Assume $f \in \mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$ and x_1, \dots, x_n are i.i.d. Denote $\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(x_i)$ and $\mathbb{P} f = \int f dP = \mathbb{E} f$. We are interested in bounding $\frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E} f$.

Worst-case scenario is the value

$$\sup_{f\in\mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f|$$

The Glivenko-Cantelli property $GC(\mathcal{F}, P)$ says that

$$\mathbb{E}\sup_{f\in\mathcal{F}}|\mathbb{P}_nf-\mathbb{P}f|\to 0$$

as $n \to \infty$.

- Algorithm can output any $f \in \mathcal{F}$
- Objective is determined by $\mathbb{P}_n f$ (on the data)
- Goal is $\mathbb{P}f$
- Distribution P is unknown

The most pessimistic requirement is

$$\sup_{P} \mathbb{E} \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f| \to 0$$

which we denote

uniform $GC(\mathcal{F})$.

VC classes of sets

Let $\mathcal{C} = \{C \subseteq X\}, f_C(x) = I(x \in C)$. The most pessimistic value is

$$\sup_{P} \mathbb{E} \sup_{C \in \mathcal{C}} \left| \mathbb{P}_{n} \left(C \right) - \mathbb{P} \left(C \right) \right| \to 0.$$

For any sample $\{x_1, \ldots, x_n\}$, we can look at the ways that \mathcal{C} intersects with the sample:

$$\{C \cap \{x_1, \ldots, x_n\} : C \in \mathcal{C}\}.$$

Let

$$\triangle_n(\mathcal{C}, x_1, \dots, x_n) = \operatorname{card} \{C \cap \{x_1, \dots, x_n\} : C \in \mathcal{C}\}$$

the number of different subsets picked out by $C \in \mathcal{C}$. Note that this number is at most 2^n . Denote

$$\Delta_n(\mathcal{C}) = \sup_{\{x_1,\dots,x_n\}} \Delta_n(\mathcal{C}, x_1,\dots,x_n) \le 2^n.$$

We will see that for some classes, $\triangle_n(\mathcal{C}) = 2^n$ for $n \leq V$ and $\triangle_n(\mathcal{C}) < 2^n$ for n > V for some constant V. What if $\triangle_n(\mathcal{C}) = 2^n$ for all $n \geq 1$? That means we can always find $\{x_1, \ldots, x_n\}$ such that $C \in \mathcal{C}$ can pick out any subset of it: " \mathcal{C} shatters $\{x_1, \ldots, x_n\}$ ". In some sense, we do not learn anything.

Definition 8.1. If $V < \infty$, then \mathcal{C} is called a VC class. V is called VC dimension of \mathcal{C} .

Sauer's lemma states the following:

Lemma 8.2.

$$\forall \{x_1, \dots, x_n\}, \quad \bigtriangleup_n(\mathcal{C}, x_1, \dots, x_n) \le \left(\frac{en}{V}\right)^V \text{ for } n \ge V.$$

Hence, C will pick out only very few subsets out of 2^n (because $\left(\frac{en}{V}\right)^V \sim n^V$).

Lemma 8.3. The number $\triangle_n(\mathcal{C}, x_1, \dots, x_n)$ of subsets picked out by \mathcal{C} is bounded by the number of subsets shattered by \mathcal{C} .

Proof. Without loss of generality, we restrict C to $C := \{C \cap \{x_1, \ldots, x_n\} : C \in C\}$, and we have $card(C) = \Delta_n(C, x_1, \cdots, x_n)$.

We will say that C is **hereditary** if and only if whenever $B \subseteq C \in C$, $B \in C$. If C is hereditary, then every $C \in C$ is shattered by C, and the lemma is obvious. Otherwise, we will transform $C \to C'$, hereditary, without changing the cardinality of C and without increasing the number of shattered subsets.

Define the operators T_i for $i = 1, \dots, n$ as the following,

$$T_i(C) = \begin{cases} C - \{x_i\} & \text{if } C - \{x_i\} \text{ is not in } \mathcal{C} \\ C & \text{otherwise} \end{cases}$$
$$T_i(\mathcal{C}) = \{T_i(C) : C \in \mathcal{C}\}.$$

It follows that card $T_i(\mathcal{C}) = \text{card } \mathcal{C}$. Moreover, every $A \subseteq \{x_1, \dots, x_n\}$ that is shattered by $T_i(\mathcal{C})$ is also shattered by \mathcal{C} . If $x_i \notin A$, then $\forall C \in \mathcal{C}, A \cap C = A \cap T_i(C)$, thus \mathcal{C} and $T_i(\mathcal{C})$ both or neither shatter A. On the other hand, if $x_i \in A$ and A is shattered by $T_i(\mathcal{C})$, then $\forall B \subseteq A, \exists C \in \mathcal{C}$, such that $B \cap \{x_i\} = A \cap T_i(C)$. This means that $x_i \in T_i(C)$, and that $C \setminus \{x_i\} \in \mathcal{C}$. Thus both $B \cup \{x_i\}$ and $B \setminus \{x_i\}$ are picked out by \mathcal{C} . Since either $B = B \cup \{x_i\}$ or $B = B \setminus \{x_i\}$, B is picked out by \mathcal{C} . Thus A is shattered by \mathcal{C} . Apply the operator $T = T_1 \circ \ldots \circ T_n$ until $T^{k+1}(\mathcal{C}) = T^k(\mathcal{C})$. This will happen for at most $\sum_{C \in \mathcal{C}} \text{card}(C)$ times, since $\sum_{C \in \mathcal{C}} \text{card}(T_i(C)) < \sum_{C \in \mathcal{C}} \text{card}(C)$ if $T_i(\mathcal{C}) \neq \mathcal{C}$. The resulting collection \mathcal{C}' is hereditary. This proves the lemma.

Sauer's lemma is proved, since for arbitrary $\{x_1, \ldots, x_n\}$,

 $\Delta_n(\mathcal{C}, x_1, \dots, x_n) \leq \text{card (shattered subsets of } \{x_1, \dots, x_n\})$ $\leq \text{card (subsets of size } \leq V)$ $\sum_{i=1}^{V} \binom{n}{i}$

$$= \sum_{i=0}^{N} \binom{n}{i}$$
$$\leq \left(\frac{en}{V}\right)^{V}.$$

18