Lecture 40 Entropy tensorization inequality. Tensorization of Laplace transform. 18.465

In this lecture, we expose the technique of deriving concentration inequalities with the entropy tensorization
inequality. The entropy tensorization inequality enables us to bound the entropy of a function of n variables
by the sum of the n entropies of this function in terms of the individual variables. The second step of this
technique uses the variational formulation of the n entropies to form a differential inequality that gives an
upper bound of the log-Laplace transform of the function. We can subsequently use Markov inequality to
get a deviation inequality involving this function.

Let (X, F,P) be a measurable space, and u : X — RT a measurable function. The entropy of u with regard
to P is defined as Entp(u f ulogudP — [ - (log ([ udP))dP. If Q is another probability measure and

u = then Entp(u) = f (log ) dQ is the KL-divergence between two probability measures Q and P.

d]P”

The following lemma gives variational formulations for the entropy.

Lemma 40.1.

Entp(u) = inf{/(u~(10gu—logx)—(u—x))dP:x€R+}

sup{/(u~g) dP /exp(g)dP < 1}.

Proof. For the first formulation, we define = pointsizely by 2 [ (u- (logu —logz) — (u — x)) dP = 0, and
get = [udP > 0.

For the second formulation, the Laplacian corresponding to sup { f u-g)dP: f exp(g)dP < 1} is L(g,\) =

[ (ug)dP — X (f exp(g)dP — 1) It is linear in A and concave in g, thus sup, infy>0 £ = inf)> sup, £. Define
g pointwisely by 2 79 L =u— Aexp(g) =0. Thus g =log {, and sup, £ = Ik (u log %) dP — [udP + X. We set
[ud® 1 =0, and get A = [udP. As a result, infy sup, £ = Entp(u). O

msupgﬁz—

Entropy Entp(u) is a convex function of u for any probability measure P, since

Ent]p(z Aiu;) = sup {/ (Z il -g) dP : /exp(g)d]}” < 1}

Z)\i sup {/ (u; - g;)dP: /exp(gi)d]P’ < 1}
> AiEntp(u;).

Lemma 40.2. [Tensorization of entropy] X = (X1, -+, Xpn), P* = Py x -+ X Py, u = u(xy, - ,x,),
Entpn (u) < [ (X1, Entp, (u)) dP™.

IN

Proof. Proof by induction. When n = 1, the above inequality is trivially true. Suppose

/ wlogudP® < / udP" log / udP" + / ZEnt]p )dP™.
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Integrate with regard to P, 1,

/u log udP™ ™1

/—/Uh /—/UA
< / / udP™ log / udP™ | P,y + / ZEnt]p )dP™ 1

v v v

—— —— —— n
= //udIP’” dPp 41 - log//udP" dP,y1 | +Entp, /udIP’” —l—/Z;Ent]pi (u)dP™
1=

definition of entropy

= udP™ .
-

Foubini’s theorem

< / udP™ .
~~

convexity of entropy

udP”+1>+ Ent[p o (w)dP / ZEntp )dP

n+1
Z Entp, (u)dP™+

IN
—
S
S
ac|
3
*

By definition of entropy, Entpn+1(u) < [ Z"H Entp, (u)dP" 1. O

The tensorization of entropy lemma can be trivially applied to get the following tensorization of Laplace

transform.
Theorem 40.3. [Tensorization of Laplace transform] Let x1,--- ,x, be independent random variables and
xh, -+ @l their indepent copies, Z = Z(x1,+ ,xpn), Z° = Z(x1,+ ,Ti_1, T, Tit1, 0, Tn), P(T) = ¥ —

x—1, and ¥(x) = ¢(x) + e*Pp(—x) = x - (* — 1), and I be the indicator function. Then

E (e} - \Z) — Ee* - logEeM

N
=
B

..-,mmx’v...’m%ekz Z¢ (_)\(Z _ Zz))

E (e} - A\Z) — Ee* - log Ee*”

A
&
B

e, € W (=NZ = ZY)) - 1(Z = 7).
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Proof. Let u = exp(AZ) where A € R, and apply the tensorization of entropy lemma,
E (e’ - \Z) — Ee* -logEet
Entpn logu
n
< EZ Entp e
i=1
= EZinf {/ (M (NZ = Az) — (M = ) dP; 1w € R+}
variational formulatidi?
< EZE'E o ( AZ )\Z )\ZZ) ( )\Zie)\Zl))
= EZEzwée)\Z (e_)\(Z_Zi) o (_)‘ ’ (Z o Zi)) - 1)
i=1
= Eupognal, T;LGAZZM N (Z-2Y)
i=1
Moreover,
)\Z Z ¢ Z Zl))
= IEZe)‘Zz,b (z2-2z)) [1(2>2)+1(2">2)
11
= IEZ MG (N (20— 2)) - 1 (2> Z)+e¢ (=N (Z2—2ZY)) - 1(Z > Z7)
switch Z and Z* in II I
= EY. M 1(2>2) [ MDD g (=X (20~ 2)) +¢ (-A- (2 - ZY))
=t i 1
n
= EY M- 1(2>27")-¢(-\- (2 - 2)).
i=1
O
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