) - \mathbb{E}e^{\lambda Z} \cdot \log \mathbb{E}e^{\lambda Z}}_{\text{Ent}_{\mathbb{P}^{n}} \log u} \\
\leq \qquad \mathbb{E}\sum_{i=1}^{n} \text{Ent}_{\mathbb{P}_{i}}e^{\lambda Z} \\
\stackrel{=}{=} \qquad \mathbb{E}\sum_{i=1}^{n} \inf\left\{\int \left(e^{\lambda Z}(\lambda Z - \lambda x) - (e^{\lambda Z} - e^{\lambda x})\right)d\mathbb{P}_{i} : x \in \mathbb{R}^{+}\right\} \\
\leq \qquad \mathbb{E}\sum_{i=1}^{n} \mathbb{E}_{x_{i}x_{i}'}\left(e^{\lambda Z}(\lambda Z - \lambda Z^{i}) - (e^{\lambda Z} - e^{\lambda Z^{i}})\right) \\
= \qquad \mathbb{E}\sum_{i=1}^{n} \mathbb{E}_{x_{i}x_{i}'}e^{\lambda Z}\left(e^{-\lambda(Z - Z^{i})} - (-\lambda \cdot (Z - Z^{i})) - 1\right) \\
= \qquad \mathbb{E}_{x_{1}, \cdots, x_{n}, x_{1}', \cdots, x_{n}'}e^{\lambda Z}\sum_{i=1}^{n}\phi\left(-\lambda \cdot (Z - Z^{i})\right).$$

$$\begin{split} & \mathbb{E}e^{\lambda Z}\sum_{i=1}^{n}\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right) \\ & = \mathbb{E}\sum_{i=1}^{n}e^{\lambda Z}\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right)\cdot\left(\underbrace{I\left(Z\geq Z^{i}\right)}_{\mathbf{I}}+\underbrace{I\left(Z^{i}\geq Z\right)}_{\mathbf{I}}\right) \\ & = \mathbb{E}\sum_{i=1}^{n}\left(\underbrace{e^{\lambda Z^{i}}\phi\left(-\lambda\cdot\left(Z^{i}-Z\right)\right)\cdot I\left(Z\geq Z^{i}\right)}_{\text{switch } Z \text{ and } Z^{i} \text{ in II}}+\underbrace{e^{\lambda Z}\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right)\cdot I\left(Z\geq Z^{i}\right)}_{\mathbf{I}}\right) \\ & = \mathbb{E}\sum_{i=1}^{n}e^{\lambda Z}\cdot I\left(Z\geq Z^{i}\right)\cdot\left(\underbrace{e^{\lambda\left(Z^{i}-Z\right)}\cdot\phi\left(-\lambda\cdot\left(Z^{i}-Z\right)\right)}_{\mathbf{II}}+\underbrace{\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right)}_{\mathbf{I}}\right) \\ & = \mathbb{E}\sum_{i=1}^{n}e^{\lambda Z}\cdot I\left(Z\geq Z^{i}\right)\cdot\psi\left(-\lambda\cdot\left(Z^{i}-Z\right)\right). \end{split}$$