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Assume f ∈ F = {f : X �→ R} and x1, . . . , xn are i.i.d. Denote Pnf = 1 n 
f(xi) and Pf = fdP = Ef . n i=1 

We are interested in bounding 1 n 
f(xi) − Ef . n i=1 

Worst-case scenario is the value 

sup .|Pnf − Pf |
f ∈F 

The Glivenko-Cantelli property GC(F , P ) says that 

E sup |Pnf − Pf | → 0 
f∈F 

as n →∞. 

•	 Algorithm can output any f ∈ F 

•	 Objective is determined by Pnf (on the data)


Goal is Pf
• 

Distribution P is unknown • 

The most pessimistic requirement is 

sup E sup Pnf − Pf 0 
P f ∈F 

| | → 

which we denote 

uniformGC(F). 

VC classes of sets 

Let C = {C ⊆ X}, fC (x) = I(x ∈ C). The most pessimistic value is 

sup E sup Pn (C) − P (C) 0. 
P C∈C 

| | → 

For any sample {x1, . . . , xn}, we can look at the ways that C intersects with the sample: 

{C ∩ {x1, . . . , xn} : C ∈ C}. 

Let 

�n(C, x1, . . . , xn) = card {C ∩ {x1, . . . , xn} : C ∈ C}, 

the number of different subsets picked out by C ∈ C. Note that this number is at most 2n . 

Denote 

�n(C) = sup �n(C, x1, . . . , xn) ≤ 2n . 
{x1 ,...,xn } 

We will see that for some classes, �n(C) = 2n for n ≤ V and �n(C) < 2n for n > V for some constant V . 

What if �n(C) = 2n for all n ≥ 1? That means we can always find {x1, . . . , xn} such that C ∈ C can pick 

out any subset of it: ” C shatters {x1, . . . , xn}”. In some sense, we do not learn anything. 

Definition 8.1. If V < ∞, then C is called a VC class. V is called VC dimension of C. 

Sauer’s lemma states the following: 
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Lemma 8.2. � en �V 
∀{x1, . . . , xn}, �n(C, x1, . . . , xn) ≤ 

V 
for n ≥ V. 

� �VenHence, C will pick out only very few subsets out of 2n (because V ∼ nV ). 

Lemma 8.3. The number �n(C, x1, . . . , xn) of subsets picked out by C is bounded by the number of subsets 

shattered by C. 

Proof. Without loss of generality, we restrict C to C := {C ∩ {x1, . . . , xn} : C ∈ C}, and we have card(C) = 

Δn(C, x1, , xn).· · · 

We will say that C is hereditary if and only if whenever B ⊆ C ∈ C, B ∈ C. If C is hereditary, then every 

C ∈ C is shattered by C, and the lemma is obvious. Otherwise, we will transform C → C�, hereditary, without 

changing the cardinality of C and without increasing the number of shattered subsets. 

Define the operators Ti for i = 1, , n as the following, · · · ⎧ 

Ti(C) = 
⎨ ⎩ 

C − {xi} 

C 

if C − {xi} is not in C 

otherwise 

Ti(C) = {Ti(C) : C ∈ C}. 

It follows that card Ti(C) = card C. Moreover, every A ⊆ {x1, , xn} that is shattered by Ti(C) is also · · · 

shattered by C. If xi ∈/ A, then ∀C ∈ C, A C = A Ti(C), thus C and Ti(C) both or neither shatter A. On 

the other hand, if xi ∈ A and A is shattered by Ti(C), then ∀B ⊆ A, ∃C ∈ C, such that B {xi} = A Ti(C). � 
This means that xi ∈ Ti(C), and that C\{xi} ∈ C. Thus both B {xi} and B\{xi} are picked out by C. � 
Since either B = B {xi} or B = B\{xi}, B is picked out by C. Thus A is shattered by C. 

Apply the operator T = T1 ◦ . . . Tn until T k+1(C) = T k(C). This will happen for at most card(C)◦ C∈C 

times, since C∈C card(Ti(C)) < C∈C card(C) if Ti(C) =� C. The resulting collection C� is hereditary. This 

proves the lemma. � 

Sauer’s lemma is proved, since for arbitrary {x1, . . . , xn}, 

�n(C, x1, . . . , xn) ≤ card (shattered subsets of {x1, . . . , xn}) 

≤ card (subsets of size ≤ V ) 

� � 
n 
�V

= 
i 

i=0 � �Ven 
.≤ 

V 
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