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Lecture 02 Voting classifiers, training error of boosting.

18.465

In this lecture we consider the classification problem, i.e. Y = {—1,+1}.
Consider a family of weak classifiers

H={h: X - {-1,+1}}.
Let the empirical minimizer be

1 n
o = anganin 3 1((X) # )
and assume its expected error,

1
3 >€= Error(hg), € >0

Examples:
o X =R4 H = {sign(wz +b): we R bcR}
e Decision trees: restrict depth.

e Combination of simple classifiers:
T
f=> au(x),
t=1

where h; € H, Zle ay = 1. For example,

1-1 1)1
hl = b h2 = g h3
1]-1 -1-1
1 715 . 1] 1
[ =%(h1+3hy +3h3) = ! sign(f) =
1-1 1-1

AdaBoost

Assign weight to training examples wq () = 1/n.

fort=1.T

1) find “good” classifier hy € H; Error e, = Y, we (i) [(h(X;) #Y3)
2) update weight for each i:

) wt(i)e*atyiht(xi)
w 1) =
(i) 7
Zy = wy(i)em e ¥ihe (X
i=1
1. 1-
a; = —1In c >0
&t
3)t =t+1
end
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Output the final classifier: f = sign(} azhi(x)).

Theorem 2.1. Let v = 1/2 —&; (how much better hy is than tossing a coin). Then

Sy a(x

T
<J[V1-4?
t=1

e Yi iy anha(Xi)

Proof.
T
I(F(X0) £ Y) = IVf(Xs) = —1) = I(% Y aghe(X
t=1
Consider how weight of example i changes:
Ne—Yiarhr(X;)
, wr(i)e
wraafi) = 2
e*YiOLThT(Xi) wT_l(Z')G*YiOéT—lhT—l(Xi)
B Zy Zr-1

e~ Yi iy arhe(X0)

Hi:l Z n

Hence,

01z =

w1 (i

and therefore

=Yi S0 ahe(Xa)

1 n 1 n T
;;I(f( ) #Y5) ggg :E

= wy(i)e™ I(hy(X )+ Zw et I(h
i=1
= et ) i “’Zwt
=1
=e%er+e (1 —gy)

Minimize over a; to get

11 1—€t
ap = —1In
t 2 Et
and
1/2
et = 1-& .
Et

=Y 7L ache(Xy)

S

Z w1 (1 :HZt

t=1

hi(Xi) # Y3)

hi(Xs) # Yi))
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Finally,

1_515 1/2 e 1/2
Z, = 1-
t < Et ) et 1-— Et ( Et)

=2(ei(1—e)"? =2¢/(1/2 =) (1/2+ %)

=\/1-4




Lecture 03 Support vector machines (SVM). 18.465

As in the previous lecture, consider the classification setting. Let X = R, Y = {+1, —1}, and

H={¢z+b, v eR? beR}

where || = 1.
We would like to maximize over the choice of hyperplanes the minimal distance from the data to the hyper-
plane:
max miin d(xz;, H),
where

d(zs, H) = yi(Yx; + b).

Hence, the problem is formulated as maximizing the margin:

r?p%x miin yi(Yz; +b).
m (margin)
Rewriting,
(o + b)) = BEEED) g
m
' = /m, b =b/m, [¢'| = |v|/m =1/m. Maximizing m is therefore minimizing |¢’|. Rename ¢’ — 1, we

have the following formulation:

min || such that y;(¢Yz; +0) > 1

Equivalently,

1
min §¢ -1 such that y;(¢a; +b) > 1

Introducing Lagrange multipliers:

6= 30— Y oy +b) ~ 1), 0y >0

Take derivatives:

d9 B
@ _I/J_Zazyzxz =0
99
FT Zaiyi =0
Hence,
=Y oy
and

Z agy; = 0.
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Substituting these into ¢,
1 2 n n
¢ = 3 (Z Oéz‘ywi) - Zai Yi Zajlljle‘i +b) -1
i=1 j=1
1
= 3 Y iagyyimirg — Y aiagyiyrim; — by i+ Y
,J

i,j
= i ! QOG5 YiY LT 5
T

The above expression has to be maximized this with respect to a;, a; > 0, which is a Quadratic Programming
problem.
Hence, we have ¢ = Y | a;y;2;.
Kuhn-Tucker condition:
a; 05 yi(Yar; +b) —1=0.
Throwing out non-support vectors x; does not affect hyperplane = a; = 0.

The mapping ¢ is a feature mapping:

MS Rd — ¢>(9U) = (¢1(£L’),¢2(1’), ) e’

where X’ is called feature space.
Support Vector Machines find optimal separating hyperplane in a very high-dimensional space. Let K (z;,z;) =
> o1 Gk(i)Pr(z;) be a scalar product in X’. Notice that we don’t need to know mapping z — ¢(z). We
only need to know K (z;,2;) = > poy ¢k(2i)¢r(z;), a symmetric positive definite kernel.
Examples:

(1) Polynomial: K (z1,x2) = (z120 +1)%, £> 1.

(2) Radial Basis: K(z1,22) = e~ Vlw1—aal®,

(3) Neural (two-layer): K(x1,z9) = m for some «, B (for some it’s not positive definite).

Once «; are known, the decision function becomes

sign (Z QGYiTy - T+ b) = sign (Z oy K(zi, ) + b)
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Assume we have samples z1 = (21,¥1), ..., 2n = (Tn,yn) as well as a new sample z,41. The classifier trained
on the data z1,...,2, is foy . 2,-

The error of this classifier is

EI‘I"OI"(Zl, e »Zn) - Ezn+1-[(le,..,,zn (anrl) 7é yn+1) - ]Pzn+1 (le,...,zn (xn+1) 7& yn+1)

and the Average Generalization Error

A.G.E. = E Error(z1,...,2,) = EE.  I(f21, .. 2, (Tny1) 7# Ynt1)-

Since z1,...,2n, 2n+1 are iid., in expectation training on z1,...,2;,...,2, and evaluating on 2,41 is the

same as training on 21, ..., 2p41,--., 2, and evaluating on z;. Hence, for any i,

AGE = EEZiI(le,~~,2n+1,m,2n (CEZ) 7é yz)

and

1 n+1
AGE =E | —— ; I(foroozur e () # 0)

leave-one-out error
Therefore, to obtain a bound on the generalization ability of an algorithm, it’s enough to obtain a bound

on its leave-one-out error. We now prove such a bound for SVMs. Recall that the solution of SVM is

_\ntl 0o
Y= Zi:1 Y.

Theorem 4.1.
min(# support vect., D?/m?)
n+1

where D is the diameter of a ball containing all x;, i < n—+1 and m is the margin of an optimal hyperplane.

L.O.0.E. <

Remarks:

e dependence on sample size is %

e dependence on margin is

e number of support vectors (sparse solution)
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Lemma 4.1. If x; is a support vector and it is misclassified by leaving it out, then o > ﬁ,

Given Lemma 4.1, we prove Theorem 4.1 as follows.

Proof. Clearly,
# support vect.

LO.OE. <
n+1

Indeed, if x; is not a support vector, then removing it does not affect the solution. Using Lemma 4.1 above,
D2
Z I(x; is misclassified) < Z a?D? = D? Z ol = =.

m
iesupp.vect iesupp.vect

In the last step we use the fact that 3" af = -L;. Indeed, since |p| =

m? %a
1 2 0
m2 [ ZW'WZ@'Z%%%

= i)

=Y Awilp-wi+b) —1)+> al —bY ady
0 0

_§ 0
= Q;

O

We now prove Lemma 4.1. Let u*v = K(u,v) be the dot product of u and v, and |Ju| = (K(u,u))l/2 be
the corresponding Ly norm. Given x1,--- ,2,11 € R and 41, ,yns1 € {—1,+1}, recall that the primal
problem of training a support vector classifier is argminw%|\¢||2 subject to y; (¢ x x; +b) > 1. Tts dual
problem is argmax, > a; — % > oziyixiHZ subject to a; > 0 and Y a;y; = 0, and ¢ = > a;y;2;. Since the
Kuhn-Tucker condition can be satisfied, miny 14 * ¢ = max, Y- a; — 2 |3 iyiz||? = 7, where m is the

margin of an optimal hyperplane.

Proof. Define w(a) =Y, a;— 3 [|3 oiyii||?. Let a® = argmax, w(a) subject to o > 0 and 3" ci;y; = 0. Let

o' = argmax,w(a) subject to o, = 0, a; > 0 for i # p and > ayy; = 0. In other words, a® corresponds to

the support vector classifier trained from {(x;,y;) : 4 =1,--+ ,n+1} and o’ corresponds to the support vector
1 p—1 p p+1 n+1
) ) , ! Lol 1
classifier trained from {(x;,y;):i=1,---,p—1,p+1,--- ,n+1}. Lety=1{0,---, 0,1, 0 ,---, O |. It
follows that w(a® — g -v) < w(a) < w(a®). (For the dual problem, o’ maximizes w() with a constraint
that a;, = 0, thus w(a’) is no less than w(a® — oy - ), which is a special case that satisfies the constraints,

including o, = 0. o’ maxmizes w(a) with a constraint ap > 0, which raises the constraint a,, = 0, thus

w(a’) < w(a®). For the primal problem, the training problem corresponding to o' has less samples (z;,;),

where i # p, to separate with maximum margin, thus its margin m(a’) is no less than the margin m(a®),
7



Lecture 04 Generalization error of SVM. 18.465

and w(a’) < w(a). On the other hand, the hyperplane determined by o — 042 -~ might not separate (x;,y;)
for i # p and corresponds to a equivalent or larger “margin” 1/[|¢(a® — o - ~)|| than m(c/)).

Let us consider the inequality
Intaxw(o/ +t-7) —w(@) <w@®) —w(@) <w@®) —wd - oeg ).
For the left hand side, we have
(o +ty) = Za +t— = HZaQyi:ci—}—t.ypxp‘r
= Z al+t— = HZ by —t (Z O%?Jﬂz) (Ypp) — Hypxp”Q

t2
= w(a)+t- (1=yp- (Y afyias) wap) = 5
—_————
,L/)l

and w(a' +ty) —w() =t (1 —y, - P * ) — % |#,]|>. Maximizing the expression over ¢, we find

t=(1- Yp - (S zp)/||xp||27 and

mtaxw(o/ +ty) —w(a') =

For the right hand side,

1
we® —ap-9) = Y a?—ap— S| Y alyiw; —afy,r, |
N————

o

1 1 2
= al—al— Sl + abupuio x mp — 5 (a2)”

1 2
w(ap) — 0‘2(1 —Yp - o * Tp) — 5 (ag) ||33p||2

1 2
= w(ao)— 5 (a9)° P

The last step above is due to the fact that (z,,y,) is a support vector, and y, - 1 * 2, = 1. Thus w(a®) —
1—yptp x2p)°
w(a® — ag ) = % ( ) |z, )% and 1 (1oypveey) <1 ( ) |z, Thus

llzp[12 =2
0 |1 —yp - ' x 2y
ap Z p 5 p
(e
1
= D

The last step above is due to the fact that the support vector classifier associated with ¢’ misclassifies (z,, yp)

according to assumption, and y, - ¥’ * 2, < 0, and the fact that ||z,| < D. O
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For a fixed f € F, if we observe > 31" I (f(X;) # Y;) is small, can we say that P (f(X) # Y) is small? By

n =1

the Law of Large Numbers,

The Central Limit Theorem says

Vi (3 30 T(f(X0) #Y) ~EIf(X) #Y))

v/ Varl
Thus,
1 — k
ng(f(xi)#yi)—EI(f(X)#Y)Nﬁ-

N(0,1).

Let Z1, -+ ,Z, € R be i.i.d. random variables. We’re interested in bounds on % > Z,—EZ.

(1) Jensen’s inequality: If ¢ is a convex function, then ¢(EZ) < E¢(X).
(2) Chebyshev’s inequality: If Z > 0, then P (Z > t) < EZ.
Proof:
EZ =EZI(Z <t)+EZI(Z > t) > EZI(Z > t)

SEU(Z>1) =tP(Z>1).
(3) Markov’s inequality: Let Z be a signed r.v. Then for any A > 0

AZ S At Ect”

and therefore

P(Z >t) < inf e MEe M.
A>0

Theorem 5.1. [Bennett] Assume EZ =0, EZ? = 0%, |Z| < M = const, Z1,---

Z, and t > 0. Then

" no? tM
P (; Zi > t) < exp <_]\/[2¢ (TMQ)> )

where ¢(x) = (14 x)log(l + z) — .

Proof. Since Z; are i.i.d.,

=1

, Zn independent copies of

]P) <Z ZZ 2 t) S 6_)‘tE6>\ Z?:l Z; — 6—>\t HEe)\ZZ — e—>\t (EeAZ)n )
i=1
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Lecture 05 One dimensional concentration inequalities. Bennett’s inequality.
Expanding,
\Z — (\2)* _ o+ EZ"
Ee EZ}d—ZAM
k=0 k=0
= 1+5355m#2“2<1+§§A2w“22
n k! - k!
k=2 k=2
0?2 o= A\FME o \u
= 1+.5 T +W(e 1—AM)
k=2

o2
< exp (]\/[2 (eAM —1- AM))

where the last inequality follows because 1 + = < e*.

Combining the results,

—\t no?
e exp

W (6)\]\/[ —1- )\M))

2
= exp (—)\t+ % (eAM —-1- )\M))

Now, minimize the above bound with respect to A. Taking derivative w.r.t. A and setting it to zero:

The bound becomes

A
o
"
o

no? M2 \ no?

tM tM tM
— —log|(1+— ) ——=log|1
no? no? no?

(
(3 (
! E CRSIE D)

t tM 2 (tM
_ m@+)+m(+1l%0+

tM

)
=)

+ —
no?

10
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Last time we proved Bennett’s inequality: EX = 0, EX? = 02, |X| < M = const, X1, -+, X,, independent

- no? tM
P ZXi>t> <€Xp<—2 (2)>7
(i_l M no

where ¢(z) = (1 + z)log(1l + ) — .

copies of X, and ¢ > 0. Then

If X is small, qb(gc):(1+x)(x—””2—2+-~-)—a::m+x2—§—x+-~-:I—;+~-~.

If X is large, ¢(x) ~ xlogx.

We can weaken the bound by decreasing ¢(x). Take! ¢(z) = 2_§$ to obtain Bernstein’s inequality:
3

P X, >t < exp| ——= [ 24+
(Z ) ( P <2+

t2
= ex _—
P ( 2no? + ?,)tM)
—u

= €

t2

where u = Tno?+ 0N Solve for t:
2
- §UMt —2nc?u=0
1 2 M2
t=—-uM + Y + 2no2u.
3 9
Substituting,
- [u2M? uM
P X; > 2no? | <ev
(; > 9 + 2no“u + 3 ) <e
or

- [u2 M2 M
P(ZXig ug +2no2u+u3>21—6_"
i=1

Using inequality va + b < \/a + Vb,
n
2uM
P (ZXi < V2no?u + ug) >1—e"
i=1

For non-centered X;, replace X; with X; — EX or EX — X;. Then |X; — EX| < 2M and so with high
probability
duM
> (X —EX) < V2no?u+ 5

1 202 4uM
3 X -EX </ 0 2
n n 3n

202y 4duM
+ .
n 3n

Normalizing by n,

and

1
]EX—EZXig

Lexercise: show that this is the best approximation

11
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2" 4 > M we have u < no’ Qo Ly X, —EX| S 2" v for u < no? (range of normal

‘Whenever oz

deviations). This is predicted by the Central Limit Theorem (condition for CLT is no? — 00). If no? does
not go to infinity, we get Poisson behavior.

Recall from the last lecture that the we're interested in concentration inequalities because we want to
know P (f(X) #Y) while we only observe 1 3" I (f(X;) #Y;). In Bernstein’s inequality take "X/ to
be I(f(X;) #Y;). Then, since 2M = 1, we get

n 3n
because EI(f(X;) #Y;) = P(f(X;) # Y;) = EI? and therefore Var(I) = 02 = EI? — (EI)2. Thus,
)+\/2P<f<Xi)¢Yi>u+%

n 3n

P(f(X;) £ Y:) s%E_j

with probability at least 1 — e™". When the training error is zero,

n 3n

If we forget about 2u/3n for a second, we obtain P (f(X;) # ;) < 2P (f(X;) # Yi) u/n and hence

P (X)) £ Vi) < 22,

The above zero-error rate is better than n~'/2 predicted by CLT.

12



Lecture 07 Hoeffding, Hoeffding-Chernoff, and Khinchine inequalities. 18.465

Let aq,...,a, € R and let 1,...,¢&, beiid. Rademacher random variables: P(g; =1) =P (¢g; = —1) = 0.5.

Theorem 7.1. [Hoeffding] For ¢t > 0,

n 2
t
P> e >t Sexp<—n>-
(i—l ) 227;:1(1?

Proof. Similarly to the proof of Bennett’s inequality (Lecture 5),

P <Z gia; > t) < e MEexp (/\251‘%‘) =e M H]Eexp (Aesa;) .

i=1 i=1 i=1

efde”®
2

Using inequality < e7’/2 (from Taylor expansion), we get

22q2

1 1 ]
Eexp (Ae;a;) = 56)\(“ + 567)\% <e 3

Hence, we need to minimize the bound with respect to A > 0:

n

_ ﬁ n 2

P(E Eiai2t> < e MeT 2im1 %
i=1

Setting derivative to zero, we obtain the result. O

Now we change variable: u = 22272& Then t = +/2u) ., a3.
=14

i

n
P ZEZ'(ZZ' 2
i=1

and

n
P Zaiai S
i=1

n
2u2a% >1—e "
i—1

Here -7, a? = Var(> I, €;a;).
Rademacher sums will play important role in future. Consider again the problem of estimating % S f(Xa)—

Ef. We will see that by the Symmetrization technique,

n

T SEEIRSIINE S S SIS Sy 1b5)
i=1 1=1

=1

In fact,

E <E

1 n
- ; [(X:) —Ef

SY A - X

i=1

<2E
n

The second inequality above follows by adding and subtracting Ef:

B[S ()~ - S AXD| < BT S(X) ~Ef| +E| LS f(X) ~Ef
=1 =1 =1 =1
= 9E| )" f(X) - Ef
=1

13
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while for the first inequality we use Jensen’s inequality:

n

E B 706) - - Y EA(X)
i i=1

LS (X - Bf
=1

n

S3 A - 1 YRS

i=1

< ExEx

Note that L 3" | f(X;) — 1 Y7 | Ef(X]) is equal in distribution to L Y7 | &;(f(X;) — f(X))).

7

We now prove Hoeffding-Chernoff Inequality:

Theorem 7.2. Assume 0 < X; <1 and p=EX. Then

1 n
Pl=Y Xi—pu>t| <enPlttm
()=

where the KL-divergence D(p,q) = plog% +(1—p)log %.

Proof. Note that ¢(z) = e is convex and so e’ = M@ 1+(1=2)0) < geA 4 (1 —2)eM0 = 1 -z + ze. Hence,
Ee* =1 -EX +EXe* =1 — p+ pe.

Again, we minimize the following bound with respect to A > 0:

P <Z X; >n(p+ t)) < e M)A X X

=1
_ e—An(u-&-t) (]Ee)\X)"

IN

e~ An(u+t) (1 —u+ Me,\)n
Take derivative w.r.t. A:
_n(u_’_t)e—/\n(u-i-t)(l _ N+/~Le>\)n +n(1 _ ﬂ_’_ue)\)n—lﬂe)\e—)\n(u—&-t) =0

—(n+t)(1 = p+ pet) + pe* =0

Ao L=p)(utt)
p(l—p—t)

() ()Y

+t 1—p—t
= exp(—n((u—i—t)loguﬂ —|—(1—u—t)logﬂﬂ)>,

Substituting,

P <i X; >n(p+ t))

=1

IN

14
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completing the proof. Moreover,

[t i
where Z; = 1 — X; (and thus pz =1 — ux). O
o< p<1/2,

t2

D —p+t,1— M)_W*)

Hence, we get
]_ n nt2
— E >t <e mO-m =e "

Solving for ¢,

1 — 2u(1 —
P(M_ZXi> w) <e v,
nizl n

If X; € {0,1} arei.i.d. Bernoulli trials, then = EX =P (X = 1), Var(X) = p(1—p),and P (un — 37" | X; > t) <
67#?))().

The following inequality says that if we pick n reals a,--- ,a, € R and add them up each multiplied by a
random sign +1, then the expected value of the sum should not be far off from /3" |a;|>.

Theorem 7.3. [Khinchine inequality] Let aq,--- ,a, € R, €;,--- , €, be i.i.d. Rademacher random variables:
Ple; =1)=P(e; = —1) = 0.5, and 0 < p < 0. Then
p\ 1/p n 1/2
2
i=1

" 1/2
A, - (Z |ai|2> < <E
=1

or some constants A, and B, depending on p.
P 2

n
§ ;€4
i=1

Proof. Let 3 |a;|*> = 1 without lossing generality. Then
P o0 P
E ’Z a;€; = / P ( Zaiei 2 Sp> dsP
0
Zaiei > s) -psP~L dsP
Zaze2 > 3) -psP~L dsP

2exp(—— -psP~1 dsP | Hoeffding’s inequality

I
o\
8
=
/N

|
S—
3
=
N

IN

0
= (Bp)" , when p>2.
15
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18.465

When 0 < p < 2,

E ‘Z a;€;

2

A

"< E[Y aie

- E‘Zaiei
e[S
(Bo—2p)” 37 - (E’Z ae;

Thus E |3 ai&;” < (Bs_2,)° >, completing the proof.

Zrt+(2-3p)

IN

IN

p) (E\Zam

6—2p\ 3
) , Holder’s inequality

2
P)S
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Lecture 08 Vapnik-Chervonenkis classes of sets.

18.465

Assume f € F={f: X — R} and z1,...,, are i.i.d. Denote P, f = L 3" | f(z;) and Pf = [ fdP =Ef.

We are interested in bounding = 37" | f(z;) — Ef.
Worst-case scenario is the value

sup [P, f —Pf].
feFr

The Glivenko-Cantelli property GC(F, P) says that
Esup |P,f —Pf| — 0
feF

as n — oQ.

Algorithm can output any f € F
e Objective is determined by P, f (on the data)
Goal is Pf

Distribution P is unknown

The most pessimistic requirement is
supE sup P, f —Pf] — 0
P feF
which we denote

uniformGC/(F).

VC classes of sets

Let C = {C C X}, fo(z) = I(z € C). The most pessimistic value is

sup E sup |P, (C) —P(C)| — 0.
P CeC

For any sample {x1,...,2,}, we can look at the ways that C intersects with the sample:
{Cn{zy,...,z,}: C €C}.
Let
AN (Coxyy .. yxy) =card {CN{xy,...,x,} : C €C},
the number of different subsets picked out by C' € C. Note that this number is at most 2".

Denote

Au(@) = sup  Au(Coa,...,wa) <20

{Ili"'vzn}

We will see that for some classes, A, (C) = 2" for n <V and A, (C) < 2" for n > V for some constant V.

What if A, (C) = 2" for all n > 17 That means we can always find {x1,...,z,} such that C' € C can pick

out any subset of it: "C shatters {z1,...,2,}”. In some sense, we do not learn anything.
Definition 8.1. If V < oo, then C is called a VC class. V is called VC dimension of C.

Sauer’s lemma states the following:

17



Lecture 08 Vapnik-Chervonenkis classes of sets. 18.465

Lemma 8.2.

1%
V{z1,...,Zn}, An(C,xl,...,xn)§< ) for n>V.

NE

Hence, C will pick out only very few subsets out of 2" (because (%)V ~n").

Lemma 8.3. The number A, (C,x1,...,x,) of subsets picked out by C is bounded by the number of subsets
shattered by C.

Proof. Without loss of generality, we restrict C to C := {C' N {z1,...,z,} : C € C}, and we have card(C) =
AL(C xy, - ).
We will say that C is hereditary if and only if whenever B C C' € C, B € C. If C is hereditary, then every
C € C is shattered by C, and the lemma is obvious. Otherwise, we will transform C — C’, hereditary, without
changing the cardinality of C and without increasing the number of shattered subsets.
Define the operators T; for i = 1,--- ,n as the following,

C—{x;} ifC—{x;}isnotinC

C otherwise

T(C) = {T(C):Cec).

It follows that card T;(C) = card C. Moreover, every A C {z1,---,z,} that is shattered by T;(C) is also
shattered by C. If z; ¢ A, then VC € C,A(\C = A T;(C), thus C and T;(C) both or neither shatter A. On
the other hand, if z; € A and A is shattered by T;(C), then VB C A,3C € C, such that B({z;} = A T:(C).
This means that z; € T;(C'), and that C\{z;} € C. Thus both BJ{z;} and B\{z;} are picked out by C.
Since either B = B|J{z;} or B = B\{x;}, B is picked out by C. Thus A is shattered by C.

Apply the operator T' = Ty o ... o T, until T*+(C) = T*(C). This will happen for at most Y card(C)
times, since ) oo card(T;(C)) < - pee card(C) if T;(C) # C. The resulting collection C’ is hereditary. This

proves the lemma. O
Sauer’s lemma is proved, since for arbitrary {z1,...,z,},

Nn(Coxy,. .., xp) < card (shattered subsets of {x1,...,2,})

< card (subsets of size < V)

> (1)
pe

0
en
|4

IN
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Lecture 09 Properties of VC classes of sets. 18.465

Recall the definition of VC-dimension. Consider some examples:
o C={(—00,a) and (a,00) : a € R}. VC(C) =
e C={(a,b)U(c,d)}. VC(C) =
o firoifa: X =R C={{z: X0 anfu(zr)>0}:a,...,0q €R}

Theorem 9.1. VC(C) in the last example above is at most d.

Proof. Observation: For any {x1,...,zq+1} if we cannot shatter {z1,..., 2441} «— 3T C {1...d + 1} s.t.
we cannot pick out {z;,i € I'}. If we can pick out {x;,7 € I}, then for some C € C there are aq,..., a4 s.t.

22:1 o fr(z) > 0 for i € I and 22:1 agfr(z) <0fori ¢ I.

Denote

<Zakfk 1), Zakfk Ta+1 ) = F(a) € R*H

By linearity,
d

= Zak (fr(z1),- -, fl®ag1)) = Z%Fk C HC R
- =1

and H is a d-dim subspace. Hence, 3¢ # 0, ¢ - h = 0,Vh € H (¢ orthogonal to H). Let I = {i : ¢; > 0},
where ¢ = (¢1,...,¢q11). If I = () then take —¢ instead of ¢ so that ¢ has positive coordinates.

Claim: We cannot pick out {x;,i € I'}. Suppose we can: then Jaq,...,qq s.t. ZZ=1 apfr(z;) >0foriel
and Zzzl afr(x;) <0fori ¢ I. But ¢ - F(a) =0 and so

d d
é1Y o fe(@) + o 4 Gap1 D anfr(warr) = 0.

k=1 k=1
Hence,
d
i @ i) | = e x;) |-
S (L ousio) ;WJ(z e
>0 <0
Contradiction. O

e Half-spaces in R%: {{ayz1 + ... + agzg + ager > 0}t g, ..., aq41 € R}
By setting fi = z1,..., fa = T4, far1 = 1, we can use the previous result and therefore VC(C) < d + 1 for

half-spaces.

Reminder: A, (C,z1,...,2,) = card{{z1,...,2,} NC: C € C}.

Lemma 9.1. IfC and D are VC classes of sets,
(1) c={Cc°.:CeC}is VC
(2 CnD={CnNnD:CeC,DeD}is VC

(3 cubD={CuD:Ce(C,DeD}is VC
19



Lecture 09 Properties of VC classes of sets.

18.465

(1) obvious - we can shatter z1,...,x, by C iff we can do the same by C°.

(a) By Sauer’s Lemma,

ANp(CNDyxy,y .y Xy

IA

n(Cox1, .. ) An(CNDyxy, ... 2p)

A
en\" [en\"
(7). (), =
Ve)e \Vp /) p

for large enough n.

(b) (CUD)=(C°N D¢, and the result follows from (1) and (2).

IN

Example 9.1. Decision trees on R? with linear decision rules: {C1N...C¢} is VC and Ujpayes{C1N- -

is VC.

Neural networks with depth ¢ and binary leaves.

Ce}

20



Lecture 10 Symmetrization. Pessimistic VC inequality. 18.465

We are interested in bounding

li[(xi €C)—P(C)

n-<
1=

P (sup > t)
cec

In Lecture 7 we hinted at Symmetrization as a way to deal with the unknown PP (C).

Lemma 10.1. [Symmetrization] If t > \/%, then

sup < 2P | sup
cec cec

Proof. Suppose the event
ZI X, €C)-P(C)] >
n

1 < 1 <
=Ny I(X; - =) I(x!
n; (X; € C) n; (X]€0)

HZIX €C)-P(C)| >

> t/2> .

sup
cecC

occurs. Let X = (X1,...,X,) € {supcec ‘E I(X; € C)—P(C)| > t}. Then

i:

3Cx such that I(X;€Cx)—-P(Cx)| >

n 2
Zt/2> =P ((;ZI(X{ eO)—]P’(O)) 2t2/4>

E (LS 1(X, e C) - P(C))

n
t2

= % ZE(I(Xé €C)-P(O)I(X]€C)-P(C))

S|+
zms

For a fixed C,

1
IPX/<

I(X! e C)—P(C)

i=1

n

< (by Chebyshev’s Ineq)

S E((X € )~ P(O) -

n2t2 <
P

4nP (C) (1 —P(C) - 1
n2t2 — nt?

N |

<

since we chose t > \/% .

So,
1 n
P ( - Z[(Xg € Cx)—P(Cx)

i=1
if t > \/2/n. Assume that the event

<t/2

30X> >1/2

<t/2

%ZI(Xz{ € Cx)-P(Cx)
i=1

occurs. Recall that

> t.

%Xn:l(Xl ECX)—P(C)()

Hence, it must be that
n

LS r(xieox) - 231Xl e cx)
nizl n

i=1

> t/2.
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Lecture 10 Symmetrization. Pessimistic VC inequality.

18.465

‘We conclude

IN

Py < %ZI(X{ € Cx) —P(Cx) acx>
=1
1 & 1

(
=1
Px: | sup liI(XEO)*liI(XIEC)
cec 1 1 [ Z

n -
i—
Since indicators are 0, 1-valued,

<t/2

DO =

> /2

30X>

>t/2

3ICx

EZJ(Xi eC)—l I(X]eC)| >t/2
n n

i=1 i=1

30X> -1 (3Cx)

1 < 1 <
=N I(X; — =Y I(X!
ngj( €C) n;(zec)

Now, take expectation with respect to X;’s to obtain

1
Px | sup |—
(CEC ”Z

i=1

ZIX €0) —fZIX’eC)

=1

> t)
> t/2>

<2-Px x/ | sup
cec

Theorem 10.1. If VC(C) =V, then

Proof.

1 & 1 —
- ; - = I(X]
71](XzeC) 02 (X eQ)

n'_

> t/2>
> t/2>
> t/z> |

2P | sup
cecC
= 2P | sup
ceC

= ZEX’X/]P)E (sup
cecC

nZs, (X; € C)—I(X! € 0))

nzgl (X; e C)—I(X! e))

HC’X> .

> t/2> :

22



Lecture 10 Symmetrization. Pessimistic VC inequality. 18.465

The first equality is due to the fact that X; and X/ are i.i.d., and so switching their names (i.e. introducing
random signs g;, P (¢; = £1) = 1/2) does not have any effect. In the last line, it’s important to see that the
probability is taken with respect to €;’s, while X; and X/’s are fixed.

By Sauer’s lemma,

A%
2
Agn<c,X1,...,Xn,x;,...,X,;>g(;ﬂ) .

In other words, any class will be equivalent to one of C1,...,Cx on the data, where N < (267”)‘/ Hence,

Q]EX7X/]P)5 (sup
cecC

ligi (I(X; € C) - I(Xj € C)) 2t/2>

n
i=1

= QEX’XIPE sup
1<k<N

%iai (I(X; € Cy) — (X! € Cy))| > t/2>
N 1 1:1

ZQEX,XIPE (U ZEz(I(XzGCk)_I(X»ZECk)) Zt/2>
k=1 i=1

union bound
n

1

=3 e (I(X; € Cr) — I(X] € Cy))| > t/2
=1

3

N
<2E> P. (
k=1

Hoeffding’s inequality

N —n2t2
<2E E 2exp | — - p 5
k=1 8> i1 (I(X; € C)—I(X] €C))
N 2,92 \4
—n“t 2en nt?
<2E g 2exp ( > §2(> 2e E .
Pt &n 14

23



Lecture 11 Optimistic VC inequality. 18.465

Last time we proved the Pessimistic VC inequality:

1
P (sup
c |n

> I(Xi € C)-P(C)
which can be rewritten with

i=1
8 2
= \/ (log4+V10gen+u)
n \%4
2
P(sup S\/S <log4+V10gen+u>> >1—e ™
c n \%

Hence, the rate is 1/%. In this lecture we will prove Optimistic VC inequality, which will improve on
this rate when P (C') is small.

n

as

n

LS ix ey -po)

n-
=1

As before, we have pairs (X;,Y;), ¥; = +1. These examples are labeled according to some unknown Cj such
that Y =1if X =Cpand Y =0if X ¢ C.
Let C = {C: C C X}, a set of classifiers. C' makes a mistake if

X €C\CyUCy\C =CACy.

Similarly to last lecture, we can derive bounds on

% Y I(X; € CACy) — P(CAC)

i=1

sup
c

)

where P (CAC)) is the generalization error.
Let ' = {CACy : C € C}. One can prove that VC(C') < VC(C) and A (C', X1, ..., X)) < A (Cy X1, .00, Xn).
By Hoeffding-Chernoff, if P (C) < %,

n “ n -

P(P(C)lzI(Xi €C) < W) >1—ct.

Theorem 11.1. [Optimistic VC inequality/

P(C)-L1" [(X;eC Vi e
P [ sup ©) n iz [(X: € C) >t] <4 (26%) e 4.
c P(C) 14

Proof. Let C be fixed. Then

i=1
whenever P (C) > 1. Indeed, P (C) > L since }_" | I(X! € C) > nP (C)

[T, P(X! ¢ C)=(1—-P(C))" can be as close to 0 as we want.

1 — 1
Pxy (n Y I(X]eC) > IP’(C)> >3
>

1. Otherwise P (31", I(X[ € C) =0) =

Similarly to the proof of the previous lecture, let

RRELCE W 1)
c P(C)
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Lecture 11 Optimistic VC inequality. 18.465

Hence, there exists C'x such that

Exercise 1. Show that if

and
1 n
> I(X] € Cx) > P(Cx)
i=1
then
woi L(X] € Ox) — 3 300, I(Xi € Cx) >t
VESL (X e+ i (X[ eCx) V2
Hint: use the fact that ¢(s) = 5\;5‘1 =./s— % is increasing in s.
From the above exercise it follows that
1 1 <
7 S Poey <n ;I(Xz{ € Cx) > P(Cx) 30}()
1 XleCx)—= X;eC
<P w it A( x) = 5 i L x) >t laey
VAL I(XieCx)+ 2N I(X e Cx) V2

Since indicator is 0, 1-valued,

1| POo)-Liyr 1xie0)
-1 | sup >
4 c P(C)

ACx

P (X[ € Cx) — £ Y0 I(X, € Cx)
<Poy | =1 = >
\/g S I(X; €Cx)+ 130 I(X] € Cx)

HCX) -1 (3Cx)

s s Pl (X €0) - iYL IXie0) |t )
CVEZLIE O+ LT 1K e0) V2

Hence,

>7

VAN I(XieO)+ LY I(Xjec) V2

s e (I(X]eC)—I1(Xi€C)) t
= EP. sup — .
¢ AN IO iy, Ixieq) V2

<P(Sup LS (X e Q) - XL I(Xi € C) t)

v
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Lecture 11 Optimistic VC inequality. 18.465

There exist C1,...,Cn, with N < Ao, (C, X1,...,X,, X],...,X]). Therefore,

w i g ([(X€0) - I(X; € C)) t
P Sllp >
¢ ITL I eO)+ LY I(x[eC) V2
1S (X e
:Epa U n Zi:l €i (I(Xz € Ck) I(Xl € Ck)) > i
k<N \/% S IXi € Cr)+ 130 I(X] € Cy) V2

<EZP LY e (I(X] € Cy) — I(X; € Cy)) >t
VASE I(Xi e+ 1T, (X[ eC)

&

V2

The last expression can be upper-bounded by Hoeffding’s inequality as follows:

N n n
t 1 1
:EkE_I]PE E Ez XI S Ck (Xz S Ck)) > \l E E I(‘Xz S Ck) + ; E I(Xl/ S Ck)

EZPE Zez (X! e Cy) — (XieCk))z\;i\lizn:(l(XieCk)jLI(XgeCk))
k=1 =1
N 2L (I(X; € Cy) + I(X] € Cy))
SED o <_ 2525 (I(X] € Cy) — I(X; € Cy))?

k=1

since upper sum in the exponent is bigger than the lower sum (compare term-by-term)

2en v nt?
<IEZ€ 4 () e 4,
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Lecture 12 VC subgraph classes of functions. Packing and covering numbers. 18.465

VC-subgraph classes of functions

Let F={f: X — R} and
Cr=A{(z,t) e X xR:0<t< f(zx) or f(z) <t <0}
Define class of sets C = {Cy : f € F}.

Definition 12.1. If C is a VC class of sets, then F is VC-subgraph class of functions and, by definition,
VC(F)=VvC(C).
Note that equivalent definition of Cy is
Cp={(z,t) € X xR [f(2)] = [t]}.
Example 12.1. ¢ = {C C X}, F(C) = {I(X € C) : C € C}. Then F(C) is VC-subgraph class if and only

if C is a VC class of sets.
Assume d functions are fixed: {f1,..., fa}: X — R. Let

d
F = {Z%fz(I) fQp, ..., € R}.
i=1
Then VC(F) < d+ 1. To prove this, it’s easier to use the second definition.

Packing and covering numbers

Let f,g € F and assume we have a distance function d(f, g).
Example 12.2. If X;,..., X, are data points, then
1 n
di(f,9) = - D OIF(X) — (X))
i=1

and
n

1/2
da(f,g) = (1 S (F(x0) —g(Xn)Q) .

n
i=1

Definition 12.2. Given € > 0 and fi,..., fn € F, we say that fi,..., fx are e-separated if d(f;, ;) > €

for any i # j.
Definition 12.3. The e-packing number, D(F, e, d), is the mazimal cardinality of an e-separated set.
Note that D(F,e,d) is decreasing in €.

Definition 12.4. Given e > 0 and f1,..., fn € F, we say that the set f1,..., fn is an e-cover of F if for
any f € F, there exists 1 <i < N such that d(f, f;) <e.

Definition 12.5. The e-covering number, N'(F,e,d), is the minimal cardinality of an e-cover of F.
27



Lecture 12 VC subgraph classes of functions. Packing and covering numbers. 18.465

Lemma 12.1.

D(F,2e,d) < N(F,e,d) < D(F,e,d).

Proof. To prove the first inequality, assume that D(F,2e,d) > N(F,¢e,d). Let the packing corresponding to
the packing number D(F,2¢,d) = D be f1,..., fp. Let the covering corresponding to the covering number
N(F,e,d) =N be fi{,..., fy. Since D > N, there exist f; and f; such that for some f;,

d(fi, f) < € and d(f;. f}) < <.

Therefore, by triangle inequality, d(f;, f;) < 2e, which is a contradiction.

To prove the second inequality, assume fi,..., fp is an optimal packing. For any f € F, fi,...,fp, f
would also be e-packing if d(f, f;) > e for all 4. Since f1,..., fp is optimal, this cannot be true, and,
therefore, for any f € F there exists f; such that d(f, f;) < e. Hence f1,..., fp is also a cover. Hence,
N(F,e,d) < D(F,e,d). O

Example 12.3. Consider the L;-ball {z € R% |z| < 1} = B1(0) and d(z,y) = |x — y|1. Then

D(By(0),¢,d) < <2+6>d < (3>d,

£ 3

where ¢ < 1. Indeed, let f1,..., fp be optimal e-packing. Then the volume of the ball with ¢/2-fattening
(so that the center of small balls fall within the boundary) is

Vol(1+§) =Cd<1+§)d.

Moreover, the volume of each of the small balls

i (5)=cu(3)’

and the volume of all the small balls is

28



Lecture 12 VC subgraph classes of functions. Packing and covering numbers. 18.465

Therefore,

d
D< <2 + 5) '
€
Definition 12.6. log N'(F,¢,d) is called metric entropy.

For example, log V(B (0),¢,d) < dlog 2.

29



Lecture 13 Covering numbers of the VC subgraph classes.

18.465

Theorem 13.1. Assume F is a VC-subgraph class and VC(F) =V. Suppose —1 < f(x) <1 for all f € F

and x € X. Let x1,...,2, € X and define d(f,g) = =30, | f(x;) — g(z;)|. Then
se. 7\
D(f,a,d)g(elog ) :

(which is < (g)vw for some §.)

Proof. Let m = D(F,e,d) and fi,..., fm be e-separated, i.e.

7Z|fr xz fl xz)|>€

Let (z1,t1),..., (2k, tr) be constructed in the following way: z; is chosen uniformly from z1, ...,

uniform on [—1,1].

Consider f, and f; from the e-packing. Let Cy, and Cj, be subgraphs of f, and fy. Then

P (Cy, and CYy, pick out different subsets of (z1,t1), ..., (2&,tk))

= P (At least one point (z;,1;) is picked by C, or Cy, but not picked by the other)

=1 —P(All points (z;,t;) are picked either by both or by none)

=1—P((2;,t;) is picked either by both or by none)k

Since z; is drawn uniformly from x1, ..., %y,

P ((#1,t1) is picked by both Cy,,Cy, or by neither)

n

1
— Z P ((x;,t1) is picked by both Cy,,Cy, or by neither)

=1

3

n

=22 (1= 3l - At

i=1

3

11 <&
= *iﬁzm z;) — fo(@i)]
=1

(fr?fl) 1_5/2§6_E/2

N)M—l

T, and t; is
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Lecture 13 Covering numbers of the VC subgraph classes. 18.465

Substituting,

P (Cy, and Cy, pick out different subsets of (z1,t1),..., (2k,tr))

=1—P((21,t1) is picked by both C},,Cy, or by neither)®

There are (') ways to choose f, and fq, so

P (All pairs Cy, and Cy, pick out different subsets of (21,t1),..., (2k,tx)) > 1 — (2) e ke/2,

What k should we choose so that 1 — (’;1)6_’“5/2 > 07 Choose

2
k > —log (m)
5 2
Then there exist (z1,%1), ..., (2k, tg) such that all Cy, pick out different subsets. But {C} : f € F} is VC,
so by Sauer’s lemma, we can pick out at most (%)V out of these k points. Hence, m < (%)V as long as

k> glog (ZL) The latter holds for k = glog m?2. Therefore,

1% 1%
m < Eglogm2 = 4—elogm
“\Ve Ve ’

where m = D(F,¢e,d). Hence, we get
ml/V < 38100 mirv
€

1A%

and defining m'/V = s,

4de
s < —logs.
€

Note that IO‘; - is increasing for s > e and so for large enough s, the inequality will be violated. We now

check that the inequality is violated for s’ = % log g Indeed, one can show that
de 7\ _ 4e 8. 7
—log (-] > —log| —log—
€ € € € €

49 7
— > log —.
8ee €

since

Hence, m'/V = s < ¢ and, thus,

v
D(F,e,d) < (8610g7> .
5 5
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Lecture 14 Kolmogorov’s chaining method. Dudley’s entropy integral. 18.465

For f € F C [~1,1]", define R(f) = 3> i fi. Let d(f,g) == (2 0, (fi — g)2) """

Theorem 14.1.

99/2  pd(0,f)

P(WGF,R(f) <l

log'/? D(F, e, d)de + 27/2d(0, f)\/z> >1—e

for any u > 0.

Proof. Without loss of generality, assume 0 € F.

Kolmogorov’s chaining technique: define a sequence of subsets
{0}=FCF...CF,;C...CF

where F; is defined such that

(1) vage Fjvd(fag) > 27j
(2) Vf € F, we can find g € F; such that d(f,g) <277

How to construct Fj; if we have Fj:

® Fji1:=1Fj
e Find f € F, d(f,g9) >27U*V for all g € Fj11

e Repeat until you cannot find such f

Define projection 7; : F' +— F} as follows: for f € F find g € F; with d(f,g) <277 and set m;(f) = g.

For any f € F,
f=mo(f) + (m(f) = mo(f)) + (m2(f) — m2(f)) -
= (m(H) —m-a(f)
j=1
Moreover,

d(mj1(f)sm5() < dlm;—a (), )+ d(f,m5(F)
< 2-U-1) 4 977 —3.977 < 9 it2
Define the links

Lj—l,j = {f_g : f S Fjvg S Fj—17d(.f7g) S 27j+2}'
32



Lecture 14 Kolmogorov’s chaining method. Dudley’s entropy integral.

18.465

Since R is linear, R(f) = Z;’il R(m;(f) — mj—1(f)). We first show how to control R on the links. Assume

£ € Lj_y ;. Then by Hoeffding’s inequality

1 — t2
P - i >t] < _
(32 etezt) o0 (~55)
ep( nt2 )
= ex T 5
25 2,

> nt?
=P\ Ty

Note that

cardL;_1 ; < cardFj;_; - cardF; < (cardFj)z.

P <V€ € Ljflyj,R(Z) = %Zel& < t) >1- (cardFj)ge_ 2-223j+5

i=1
1

after changing the variable such that

-——e
(cardF;)?

9-2j+5 9-2j+5
t= (4log(cardFj) +u) < 4log(cardFy) +
n n

Hence,

IN

P (Vg S Lj_17j, R(f)

If F;_1 = Fj then by definition m;_1(f) = 7y and L;_, ; = {0}.

By union bound for all steps,

, 27/2273 1/2 5/29—5 Y
P(Vj>1,Vle L, R < Tlog (cardFj) + 2°/%2 -

o0 1
>1-) — ¢
- _Z(cardFj)26

Jj=1

11\
21— 272—’_372—’_@ e

=1-(r?/6—-1)e “>1—e"

27/29=7 | - u
= log'?(cardF;) +2°/%2279, /=) > 1 —
NG og™/“(cardFy) + =

Recall that R(f) = 272, R(m;(f) — mj—1(f)). If f is close to 0, —2¥"1 < d(0, f) < 27%. Find such a k.

Then 7o(f) = ... = m(f) =0 and so
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Lecture 14 Kolmogorov’s chaining method. Dudley’s entropy integral. 18.465

12

log D

—(k+2) —(k+1)

R(m;(f) = mj-1(f))

<2 Jlogl/Q(cardF) 25/22j\/ﬂ>
) n
27 /2 ) U
<2 J logl/QD(F,2],d)) + 25/22’“[
n

2°/297k < 27/24(f,0).

Al
—

<.

1

<.

IN
i it

Note that 27% < 2d(f,0), so

Furthermore,
99/2 i( (41) 1 1/2 ) 99/2 27D s (
27T Jog D(F,2_J,d))§— og '“D(F,e,d)de
fj G vn Jo
99/2  d(0.f) L
<= log'/2 D(F, e, d)de
=/

Dudley’s entropy integral
since 2~ < 4(0, f).
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Lecture 15 More symmetrization. Generalized VC inequality. 18.465
Lemma 15.1. Let &, v - random variables. Assume that
P(v>t)<Te
where ' > 1, ¢t > 0, and ~v > 0. Furthermore, for all a > 0 assume that
E¢(£) < E¢(v)
where ¢p(x) = (x — a)s. Then
PE>t)<T-e-e
(x-a),
a
Proof. Since ¢(z) = (z — a)4, we have ¢(§) > ¢(t) whenever £ > t.
P(§>1) <P(o(§) = 6(1))
_EOO) _Bé(v) _ E(v—a).
o) T o) (t—a)t
Furthermore,
(v—a)+
E(v—a); = E/ ldx
0
:E/ Iz < (v—a)y)dz
0
(o)
= / El(z < (v —a)y)dx
0
:/ P((v—a)y >x)dx
0
:/ Pv>a+x)de
0
o0 —va
< [remra
0 Y
Hence,
Te— e T e.et
P(>t) < c =8 e
Y(t—a)+ 1
where we chose optimal a =t — % to minimize Fzﬂ O
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Lecture 15 More symmetrization. Generalized VC inequality. 18.465

Lemma 15.2. Let x = (x1,...,2,), ' = (2},...,2}). If for functions pi(x,2’), pa(x,2’), ps(x,a’)
P (¢1(2,0) = @alw,a') +V/s(w, @) - 1) <Te
then
P (]Em'@l(ﬂ%ﬂ?/) > Eqrpo(z,2") + /Eg p3(z, ') -t) <T-e-e .

(i.e. if the inequality holds, then it holds with averaging over one of the copies)

Proof. First, note that vab = infs~o(da + 4—1’5) with §, = ,/ﬁ achieving the infima. Hence,
t
il

={36 >0, (¢1 — p2 — dip3)40 > t}

{1 > 2+ st} ={36 > 0,901 > @2 + 03 +

= {sup(p1 — 2 — dp3)46 >t}
>0

v

and similarly

{Ezrp1 > Egrpa + VVEppst} = {(Ssup(Ea:’(Pl — Eprp2 — 0B p3)46 > t}.
>0

3
By assumption, P (v > t) < T'e™7*. We want to prove P(£ >t) < T -e-e 7. By the previous lemma, we
only need to check whether E¢(£) < E¢(v).

§ =supEy/ (01 — @2 — dp3)4d
550

< Egrsup(p1 — @2 — dp3)40
6>0
== ]E:E/l/
Thus,

by Jensen’s inequality (¢ is convex). Hence,
E¢(&) < EEu ¢(v) = Ed(v).
O

We will now use Lemma 15.2. Let F = {f : X — [c,c+ 1]}. Let z1,...,2p,21,..., 2}, be i.i.d. random
variables. Define

F={(f(z1) = f(@)),- - flan) = fla)) : f € F} S [-1,1]"™ %



Lecture 15 More symmetrization. Generalized VC inequality. 18.465

Define

n -
=1

n 1/2
a(f.9) = (1 S () — F@) — (gls) — g(x;»)f) .
In Lecture 14, we proved
29/2 d(0,f)
< Z
~vn o

t
+27/2d(0,f)\/>> >1—e "
n
Complement of the above is

p(3per iy L 2972 d(O,f)l V2D F o dde 4 272dl0 \/? ot
3 e Tt ez [T e PR e a0 ) <o

P, (Vf c F, % ;sz(f(xz) — f(z})) log'/? D(F,e,d)de

>2
=
Taking expectation with respect to z,z’, we get

29/2 d(0,f)

P (3]‘ €F, %isl(f(atl) — f(z)) > N log'/? D(F,e,d)de + 27/2d(07f)\/z> <e .
i=1 0

Hence (see below)

1 / 99/2  d(0.f)
P<3f€-7:a E;(f(%)*f(xv)) > % )

To see why the above step holds, notice that d(f, g) is invariant under permutations z; < z;. We can remove

log"/2 D(F, e, d)de + 27/2d(0, f)ﬂ) <et

g; since x and ' are i.i.d and we can switch z; and z. To the right of ”>” sign, only distance d(f, g) depends
on z,xz’, but it’s invariant to the permutations.

By Lemma 15.2 (minus technical detail "3f”),

1 < 99/2  d(0,f) s
res Ew/ﬁz(f(”w—f(z%))zl@x/ﬁ [ 1P D(F e d)de
i=1
L W)
where ) )
ot S () — f(a) = %Z ) — Ef
=1 i=1
and

Ewd(0, 1) = B S (f(0) = J@)2.

The Dudley integral above will be bounded by something non-random in the later lectures.
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Lecture 16 Consequences of the generalized VC inequality.

18.465

In Lecture 15, we proved the following Generalized VC inequality

n d(0, )
P <Vf €F, Bf - %Zf(xi) < 29\/%2&, /0 log'/? D(F,e,d)de 4 27/? -
i=1
L& 1/2
a(f.9) = (n (f(z) = fl27) — glzi) + g(%é)f)
=1

Definition 16.1. We say that F satisfies uniform entropy condition if
vn7 V(mla cee ,.’I}n>7 D(]:ag7d;v) S D(]:7E>
< 0\ 1/2
where dy (f,9) = (£ S, (f(a) - 9(2)?)

Lemma 16.1. If F satisfies uniform entropy condition, then

/,/]Ez,d((),f)z

0

d(0,f)
Ey / logt/? D(F,e,d)de < log'/2 D(F,e/2)de
0

Proof. Using inequality (a + b)? < 2(a® + b?),

>

i=1

S|

1/2
a(f.g9) = ( — g(; +g(ff§)—f(wi))2>

>

i=1

§ 1/2
= 2 (2111 Z ((f (i) = gl@:)® + (g(a}) — f(xé))2)>

= de,z' (f7 g)

f(@i) = g(@i)
1/2
((f(@:) = g(2:)® + (g(x7) — f(xé))2)>

n

IN
/N

Since d(f,g) < 2dy ./ (f,g), we also have

D(F,e,d) < D(F,e/2,dpar).
Indeed, let f1,..., fn be optimal e-packing w.r.t. distance d. Then

e < d(fi, fj) < 2dy 2 (fis fj)

and, hence,

e/2 < dx,x’(fi7fj)'

E.d(0, f)2t

>>1—e_t

So, fi,..., fn is €/2-packing w.r.t. d; .. Therefore, can pack at least N and so D(F,¢,d) < D(F,e/2,dy »).
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Lecture 16 Consequences of the generalized VC inequality. 18.465

d(0,1) d(0,1)
E,/ / log'/? D(F,e,d)ds < E, / log"/? D(F,e/2,dy ) de
0 0

d(0,f)
< / log!/? D(F,e/2)de
0

Let ¢(x logl/2 D(F,e)de. Tt is concave because ¢'(x) = logl/2 D(F,e/2) is decreasing when z is
0

increasmg (can pack less with larger balls). Hence, by Jensen’s inequality,

Ear¢(d(0, f)) < ¢(Eard(0, f)) = ¢(Ear\/d(0, f)?) < d(v/Eard(0, f)?)

O
Lemma 16.2. If F = {f: X — [0,1]}, then
et < o510
i=1
Proof.
1 n
Exd(0,f) = Eo— Y (f(w:) ~ f(al)’
i=1
= 3 (w0 - 21 (@)ES +EF)
i=1
n 1 n
< NP HEA) <D flm) +Ef
i=1 i=1
1
< 2max (Ef, - ;f(&))
O
Theorem 16.1. If F satisfies Uniform Entropy Condition and F = {f: X — [0,1]}. Then
/ V2Ef .
<Vf eF, Ef—= Zf () 29\/,2 log!/2 D(F,e/2)de + 2”%/%“) >1—et
Proof. IfEf > L 5" | f(x;), then
1 n
2 max (IEf, - ; f(a:i)> =2Ef.
WEf < 5 30 flx),
1 n
Ef——> flz:) <0
i=1
and the bound trivially holds. O



Lecture 16 Consequences of the generalized VC inequality. 18.465

Another result:

Lo 90/> [VIETL, @) 2(L 00, fla)t
P|VfeF, —> flo)-Ef <~ log!/ D(F, </2)dz + 272 | X L=t T2
i nJo

n

>1—¢t
Example 16.1. [VC-type entropy condition]
2
log D(F,e) < alog -

For VC-subgraph classes, entropy condition is satisfied. Indeed, in Lecture 13, we proved that D(F,¢e,d) <
(% log g)v for a VC-subgraph class F with VC(F) =V, where d(f,g) = di(f,g9) = 2 30, [f(2:) — g(z)|.
Note that if f,g: X — [0,1], then

" 1/2 1/2
= (711 Z(f(%)—g(%))2> ( Z|f zi) — 9(i |> '

Hence, €< d?(fa g) < V dy (f7 g) lmphes
9 Se 7\"
D(F,e,d2) < D(F,e%,dy) < g—logs— =D(F,e).

The entropy is
14
8e 7 8e 7 2

where K is an absolute constant.

We now give an upper bound on the Dudley integral for VC-type entropy condition.

2z logl/2 L , <
/ log de
x>

)

D= Ol

12
log 1/e

12
xlog 1/x

X
Proof. First, check the inequality for < 1/e. Taking derivatives,

[ 1 1 1
log — <2 longx()
x T 1 T

log
40



Lecture 16

Consequences of the generalized VC inequality. 18.465
1 1
log— <2log——1
T T
1
1 <log—
T
x<1/e
Now, check for x > 1/e.
1 e 1 1
/ log —de = 1/log *dE-‘r/ {/log —de
0 € 0 g 1 g
2 x
<- +/ ldx
e 1
2
=—4zrz——-=z+ - <22
e
O

Using the above result, we get

SUTETRS PN e 24 B
i=1

Without loss of generality, we can assume Ef > %, and, therefore, log ﬁ < logn. Hence,

Ef — LY f(a;
P(er]—', f=a 2 I@) alOgn—i—K\/?)Zl—e_t.
n n

VEf
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Lecture 17 Covering numbers of the convex hull. 18.465

Consider the classification setting, i.e. ) = {—1,+1}. Denote the set of weak classifiers
H={h:X+—[-1,+1]}

and assume H is a VC-subgraph. Hence, D(H,¢,d,) < K - Vlog2/e. A voting algorithm outputs

T T
f =" Aihi, where h; € H, Y A <1, X; > 0.

i=1 i=1

Let
T T
F = conv H = {inhi, hi€H, Y Ai<1, A >0, T>1}.

i=1 i=1
Then sign(f(x)) is the prediction of the label y. Let

d T
fd:CODVdH:{ZAZ'hZ‘, hZEH,ZAZSL )\1>0}
i=1 1=1

Theorem 17.1. For any x = (z1,...,2y), if
logD(H,e,d,) < KVlog2/e

then
log D(convg H,e,d,) < KVdlog2/e.

Proof. Let h',... hP be e-packing of H with respect to d,, D = D(H,e,d,).
Note that d, is a norm.
Lo 1/2
d.(f.9) = (n () g(:cm?) =17 ~ gl
i=1

If f =% | Aihy, for all h; we can find h¥ such that d(h;, h*) <e. Let f' = >.* | \;h¥. Then

d d
<) Al — b
1=1

> Ai(hi — h*)

i=1

a(f, f) =1f = flla =

z S E.

x

Define

d d
Fpd= {Z/\ihia hi € {h',... h"}, Z/\i <1, AiEO}-

i=1 i=1
Hence, we can approximate any f € Fy by f' € Fp 4 within €.

Now, let f = Zle Aihi € Fp.q and consider the following construction. We will choose Y7 (x),..., Yy (z)

from hq, ..., hg according to A1, ..., Ag:
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Lecture 17 Covering numbers of the convex hull. 18.465

Furthermore,

2 2

x

:%ZE % (Y;(w:) — EY; (2:))
1N 1 & 2

= LS S B ) - EY ()
i=1 j=1

4

< =

~ k

2 2

k
S Y| <&
j=1

=
—
gt
~
Il
&=
Y

8

| =

T

So, there exists a deterministic combination 3 Z?Zl Y; such that d,(+ Z?Zl Y, f) <e.

Define

k
Fpa=47 Vit k=4/" Y; € {h,...,ha} C{h',...,h"}
j=1

| =

Hence, we can approximate any f = 2?21 Nihi € Fpa, hi € {hY,...,hP}, by f' € Fp,q within .
Let us now bound the cardinality of F' 1’3’ 4- To calculate the number of ways to choose k functions out of

hi,...,hg, assume each of h; is chosen kg times such that k = ky + ...+ kg. We can formulate the problem

as finding the number of strings of the form

00...0100...01...100...0.
—— = N——

k1 ko ka
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Lecture 17 Covering numbers of the convex hull. 18.465

In this string, there are d — 1 ”1”s and k ”0”s, and total length is k + d — 1. The number of such strings is

(ker*l). Hence,
D E+d
Ha <
card Fp 4 < (d) X ( i )

k
DDded (k+d)k+d
= di(D—d)P—d  fkqd

() () ()
() o) ()

using inequality 1+ x < e®

. <D(k‘c—l|;d)62>d

A

where k = 4/¢% and D = D(F,¢,d,).
Therefore, we can approximate any f € Fy by f” € Fp 4 within € and f” € Fp 4 by f € Fp ; within e.
Hence, we can approximate any f € F4 by f' € f,’ld within 2e. Moreover,
e2D(k +d)
d2

k+d
:d<2+logD+log;>

log N (Fy = convyg H,2¢,d,) < dlog

2 4
§d<2+KVIOg+log (1+2>>
€ €

2

since 854 <1+ kandd>1,V > 1. O
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Lecture 18 Uniform entropy condition of VC-hull classes . 18.465

In this lecture, we show that although the VC-hull classes might be considerably larger than the VC-classes,

they are small enough to have finite uniform entropy integral.

Theorem 18.1. Let (X, A, u) be a measurable space, F C {f|f : X — R} be a class of measurable func-
tions with measurable square integrable envelope F (i.e., Y € X, Vf € F,|f(z)] < F(z), and ||F|2 =
([ F2dp)'/? < 00), and the e-net of F satisfies N(F, €| F||2,| - ||) < C (%)V for 0 < e < 1. Then there erists
a constant K that depends only on C' and V' such that log N (convF, €| F||z, || - ||) < K (%)‘%/2

Proof. Let N(F,€||Fla,||-|=2) < C (%)V 2 ;. Then e = CYp=V and €||F|ly = CYV||F|la - n~ V. Let

L =CYV||F|y. Then N(F,Ln=*V || -|2) < n (ie., the L-n~"V-net of F contains at most n elements).
Construct 71 C Fo C --- C F,, C --- such that each F,, isa L- nil/v—net, and contains at most n elements.
Let W = % + % We proceed to show that there exists constants Cy and Dy, that depend only on C' and V

and are upper bounded (supy, Cj; V Dy, < 00), such that

(18.1) log N(convFpka, CrL-n~W || -|2) < Di-n

for n,k > 1, and ¢ > 3+ V. This implies the theorem, since if we let k — oo, we have log N (convF, Co. L -
2V
n~W ||ll2) € Deon. Let e = CouCYVn™W and K = Do CL7P OV we get Cog L~ = CoCYV|[F|lan= =
c._cl/Vv /w 1 2V . . .
e||Fll2, n = (%) and log N (convF, €||F ||z, || - |2) < K - (£) V*2. Inequality 18.1 will proved in two
steps: (1)

(18.2) log N(convF,,CiL-n"Y |- ]a) < Di-n

by induction on n, using Kolmogorov’s chaining technique, and (2) for fixed n,

(18.3) log N(convFy.ka, CkL -0~ || -]2) < Dg-n

by induction on k, using the results of (1) and Kolmogorov’s chaining technique.

For any fixed ng and any n < ng, we can choose large enough C; such that CanaW > ||F|l2- Thus
N(convF,,CiL-n~W | - |l2) = 1 and 18.2 holds trivially. For general n, fix m = n/d for large enough
d > 1. For any f € F,, there exists a projection m,, f € F, such that ||f — mf|| < Cvm~V||F|| = Lm~v
by definition of Fon. Since ¢z Ap - f = D cr sy [+ 2 per, Ar - (f — Tmf), we have convF, C
convF,, + convG,, and the number of elements |G, | < |F,| < n, where G, = {f — 7 f: f € Fn}. We will
find %C’l Ln~ W -nets for both Fm and G,,, and bound the number of elements for them to finish to induction

step. We need the following lemma to bound the number of elements for the %Can’%—net of G,,.

Lemma 18.2. Let (X, A, u) be a measurable space and F be an arbitrary set of n measurable functions f :
X — R of finite Lo(p)- diameter diamF (Vf,g € F, [(f — g)*du < o). Then Ve > 0, N(convF,ediamF,|| -
o) < (e +ene?) /"
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Lecture 18 Uniform entropy condition of VC-hull classes . 18.465

Proof. Let F = {f1,-- , fu}- VD iy Nifi, let Y1, , Y} be i.id. random variables such that P(Y; = f;) =
Aj forall j=1,---,n. It follows that EY; =Y \;f; foralli=1,--- &, and

k n n
1 1 1
E EE Y= Aifi <.E Yi— > Aifj §E(d1amf)2.
i=1 j=1 j=1

Thus at least one realization of % Zle Y; has a distance at most £~ /2diamF to > X fi- Since all realizations

of %Zle Y; has the form %Zle fj» there are at most ("Jr,]j*l) of such forms. Thus

-1
N(k~Y2diamF, convF, || - [|2) < (n+Z >

<(k+n)k+” ~ [(k+n Pk +n\"
- kknn N k n
k g 2
= <Zn) = (etene)’/s
U
By triangle inequality and definition of G,,, diamG, = supy, ,,cg. 91 — gall2 <2-Lm~YV. Let ¢-diamgG,, =
e-2Lm~Y/V = %C’an_W. It follows that € = iC’lml/V -n~", and
1 32'Cf2m2/vn2'w
N(convG,, ediamG,, || - |2) < <e +en- EC’fmZ/V ~n2W>
—2 52/V
B € 9 72/V>32~C'1 d n
= —Cid
(e + 1601
By definition of F,, and and induction assumption, log N(convF,,, C1L-m~" || - |2) < Dy - m. In other

words, the C1L - m~"-net of convF,, contains at most e”*™ elements. This defines a partition of convF,,

Dim

into at most e elements. Each element is isometric to a subset of a ball of radius C;Lm~". Thus each

_ m d
set can be partitioned into (%) = (GdW)"/ sets of diameter at most %C’an*W according to the
2

following lemma.

Lemma 18.3. The packing number of a ball of radius R in RY satisfies D(B(0,7),¢,]| - ||) < (%)d for the

usual norm, where 0 < € < R.

2/Ve-2,
As a result, the C;Ln~W-net of convF, has at most eP17/4 (GdW)n/d (e + eC’%d_z/V)Sd < elements.

This can be upper-bounded by e™ by choosing C and d depending only on V, and Dy = 1.
For k > 1, construct G, such that convFnx« C convF,(r—1)« + convG, s in a similar way as before.

Gy contains at most nk? elements, and each has a norm smaller than L (n (k — 1)q)—1/V. To bound the

cardinality of a Lk~2n~"-net, we set ¢ - 2L (n (k — 1)q)—1/v = Lk 2n™W get e = %n‘l/Q (k— 1)(]/\/ k=2,
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Lecture 18 Uniform entropy condition of VC-hull classes . 18.465

and
N(convG, i, ediamG,, i, || - [|2) < (e + enkq62)2/€ =
)8-n<k4(k71)’2‘1/v

N(convG, i, ediamG,, i, || - [|2) < (e + Zk_4+q+2qw

. As a result, we get

1
Cy = Cra+ =
Dy = Dy +8k'(k—1)"2V log(e + Zk—4+q+2q/‘/).
For 2q/V — 4 > 2, the resulting sequences Cj and Dy, are bounded. O
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Lecture 19 Generalization error bound for VC-hull classes. 18.465

In a classification setup, we are given {(x;,y;) : x; € X,y; € {-1,+1}}i=1,... n, and are required to construct
a classifier y = sign(f(z)) with minimum testing error. For any x, the term y - f(x) is called margin can
be considered as the confidence of the prediction made by sign(f(z)). Classifiers like SVM and AdaBoost
are all maximal margin classifiers. Maximizing margin means, penalizing small margin, controling the
complexity of all possible outputs of the algorithm, or controling the generalization error.

We can define ¢s(s) as in the following plot, and control the error P(y - f(x) < 0) in terms of E¢s(y - f(x)):

Ply- f(z) <0) = E,uI(y- f(z) <0)
< Euy¢s(y- f(2))
= Eg¢s(y- f(z))
= Ends(y- f(2)+ (E(y- f(2) —Ends(y - f(2))),

observed error generalization capability

2

where E,¢s(y - f(x)) % S ¢s(y - flx)).

¢,(5)

fo) S

Let us define ¢s(yF) 2 {ps(y- f(x)) : f € F}. The function ¢s satisfies Lipschetz condition |¢s(a) — ¢5(b)| <
sla —bl. Thus given any {2 = (2i,9i)}i=1, n,

(

d.(¢s(y - f(2)), ¢5(y - g(x)))

n 1/2
Z (D5 (yi f (i) — ds(ys - g(wz)))2> ,definition of d,
i=1

S|

n

1/2
1
( Z (yif(zi) — i - g(:ci))2> ,Lipschetz condition

n-
=1

IN

d.(f(z),g(x)) ,definition of d,,

S| = =

and the packing numbers for ¢5(yF) and F satisfies inequality D(¢s(yF),€,d,) < D(F,e-d,dy).

Recall that for a VC-subgraph class H, the packing number satisfies D(H,€,d;) < C’(%)V7 where C' is
a constant, and V is a constant. For its corresponding VC-hull class, there exists K(C,V’), such that
log D(F = conv(H), €,d,,) < K(L) P2, Thus log D(¢5(yF), €,dz) < log D(F,e-6,dy) < K(Z)¥2.

On the other hand, for a VC-subgraph class H, log D(H,€,d,) < KV log %, where V is the VC dimension of

H. We proved that log D(Fy = convgH, €,d,) < K -V -dlog 2. Thus log D(¢s(yFa), €, d,) < K-V -dlog 2.
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Remark 19.1. For a VC-subgraph class H, let V' is the VC dimension of H. The packing number satisfies
D(H,e,d,) < (% log %)V D Haussler (1995) also proved the following two inequalities related to the packing
number: D(H, ¢, |- 1) < (£)", and D(H, e, d,) < K (1)".

Since conv(H) satisfies the uniform entroy condition (Lecture 16) and f € [—1,1]¥, with a probability

VE®
\F/ \/65 d+K E¢5“

E(b(; u

n

of at least 1 —e™ ",

E¢s(y - f(x)) — Ends(y - f(2))

IN

(191) = Kn‘fé V+2 EQJ)& V+2 + K

for all f € F = convH. The term E¢;s to estimate appears in both sides of the above inequality. We give a
bound E¢s < z*(E,¢s,n,d) as the following. Since

E¢6 SEn¢6
E¢s < Kn~ 3675 (Egs) 7 = Egs < Kn Vi1 ver
Edbs -
Egs < K1/ 22 % o Egs< K2,
n n

u

It follows that with a probability of at least 1 —e™",

(19.2) E¢s < K- (E n¢5+n7m5’”1+n)

2
for some constant K. We proceed to bound E¢s for § € {§;, = exp(—k) : k € N}. Let exp(—ug) = (%4—1) e
, it follows that up = u+2-log(k +1) = u+ 2 - log(logi + 1). Thus with a probability of at least

2

2
1= penexp(—up) =1 -3y (%“rl) et=1-Te"<1l=-2-e"

Eosy (@) < K- (Ends(y- f()) +n HPH5 7T 4 1)

_ v u+2-log

iy 5=+l
(19.3) = K- (En¢s,(y- f(z)) +n"2vH6, V7 + -

)

(log
for all f € F and all 63 € {0y : k € N}. Since P(y - f(z) <0) =E, ,I(y- f(z) <0) <E, 405y - f(z)), and
Ents(y- f(2) = 230 ds(yi - fl) < 230 I(yi - fl) < 6) =Py - f(g) <

least 1 —2-e74,

0), with probability at

2 2log(log + +1
P(y-f(@) <0) < K-inf (pn(y f(z) <8) +n ATV 4 L og(og6+)> .
n n
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As in the previous lecture, let H = {h : X — [—1,1]} be a VC-subgraph class and f € F = conv H. The
classifier is sign(f(z)). The set

{y # sign(f(2))} = {yf (=) <0}
is the set of misclassified examples and P (y f(z) < 0) is the misclassification error.

Assume the examples are labeled according to Cp = {x € X : y = 1}. Let C = {sign(f(z)) > 0}. Then

CyoAC are misclassified examples.

1 n 1 n
P(CACy) = — > I(w; € CACy) + P(CAC,) - - > I(wi € CACY)
=1

1= =1

small. estimate uniformly over sets ¢

For voting classifiers, the collection of sets C can be "very large”.

Example 20.1. Let H be the class of simple step-up and step-down functions on the [0,1] interval,

parametrized by a and b.

Then VC(H) = 2. Let F = conv H. First, rescale the functions: f = Z;Trzl Aih; =2 Zil Ai (Bt —1 =
2f'—1 where [/ = EiT:1 Aihl, b= % We can generate any non-decreasing function f’ such that f/(0) =0
and f’(1) = 1. Similarly, we can generate any non-increasing f’ such that f/(0) = 1 and /(1) = 0. Rescaling

back to f, we can get any non-increasing and non-decreasing functions of the form

f, f,
1 / 1
0 o_\ I
-1 -1

Any function with sum of jumps less than 1 can be written as f = %( fi + f2). Hence, we can generate

basically all sets by {f(z) > 0}, i.e. conv H is bad.

Recall that P (yf(zx) <0) = EI(yf(x) <0). Define function ¢s(s) as follows:
Then,

I(s <0) <5 (s) < I(s <9).
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,(S)

Hence,

P(yf(z) <0) <Eps (yf(z))

1 n
= E;% (yif(xi)) (E% yf(x **Z% i f (i) )
S%ZI(yif(wi)§5)+ <]Es05 yf(z —72% yif (@) )
i=1

By going from + " | I(y;f(x;) < 0) to £ Zl 1 I(yif(x3) < 6), we are penalizing small confidence predic-
tions. The margin yf(z) is a measure of the confidence of the prediction.

For the sake of simplicity, denote Eps = Eps (yf(2)) and @5 = L 37" | o5 (yi f (1))

Lemma 20.2. Let Fy = convg H = {Zle Xihiyhy € H} and fiz § € (0,1]. Then

Eps — 05 &V log & \/7 ot
P(VfEfd, JEos §K< - + n))zl e ",
Proof. Denote

es (yFa(x)) ={ps (yf(2)), f € Fa}-

Note that ¢s (yf(x)) : X x Y — [0,1].

For any n, take any possible points (21,¥1), ..., (Zn,yn). Since

1
95 (5) = 03 (1) < 5ls 1,
o1



Lecture 20 Bounds on the generalization error of voting classifiers. 18.465

we have

1/2
dey (5 (yf (), — s (yig(xi))f)

1/2
xZ))2>
>1/2

Oq‘,_.
3=

INA
/N N

HM: ”M

N
3|~

do(f,9)

oq\>—~ o)\»—*

where f,g € Fy.
Choose ¢ - §-packing of Fy so that

ey (23 (0] () 03 (09(2))) < 50u(f.9) < &
Hence,
N(ps (yFa(2)) €, dey) < D(Fa,€0,dy)
and
log N (s (yFa(z)) ,€,dyy) <logD(Fy,e6,d,;) < KdV log %
We get

2
log D(ws (yFa) ,€/2,dzy) < KdV log =

So, we can choose f1,..., fp, D = D(Fy,ed,d,) such that for any f € Fy there exists f;, d.(f, fi) < &4.

Hence,

dey (s (yf(2)), 05 (yfi(w))) < e

and @5 (yf1(x)), ..., ¢s (yfp(x)) is an e-cover of ps (yFa(w)). O
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We continue to prove the lemma from Lecture 20:

Lemma 21.1. Let Fq = convg H = {Zz 1 Aihi, hi € HY and fix § € (0,1]. Then

dV'l
(vfefd, Eeps - S05<K<w dVlog § \/>>>>1e

2
log D(ws (yFa),€/2,dsy) < KdV log =

Proof. We showed that

By the result of Lecture 16,

with probability at least 1 — e~t. We have

k VEes 12 k VEps 2

— 1 D de < dV log —d.

= e D e epde < S [T Javios Zae

ko2 [OVE®s/2 1
f/ VdV[log —dz
nd J, x

2
g\/ dVQg\/IEgp(; log

S

<

Sl= %

2
ovVEps
where we have made a change of variables % =x,e= 2%. Without loss of generality, assume Eps > 1/n.

Otherwise, we're doing better than in Lemma: = < logn o | < logn Hence,
VvE n n

e [ gD () e < 1y 8 1 2

dVE
<K VE®s log o
n )
So, with probability at least 1 — e_t,
dVE n tE T
=1
which concludes the proof. O

The above lemma gives a result for a fixed d > 1 and § € (0,1]. To obtain a uniform result, it’s enough
to consider § € A = {27% k > 1} and d € {1,2,...}. For a fixed § and d, use the Lemma above with ¢ 4
defined by e~%d = e‘tdger. Then

P(VfeFu oot/ B9) >1—etoa—1— et 69
n d?7?

ts,d _, 66 ¢
P {erfd,...+ n} Zl—ge ma =l

d,s

and
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Since ts5.q =t + log %,

Eps — @s dV log % t + log dzﬁgz
VfeFqy, ———— <K
fefo =g =KW 7 n
AV log 2 2.2
<K \/0g5+\/10gd7r -1-\/7
n 64 n

since log %, the penalty for union-bound, is much smaller than 4/ dvis g

n

Recall the bound on the misclassification error

P(yf(z) <0) < %Zf(yif(xi) <96)+ (E% (yf(x)) — %Z% (%f(@))) :

If
1 n
Eps — n Zi:l Ps <.,

VEps

then
1 n
Eps — ev/Eps — — <0.
w5 — € 2 n ; Ps <

Hence,

€ eN2 1 —
VEps < = (7) =Y
@5_24- 5 +ni:1905

e\ 2 1 <&
E <2<7) 22 .
ps < 2 +n;%

The bound becomes

P(yf(z) <0) <K

S|

Zf(yz‘f(l‘i) <o)+ 710g5 +ﬁ
=1 N ——r’

where K is a rough constant.
(*) not satisfactory because in boosting the bound should get better when the number of functions grows.

We prove a better bound in the next lecture.

o4
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Theorem 22.1. With probability at least 1 — e™t, for any T > 1 and any f = ZiT:1 Aihi,

Plf() <0) < inf e+ VB I <) + )’

where e =€(0) = K <\/Vmin(T’(loin)/62)log? + ﬁ)

Here we used the notation P, (C) = = 3" | I(z; € C).

Remark:

V min(T, (1 52) log 2
P(yf(z) <0) < inf K | By (ufix) <o)+ il (osn)/f)log§ ¢
4€(0,1) ¢ n "

inc. with s

dec. with s
Proof. Let f = 23:1 Xihi, g = %2521 Y;, where

T
P(Y;=h) =X and P(Y;=0)=1-> X

i=1

as in Lecture 17. Then EYj(z) = f(x).

P(yf(z) <0) =P (yf(z) <0,y9(x) <0) +P(yf(x) <0,yg9(z) > 9)

<P(yg(z) <6)+P(yg(z) >4 | yf(z) <0)

| =

k
P (yg(z) > 6 ‘ yf(z) <0) =E,Py |y ZYJ(LE) >4 ‘ yEyY;(z) <0

Shift ¥’s to [0, 1] by defining Y = yYJT—&-l Then

k
1 1 5 1
P <0 =EPy (> Y/ >< —‘IEYY<7
(yg(x) > dlyf(x) <0) Y k2 iZ5t3 iS5
1< 5 1
! ! /
<E,Py EE‘ szEYl+§‘Eng§

Jj=1

< (by Hoeffding’s ineq.) ]Ezeka(EYH%’]EYf)

2 2
< Ex€7k6 /2 — €7k6 /2

because D(p, q) > 2(p — q)? (KL-divergence for binomial variables, Homework 1) and, hence,

/ 6 / 6 2 2
D IEY1+§,EY1 > 2 3 =6/2.
We therefore obtain

(22.1) P (yf(z) < 0) < P(yg(x) <)+ e */?
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Lecture 22 Bounds on the generalization error of voting classifiers. 18.465

and the second term in the bound will be chosen to be equal to 1/n.

Similarly, we can show
P, (yg(x) < 20) <P, (yf(x) < 30) + e ko%/2.

Choose k such that e *°/2 = 1/n, ie. k= Z logn.

Now define s as follows:

$,(9
_ 1
0 20 S
Observe that
(22.2) I(s <) < s (s) < I(s <26).

By the result of Lecture 21, with probability at least 1 — e~¢, for all k,§ and any g € F = conv ,(H),

1< _ Eos (yg(x)) — 3 301 @5 (yig(x:))
® (E%’ n ; %> - Eps (yg(@))

<K<,/vmoga+f>
n n

=¢/2.

Note that ®(z,y) = % is increasing with x and decreasing with y.
By inequalities (22.1) and (22.2),
1
Eps (yg(2)) 2 P(yg(x) < 0) = P (yf(x) < 0) - —~
and

L3 (i(w0) < P (99(a) < 26) < By (3] () < 39) + -

i=1

By decreasing x and increasing y in ®(z,y), we decrease ®(z,y). Hence,

| P(yf(z) SO)—%,Pn(yf(x) §35)+% <K (WjL \/Z>

T Yy

where k = 5% log n.
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-y
If NG < &, we have i
<[+ (5)2 +
x < el
=13 B Y
So,
2
P <0 -2 < (S4\/(2) +P s <39+ L
VI =070 =\ 2 2 n W = n)
O
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Let f = 23;1 Aih;, where A\ > Ay > ... > Ar > 0. Rewrite [ as

T
Z)\th Z Aihi _ZM +(d) Y Nk

i=d+1 i=d+1

where v(d) = ZiT:d_H Ai and A = A;/v(d).

Consider the following random approximation of f,

1
1= S w0 L 3
where, as in the previous lectures,
P(Y;=hi)=X\, i=d+1,...,T

for any j = 1,..., k. Recall that EY; = 37, Mh.

Then
P(yf(z) <0) =P(yf(z) <0,yg(z) <)+ P(yf(z) < 0,yg(z) > )
< P(yg(z) <6) +E [Py (yf(x) <0,y9(z) >4 | (z,y))]
Furthermore,
Py (yf(z) < 0,yg(z) >4 | (z,y)) <Py (yg(z) —yf(z) >4 | (z,y))
1k
=Py | v(d)y % ZYJ@) —EY1 | 26| (z,9)
j=1
By renaming Y, = yyj%l € [0,1] and applying Hoeffding’s inequality, we get
R 1< 5
Py | v(d)y Ezyj(m) —EY | >2¢ ‘ (z,y) | =Py EZYJ/(QU) - EY] > () | (z,y)
= — v(d)
__ke2
<e 2v(d)? |
Hence,

k52

P(yf(z) <0) <P(yg(z) <6)+e 2@,

_ _ks? 2
If we set ¢ 2@? =L then k = Léd) logn.
n 1)

‘We have

d k
1
g = E il —l—’y(d)g E Y, € convayiH,
i—1

j=1

d+k=d+ 2 )logn
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Define the effective dimension of f as

e(f,6) = min <d+272<d) logn).

0<d<T 02

Recall from the previous lectures that

P, (yg(r) < 26) < Py (yf () < 30) +

Hence, we have the following margin-sparsity bound

Theorem 23.1. For Ay > ... \p > 0, we define v(d, ) = ZiT:dH Xi. Then with probability at least 1 —e™t,

P(yf(x) <0) < inf (E+\/H"n(yf(x)§6)+52)2

5€(0,

5:K<\/V'€7Ef’5) log7;+\/z>

Example 23.1. Consider the zero-error case. Define

where

5* = sup{d > 0, (yf(2) < ) = O},

Hence, P, (yf(z) < ¢*) = 0 for confidence §*. Then

P(yf(z) <0) §452:K<§7m10g;+;>
n

Vlogn t
<K 1 —
( Gyen 5 T n)
Consider the polynomial weight decay: \; < Ki~®, for some o« > 1. Then

—« —« 1 Ka
ZA<KZ@ <K/ de = K =

1=d+1 1=d+1

because e(f, ) < 5% log n always.

Then

e(f,0) = mln (d + 27;2(60 log n)

K/
< min <d + 5242001 log n)

Taking derivative with respect to d and setting it to zero,

K,logn
1- 52q2a—1 — 0
we get
logt/ (=t logn
d=Ka- 52/(2a—1) = K(gz/(mq)'
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Hence,

Plugging in,

o(f,0) < K —28"

Viogn

P(yf(z) <0) <K <n(5*)2/(2a—1)

As a — oo, the bound behaves like

Vlogn n
log 5

52/(2a—1)

lo £+
g(S*

)
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In this lecture, we give another example of margin-sparsity bound involved with mixture-of-experts type
of models. Let H be a set of functions h; : X — [—1,41] with finite VC dimension. Let Cy,---,Cp,
be partitions of H into m clusters H = [J;~, C;. The elements in the convex hull convH takes the form
F=l0 M = i oy O onee Ny - by where T3> m, 5,0 = 1, ae = Y, An, and Af = A /o
for h € c. We can approximate f by g as follows. For each cluster ¢, let {Y) }r=1,... n be random variables
such that VA € ¢ C H, we have P(YY = h) = A;. Then EY;* = >, Aj -h. Let Z = > a/Y) and
9=t SN Ve =LV | 7. Then EZ), = Eg = f. We define o2 = var(Zi) = . a2var(Y)S), where
var(Yye) = [V = EYE[|2 = 3, c. A (b — IEYhC)2. (If we define {Yj}x=1.. n be random variables such that
Vh € H, P(Y), = h) = A, and define g = % E,JLI Y%, we might get much larger var(Yy)).

C

Cq m
Recall that a classifier takes the form y = sign(f(x)) and a classification error corresponds to yf(z) < 0. We

can bound the error by
(24.1) P(yf(x) < 0) < P(yg < 8) + P(oF > 1) + Plyg > dlyf(x) < 0,07 < 7).

The third term on the right side of inequality 24.1 can be bounded in the following way,
P(yg > olyf(z) < 0,07 <r) = P ( (yZx —EByZy) > 6 —yf(x)|yf(z) <0,07 < 7‘)

(yZe — ByZy) > dlyf(x) < 0,07 < 7")

IN
=
VR
2|~
i

N262
———— 5 | Bernstein’s inequality
2No2+4 SN0 -2

N2§2 N2§2
< exp (— min <4NU§ , 7%]\/‘6 >)

) , for r small enough

IA
o
%

il

1
24.2 G
(24.2) -

As a result, YN > % logn, inequality 24.2 is satisfied.
To bound the first term on the right side of inequality 24.1, we note that Ey, ... v, P(yg < 0) < Ey, ... yyE¢s(yg)

and E,¢5(yg) < Pn(yg < 26) for some ¢s:
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()

0 20 S

Any realization of g = ngvjl Zy., where N, depends on the number of clusters (C4y,---,C,,), is a linear

combination of h € H, and g € convy, H. According to lemma 20.2,

(Eds(yg) — Ends(yg)) /VEds(yg) < K (\/W + \/uTn>

with probability at least 1 — e™". Using a technique developed earlier in this course, and taking the union

bound over all m, §, we get, with probability at least 1 — Ke™"

)

V.N,, n u)
g <+ .
n

(Since EP,(yg < 26) < EP,(yf(z) < 36) + EP,(6? > r) + 1 with appropriate choice of N, based on
the same reasoning as inequality 24.1, we can also control P, (yg < 26) by P, (yf < 35) and P, (02 > r)
probabilistically).

To bound the second term on the right side of inequality 24.1, we approximate o2 by

2
0% = % ij:l % (Z,(Cl) - Z,(f)) where Z,gl) and Z,(CZ) are independent copies of Z; . We have

Eyom ok = o0
1 1 2)\ 2 1 1 2)\ 2
vary, 2)N§ (Z,(C ) Z,g )) = —var (Zl(C ) Z,g )>
1 4
< JE(Z-2%)

2
(-1 <20, 2 <1 and (2 - 2} < 4)

2
< E(zV -2
= 202
< 2.02.

2
vary,(1,2) O
Y1,~-~,N N c
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We start with

5c)
o
z
[S)
vV
B
=
IN

Pyas (0% >3r) +Puas (02 > drlod < 3r)
1,---,N 1,---,N

1
< Eyoo ¢r(ok 23r) +

with appropriate choice of N, following the same line of reasoning as in inequality 24.1. We note that

Py, ....yy (0% = 3r) < Ey, ... yy&r(0%), and Ep¢5(0%) < Py(o3 > 2r) for some ¢;.

,(s)

0 203040 S

Since

N 2
1
% € {55 <Z a. (h,g{g - h,fi)) chil) h?) € HY € convyy, {hi - hy < hishy € HY,
k=1

C

and log D({h; - h; : hi,h; € H},€e) < KV log 2 by the assumption of our problem, we have log D(convy,, {h; -
hj :hi,hj € H},e) < KV - Ny, - log% by the VC inequality, and

(E¢T(UJZV) - En¢r(012v)) / E¢T(012\/) < K <\/ V- Ny, log ;/n + vV u/”)

u

with probability at least 1 — e™". Using a technique developed earlier in this course, and taking the union

bound over all m, J§, r, with probability at least 1 — Ke™",

u

As a result, with probability at least 1 — Ke™, we have

. V - min(ry, /62, Np) n

u
log —logn + )
n é n

Pyf(r)<0) < K- inf (mgsza)wn(a%m)

r,8,m

for all f € convH.
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Let Z(x1,...,z,) : X™ +— R. We would like to bound Z —EZ. We will be able to answer this question if for

/!

/
any Ti,...,Tp, L1y, Ly,

(25.1) |Z(z1,. . ymn) — Z(T1, o i1, T T 1y - - T | <

Decompose Z — EZ as follows

Z(x1,. . ywp) —EBp Z(2, . 2h) = (Z(x1, ..y 2p) — B Z(2, 20, ... 20))

rn

+ (B Z(2y, 22y .. 1) — B Z(2, 25, 23, ..., 1))

+ (Eo Z(2h, ... 2y, xy) — By Z(2,. .., 20))
— 2+ Zot ...+ 2,

where
Zi =B Z(xy, ... 2 wiy. . wpn) — B Z(2, . 2 T, ).
Assume
D) 1Zi] <
(2) Ex,Z; =0
(3) Z; = Zi(xiy. .. xp)

Lemma 25.1. For any A € R,

) 2 2
Ezie)\Z1 < e)\ ci/2.

Proof. Take any —1 < s < 1. With respect to \, function e** is convex and

s = AU TN,

Then 0 < HQ'S, 153 <1 and 1'2“” + 155 =1 and therefore

_ A - A A
6A8§1;36A+1286_)\:e +2€ +Se 26 Se’\2/2+s-sh(:£)

using Taylor expansion. Now use % = s, where, by assumption, —1 < % < 1. Then
) .2 22 Z;
eNi — eACl i < eN e /2 + —Zsh(/\cl)
C;
Since E,, Z; =0,

E, 0% < 62

We now prove McDiarmid’s inequality
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Theorem 25.1. If condition (25.1) is satisfied,

Proof. For any A > 0

Furthermore,

Hence,

P(Z-EZ>t)=P <eA<Z*EZ> > e)‘t> <

+2

P(Z-EZ>t)<e *Ti=il,

EeMZ-EZ)

eAt

ReMZ-EZ) _ gMZi+.+Zn)

— E]Ewle/\(zl-f-...-i-zn)
) [eA(ZQJF"'*Z")Ezle)‘Zl]
<E [BA(Z2+...+Z”)6)\2cf/2:|
2C2 n
— 1/2EE12 [e/\(Z2+ +Zz )]
2.2 n p
— N/ |:6A(Z3+ +z )EueAZz}

< e,\2(c§+c§)/2EeA(zs+...+Zn)

< M T2

P(Z —EZ > t) < e MTY EiLici/2

and we minimize over A > 0 to get the result of the theorem. O

Example 25.1. Let F be a class of functions: X + [a, b]. Define the empirical process

Then, for any i,

because

Z(x1,...,Ty) = sSup
fer

Ef — %Zf(fﬂz) .
i=1

_SUP‘Ef_l(f(ml)"‘ A fla) + +f($n))‘
< sup 21— Fle)| < 0 =
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Lecture 25 Martingale-difference inequalities. 18.465

and
el = |d] < [e—d|.

Thus, if a < f(z) < b for all f and z, then, setting ¢; = 2= for all i,

t2 nt?
P(Z-EZ >t) <exp = o | = e 20-a)7
QZZ 1 ( n2

By setting t = ,/%“(b —a), we get

IP’(ZIEZ> ﬁ(ba)) <e v

Let €1,...,&, be 1.i.d. such that P(e = £1) = % Define

Zng

Z((e1,21),. .., (en,2pn)) = sup
ferF|n

Then, for any i,

1Z((e1,21), s (€)oo (Enyn)) — Z((81,01)5 -+ o5 (Eiy i)y o+ vy (Eny Tn))]
< sup L (a]) - f<a:i>>\ <2M_,
isa n
where —M < f(z) < M for all f and «.

Hence,

t2
P(Z—-EZ >t) <exp <—> = e BMZ,
2

By setting t = %M, we get

Similarly,
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Lecture 26 Comparison inequality for Rademacher processes. 18.465

Define the following processes:

fer

2(x) = sup (Ef - iZf(m))

and

R(z) = sup ~ 3 esf (a).

feF i

Assume a < f(z) < b for all f,z. In the last lecture we proved Z is concentrated around its expectation:

Z<EZ+(bfa)w%.
n

1 n
EZ(x) = E;lelg (Ef - ; f(%))
Iem,, n| 1¢
] )

< E sup 1 Z(f(ﬂﬂi) — f(=))

feFrn i

with probability at least 1 — e~ ¢,

Furthermore,

=Esup (E
feF

= [E sup l Z&(f(fE;) — f(z))

fer i3
<Esupli5»f(x’-)+sup —liaf(x)
T feFrni Yger\ n&
< 2ER(x).

Hence, with probability at least 1 — e~ ¢,

/2t

It can be shown that R is also concentrated around its expectation: if —M < f(x) < M for all f,z, then

ER§R+MM§.
n

with probability at least 1 — e~ ¢,

Hence, with high probability,

Z(x) <2R(z) + 4M\/§.
n
Theorem 26.1. If —1 < f <1, then
2t »
P|Z(z) <2ER(z)+24/— | >1—e"".
n
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Lecture 26 Comparison inequality for Rademacher processes. 18.465

If0 < f <1, then

P (Z(;E) < 2ER(z) + 2t> >1—e "

n

Consider E. R(z) = E. sup ;¢ £ % i &if(x;). Since x; are fixed, f(z;) are just vectors. Let F CR™, f € F,
where f = (f1,..., fn).

Define contraction ¢; : R — R for i = 1,...,n such that ¢;(0) = 0 and |p;(s) — @i(t)] < |s —t|.

Let G : R — R be convex and non-decreasing.

The following theorem is called Comparison inequality for Rademacher process.

Theorem 26.2.

]EEG (sup ZE“&AL)) < EEG (sup Z&L‘fi> .
fer

fer

Proof. Tt is enough to show that for T C R?, t = (t1,t3) € T

E.G <sup t1 + 6(,0(t2)> <E.G (sup t + <€t2> ,
teT teT

i.e. enough to show that we can erase contraction for 1 coordinate while fixing all others.

Since P (e = +£1) = 1/2, we need to prove

1 1 1 1
§G <supt1 + go(tg)) + §G <supt1 — go(tg)) < iG (sup 1 —|—t2) + §G <supt1 — t2> .

teT teT teT teT

Assume sup,cr t1 + ¢(t2) is attained on (¢1,t2) and sup,crt1 — (t2) is attained on (s1,s2). Then
t1 4 @(t2) > 51+ p(s2)
and
51— p(s2) = t1 — o(ta).
Again, we want to show
Y =Gty + p(t2) + G(s1 — p(s2)) < G(t1 + t2) + Gty — t2).
Case 1: 15 <0,50 >0
Since ¢ is a contraction, p(t2) < |ta] < —ta, —p(s2) < so.

E = G(tl + (P(tz)) + G(51 — @(82)) S G(tl — t2) —+ G(51 + 52)

<G (suptl —tg) +G (supt1 —l—tg) .

teT teT
Case 2: 15 > 0,5, <0
Then ¢(ts) < to and —p(s2) < —so. Hence

by S G(tl +t2) + G(51 - 82) S G (supt1 + tg) + G <supt1 — t2> .
teT teT
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Lecture 26 Comparison inequality for Rademacher processes. 18.465

Case 3: t3 > 0,5, >0
Case 3a: s9 < tq

It is enough to prove
Gt + ¢(t2)) + G(s1 — p(s2)) < Gt +12) + G(s1 — 52).
Note that s; — ¢(s2) > 0 since s3 > 0 and ¢ — contraction. Since |p(s)| < |s|,
51— 82 < 81+ 0(s2) <t + o(ta),

where we use the fact that ¢1,ts attain maximum.

Furthermore,

G (51— s2) + (s2 = pls2)) ) = G (51 = 52) < G ({01 +eo(t2) + (52— (52)) ) = G (12 +0(t2))

u x
Indeed, ¥(u) = G(u+2z)— G(u) is non-decreasing for 2 > 0 since ¥’ (u) = G'(u+2x) — G’ (u) > 0 by convexity
of G.

Now,

(t1+ @(t2)) + (s2 — @(s2)) < t1 + b2
since

P(ta) — p(s2) < [ta — s2| = t2 — s2.
Hence,

G(51 — go(sz)) — G<31 — 52> = G((31 — S9) + (s2 — go(sz))> — G<31 — 52)
< G(tl - tg) - G(tl - «p(tz))

Case 3a: ty < s9

< G(81 + 82> + G(tl — tQ)
Again, it’s enough to show
Gt + p(t2)) — G(t1 — t2) < G(s1 + 52) — G(s1 — p(s2))
‘We have
t1—ta <t —p(t2) < 51— @(s2)

since $1, 2 achieves maximum and since ts + ¢(t2) > 0 (p is a contraction and to > 0).

Hence,

G (h = ta)+ (ta + (1)) ) = Gt~ t2) < G((s1 = pls2)) + (t2 + 9(t2))) = G (51— p(s2)

u x
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Lecture 26 Comparison inequality for Rademacher processes. 18.465
Since
p(ta) — p(s2) < [ta — s2| = 59 — ta,
we get
P(t2) = p(s2) < 52 — o
Therefore,
51— @(s2) + (t2 + p(t2) < 51+ 52
and so
G(t1+ ¢(t2)) — G(t1 — t2) < G(s1+ 52) — G(s1 — p(s2))
Case 4: 13 <0, <0
Proved in the same way as Case 3. O
We now apply the theorem with G(s) = (s)*.
Lemma 26.1.
Esup S i) < 2Bgup <
Proof. Note that
|z = (&) + (2)” = (2)" + (-2)".
We apply the Contraction Inequality for Rademacher processes with G(s) = (s)™.
+ n +
E?lelg Zﬁz% Esup (Z&Z% i ) (;(—sl)wz(m))
n +
< 2[[*3:161113 (Z gipi(ts )
n +
< 2E§1él$ <; Eiti> < 2E§1611T) ;61 i
O
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Lecture 27  Application of Martingale inequalities. Generalized Martingale inequalities. 18.465

Let F C {f € [0,1]} be a class of [0,1] valued functions, Z = sup; (Ef — 231", f(z;)), and R =
supy f % Yo € f(x;) for any given x;,--- ,x, where €1, €, are Rademarcher random variables. For
any f € F unknown and to be estimated, the empirical error Z can be probabilistically bounded by R in the
following way. Using the fact that Z < 2R and by Martingale inequality, P (Z <EZ+ \/> ) >1—e™ ", and

P (ER <R+2 27“) > 1—e~*. Taking union bound, P (Z <R+5 %) > 1—2e~*. Taking union bound

set

again over all (ng),.; and let e = 5,/ 2%, P(Vn € (k)1 VfEF, Z < 2R+6> >1—exp (— 5 "géz) >

1 — 4. Using big O notation, ny = O (E% log 5%)
For voting algorithms, the candidate function to be estimated is a symmetric convex combination of some
base functions F = convH, where H C {h € [0,1]}. The trained classifier is sign(f(z)) where f € F is our

estimation, and the training error is P(yf(x)). The training error can be bounded as the following,

P(yf(z) <0) < Eds(yf(x))
< Bt (@) + sup(Eou(uf (x)) = - 3" 65(0f(x0)
zZ
= Ends(yf(z)) +2- E?gg(i > et (yif(x:))) + %u

with probability 1—e—% i=1

R
2u

2 1 ¢
< z il Yy ) e
= En¢5(yf(x)) + 6E;’l€1£_)_ n Zl Ezyif(xl) + n
contraction =
2u
= En¢s(yf(x)) + 5E Sup Z € f(xi) n
< P, (yf(z) <0) + ]Esup Ze T Jr\/?fu
- " 0 henmn ihlz:) n-

To bound the second term (Esup, ¢y, = 0 €;h(x;)) above, we will use the following fact.
Fact 27.1. IfP(é > a+b-t) < exp(—t?), then B¢ < K - (a +b) for some constant K.

If H is a VC-subgraph class and V is its VC dimension, D(H,e,d,) < K (%)ZV by D. Haussler. By

Kolmogorov’s chaining method (Lecture 14),

w = (i/llong(H d )de+\/ﬁ)>
HOREEEE)

Il I
AA
wn wn
>a >a
kel "o‘

S|
Ingbl M
&S S‘
=
I/\ /\

v
[t
|
CB‘

S
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Lecture 27  Application of Martingale inequalities. Generalized Martingale inequalities. 18.465

Thus Esup L Y €e;h(z;) < K (\/ng \/g) < K\/g, and
P (P(yf(x) <0) <Py (urle) <o)+ K5V ﬁ) S

Recall our set up for Martingale inequalities. Let Z = Z(xy,---,x,) where x1, -+ ,x, are independent
random variables. We need to bound Z —EZ. Since Z is not a sum of independent random variables, certain
classical concentration inequalities is not applicable. But we can try to bound Z — EZ with certain form of

Martingale inequalities.

Z-EZ = Z—Fu(Zlwa, - 20)+Ea, (Z|m2, s 20) — Bgy ag (Z] w3, -, 20) +
di(z1, ,xp) da(z2, ,Tn)
o F By gy (Z)2n) — By 0, (2)
dn(wn)

with the assumptions that E,,d; = 0, and ||d;]|c < .
We will give a generalized martingale inequality below. > " ,d; = Z — EZ where d; = d;(z;, -+ , ),

max; ||di]|ee < C, 07 = 02(xig1, - ,2,) = var(d;), and Ed; = 0. Take € > 0,

]P’(zn:di — ezn:af >t)
i=1 i=1

e MEexp()  Ad; — e0?))

i=1

IN

n—1
= ¢ MEexp(Y_ A(di — co?) - Eexp(Ady) - exp(Ae?)

i=1

The term exp(Ady,) can be bounded in the following way.

Eexp(Ad,,)
A2, N
- E<1+>\dn+2!dn+3!dn+~-~>
Taylor expansion
< 1—|—)\—202 1+£+>‘202+
- 2" 3 3-4

IN

A\ o2 1
P\ a0 )

< de, we get A < —2— and B4, exp(Ad,) - exp(Aec?) < 1. Iterate over

Choose A such that 172:0°

)\2
2.(1-20)

1=mn,---,1, we get

]P’(f:di—ezn:oz-2>t> < exp(=A-t)
i=1 i=1
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. Take t = u/\, we get

n n "
P (Zd7 > GZO'? + %(1 + 260)) < exp(—u)
i=1 i=1

To minimize the sum € Y."" | 07 + 3 (1 + 2¢C), we set its derivative to 0, and get € = , /5<%—. Thus

23 02"
P Zdi23 /uZaf/?—I—C’u < e

. This inequality takes the form of the Bernstein’s inequality.
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Lecture 28 Generalization bounds for neural networks.

18.465

Let H be a class of "simple” functions (VC-subgraph, perceptrons). Define recursively

Hiv1 = { (ZQJ ): h; € H;, oszR}

where o is sigmoid function such that o(0) =0 and |o(s) —o(¢)| < L|s —¢|, -1 < o < 1.

Example:
et —e "
o(r) = ———.
( ) eT 4 e~ 7
Assume we have data (z1,y1), ..., (Zn,Yn), —1 < y; < 1. We can minimize

72 i — h(x;))

over Hp, where k is the number of layers.

Define L(y, h(z)) = (y — h(z))?, 0 < L(y, h(z)) < 4. We want to bound EL(y, h(z)).

From the previous lectures,

n

sup [EL(y, h(x)) — %Z‘C(yia h(z;))

i=1

< 2E sup

with probability at least 1 —e~!
Define

1 n
=3 il (i, )| + 4
=1

o9

Hi1(Ar,. .., Aipr) { (Zaj ); 3yl < A, hjeHi}‘

For now, assume bounds A; on sum of weights (although this is not true in practice, so we will take union

bound later).

Theorem 28.1.

=

E sup

<8 H(2L A;)-Esup

§ &L yzu xz

%Zsih(xi)

8

+%.

heHk(Ax,...,Ax) j=1 her [T 521
Proof. Since —2 < y — h(z) < 2, W : [~2,2] = R is a contraction because largest derivative of s? on
[—2,2] is 4. Hence,
1« 1«
E sup = iy — hiz;))?| = EE sup = iy — hix))?
hEHk(Ar,...,Ax) | TV ; 8hem(Al ..... Ag) | T ;

= 4EE, sup
hEH(A1,...,Ax)

< 8EE, sup
he€HK(AL,...,Ax)

< 8E ;;&yi

+ 8E sup
heHk(A1,...,Ak)

§5z xz
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Lecture 28 Generalization bounds for neural networks. 18.465

Furthermore,

IN

2
1 n
(o)
_(Lg, \f
(i)
Using the fact that o/L is a contraction,
Zez (Z Oéjhj(xi)>| LE, sup Z (Z ajhj(xi))‘
i=1
< 2LE, sup iz (Z ajhj(xi))'
1 n
=2LE, s%p - ; a; (; eih; (mﬂ)

1 n
E - ;&yz

E.
her(Aly AR)

_ <1 ZI%I (1
= 2LE sup Z (Zs 1))

where o, = Zailj%l Since ), [a;| < Ay for the layer k,
J

J
oy n
2LE. sup ) ¥ ZO&; <Z 8zhj(x7,)>
k J i=1

S 2LA;C]E€ sup ZO& <Z Eihj (x»)
i=1

heH R (AL,....Ap) | T

Zeh

The last equality holds because sup | > A;js;| = max; |s;|, i.e. max is attained at one of the vertices.

=2LAE, sup
h€Hk_1(A1,...,Ak_1)

By induction,

§Ez xz

k
H (2LA;) - E sup
=1 heH

8
\f’

E sup ei(yi — h(z;))
hEH(AL,..., Ay) Z

where H is the class of simple classifiers.
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Lecture 29 Generalization bounds for neural networks. 18.465

In Lecture 28 we proved

k
<38 H(QLA -E sup %
n

o heH

Eé‘z (7;)
n

E sup ei(yi — h(x;)
he€H(Ax,...,Ax) Z i Z

j=1

Hence,

n

EL(y, (@) 3 Ly, hw:))

i=1

v s

Z (Hr(Aq, ..., Ag)) = sup

heHy(Ax,...,Ax)

551 ()
n

heH

k
H 2LA;) -Esup

with probability at least 1 — e~
Assume H is a VC-subgraph class, —1 < h < 1.
We had the following result:

P. | Vh Ly h v E hQ(xi)l V2D(H, e, d,)d K Ll h2
- cH, - E gih(xz;) < \/ﬁ/o og (H,e,d,)de + pl E (x;)

i=1

where
Lo 1/2
d.(f,9) = (n (f(zi) 9(%))2>
1=1
Furthermore,
1 n 2(
1 n K i h2 () L n 1 n
P. | Vh =N eih(z)| < — log!/? D do)de + K| — | = h2(x
Vh e H, n;s (x),\/ﬁ/o D(H,e,ds)de + K, | — n; (x:)

>1—2e ¢,

Since —1 < h <1 forall h € H,

K 1/2 /
sup gih(x;) g—/log D(H,e,dy)de + K >1—2e7",
Fe (he?—t Z Vv Jo (

Since H is a VC-subgraph class with VC(H) =V,

P
log D(H,,d;) < KV log .
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Hence,

1 1
2
/10g1/2D(H,s,dx)d5§/ KVloggda
0 0

1
2
< K\/V/ ./1oggdg < KVV
0
Let £ > 0 be a random variable. Then

E¢ = / E>1t)d /OGP(izt)dtJr/:oP(&Zt)dt

§a+/ (gzt)dt:a—k/ooﬂ”({za—ku)du
a 0

71,’“,2
Let K\/% =a and K\/% = u. Then e~! = ¢~ k2. Hence, we have

Zez xz SK / 2e sz’u
n V n
oo
:K\/K—i—/ £(3_”“'2dx
n 0 \/ﬁ
<k Y+ E gV
n o \/n n

for V> 2. We made a change of variable so that 2% = ”K—“; Constants K change their values from line to

E. sup
heH

line.

‘We obtain,

b Vo8 t
Z (Hi(Ar, .. A)) < K | [@LA) | — + —=+84/ =
o aep <K [Tera) 7+ e

with probability at least 1 — e™t.

Assume that for any j, A; € (27%~1,27%]. This defines ¢;. Let

Moy, ) = | J{Hr(Ar . Ap) - Ay € (27571 27097}

Then the empirical process

k
Z(Hk(él,...,ﬁk))gKH (2L - 27%) \/> +8\/7

with probability at least 1 — e~

For a given sequence (¢1,...,0), redefine ¢t as ¢t + 22511 log |w;| where w; = £; if £; # 0 and w; = 1 if
0; =0.

With this ¢,

k k
Vo8 t+25%  log|w;]
Z (Hu(ly. ... 0 <K||2L~24‘~\/> o \/ j=
(Hi(l1,...,0)) < j:1( ) n+\/ﬁ+8 -
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Lecture 29 Generalization bounds for neural networks. 18.465

with probability at least

1_ e—t—2 Z§:1 log |wj;| _ - 1_ H
|wa|2

By union bound, the above holds for all ¢4,...,¢; € Z with probablhty at least

1 k
Y Tt (S )
0l EZ = 7w J‘ HLez Jwi]

2\ "
:1—(1—|—26) et>1-5Fet=1—¢"

for t = u + klogh.

u

Hence, with probability at least 1 —e™",

225 1 log |w;| + klog b+ u

k
V(.. k), Z(Hi(ly, ... ) < K [JRL-275) - \/ZJr % +8\/ = m

If Aj € (27%71,27%], then —¢; — 1 < logA; < ¢; and |¢;] < |log A;| + 1. Hence, |w;| < |log A4;| + 1.

u

Therefore, with probability at least 1 —e™",

k
V(AL ..., AL), Z (Hi(Aq, ..., Ap)) < KH(4L~Aj) . \/Z+ %

Jr8\/22:?_1log(|logAj| +1)+klogh+u
" :

Notice that log (|log A;| + 1) is large when A; is very large or very small. This is penalty and we want the

product term to be dominating. But loglog A; < 5 for most practical applications.
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Lecture 30 Generalization bounds for kernel methods. 18.465

Let X € R? be a compact subset. Assume z1,...,x, are i.i.d. and y;,...,y, = %1 for classification and
[—1, 1] for regression. Assume we have a kernel K (z,y) = > =, Xi¢i(2)¢i(y), \i > 0.

Consider a map
2 € X d@) = (VAo1(@), o, VM (@), ) = (VMdr(2) iz € H

where H is a Hilbert space.
Consider the scalar product in H: (u,v)y = > o) wiv; and [Jully = v/(u, v)x.

For z,y € &,
( H—ZAz(bz z (x y)

Function ¢ is called feature map.

Family of classifiers:

Fr = {(w, 2)n : ||y <1}
={(w,d(x))p : lwllx <1} 3 f: X =R

Algorithms:
(1) SVMs

flz) = Z (x4, Z%¢ x;),

\—,_/

w

Here, instead of taking any w, we only take w as a linear combination of images of data points. We
have a choice of Loss function L:

o L(y, f(x)) =I(yf(x) <0) — classification

o L(y, f(x)) = (y — f(z))? — regression

(2) Square-loss regularization

Assume an algorithm outputs a classifier from F (or Fy), f(x) = (w, $(z))x. Then, as in Lecture 20,

1 n
P (yf(x) <0) < Eps (yf(x EZ (yif () (E% yf(z —72% yif () )
1 n
<= I(yif(w:) < 6) + sup <E<pa yf(z)) — *Z% yif (@ >
ni4 fex
By McDiarmid’s inequality, with probability at least 1 — e~¢
sup | Eps (yf(2)) — — Z«pa yif(zi)) | <Esup | Eps (yf(z)) - L Zn:% (yif (@) | + A
fer fer n-- n
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Lecture 30 Generalization bounds for kernel methods. 18.465

Using the symmetrization technique,

1 n
E sup ( (s (yf(x *Z (s (yif(xi)) — 1)> < 2E sup
feF i

Since ¢ - (s — 1) is a contraction,

1 — 2 1 —
2Esup |= » ei(ws (yif(zi)) —1)| < <2E sup eiyif ()
sup n; (05 (wif (@) = 1)| < 5 sup ;
Eoup |15 cof(e)] = 2B sup |23 citw, o)
= —Esup |— eiflx;)| = sup |— ei(w, o(x;))n
d feF | d flwl<1 |55
n
= —E sup |(w, gip(x; = —IE sup gip(x;)
on  Jwi<1 ; flw<1 Z "y

(ZE@(%)’ZE@(%)) Z%E > cigi (@), dlwi))n
i=1 i=1 H ;

Putting everything together, with probability at least 1 — e~?,

Puf(e) <0) <+ > I(yif () < 0) + \/ﬁ\f

i=1
Before the contraction step, we could have used Martingale method again to have E. only. Then EK (1, z1)

in the above bound will become L 37" | K(2;, ;).
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Lecture 31 Optimistic VC inequality for random classes of sets. 18.465

As in the previous lecture, let F = {(w, ¢(x))s, ||[w] < 1}, where ¢(z) = (VXigi(2))i>1, X C R™
Define d(f, g) = ||f — glloc = sup,cx |f(z) — g(z)|.

The following theorem appears in Cucker & Smale:

Theorem 31.1. Vh > d,

=

I%Nm@w<(?)

where C), is a constant.

Note that for any z1,...,xn,

n

1/2
d.(f,9) = ( (f(x;) — g(wi))2> <d(f,9) = sup If(z) —g(z)| <e.

i=1
Hence,

N(F,e,d,) < N(F,e,d).
Assume the loss function £(y, f(z)) = (y — f(x))2. The loss class is defined as
L(y, F)={(y— f(x))* f e F}.
Suppose |y — f(z)| < M. Then
(y = f(2))? = (y — g(x))?| < 2M|f(x) = g(z)| <e.
So,

N(L(y, F), e, dy) < N (]—", ﬁd)

and

2d
2MCR\ ™ 2MCy \
log A0y, F)evde) < (1) T = (2)
o= 2¢ < 2 (see Homework 2, problem 4).
Now, we would like to use specific form of solution for SVM: f(z) = > 1" |, oK (z;, ), i.e. f belongs to a
random subclass. We now prove a VC inequality for random collection of sets.
Let’s consider C(z1,...,2,) = {C : C C X} - random collection of sets. Assume that C(z1,...,z,) satisfies:
(1) C(xh s amn) - C(J)l, s 7xna-rn+1)
(2) C(n(z1,...,24)) = C(zy,...,x,) for any permutation .

Let
Ne(zy, ... xn) =card {CN{xy,...,z,};C €C}

and

G(n) = EAC(Il,...,zn)<xl7 ey xn)
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Theorem 31.2.

P(C)— 13" I(x;€C nt?
P sup (€)= w2 Mo ) >t <4G(2n)e” T
CEC(1,mnrTn) P(C)
Consider event
P(CY—=L15" T ,eC
Ax: .T:(:El’”"xn): sup ( ) nZz:1 (.’17 ) _t
CGC(m1,~~~,In) P(O)

So, there exists C, € C(z1,...,2,) such that

For z},...,z}, an independent copy of z,

? n?

if P(C;) >+ (which we can assume without loss of generality).

Together,
1 n
P(C) <~ > I € Cy)
i=1
and
P(C,) — %Z?:l I(z; € Cy) -
P(Cr) -
imply
E i L@ €Ca) — ST I €Ca)
Vs T (1 € Co) + I(as € C))
Indeed,
1y
0<t§P(CI> nZIZII(xlecﬂv)
P(C,
L PG - Y (i € G

1 n_lf(;p‘ecz)—%zn I(leCx)

i=1

!/
JEC S I € G + L X0, I € Cn)
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Hence, multiplying by an indicator,
1 n
I A) SPp |P(Co) < =) I(z;€Cy) | - I(xz e A,
(z€dy) < <( )7n§ (; )) (z )

s L@ e Cp) = 2 300 I(wi € Cy)

<Py >
VEG YL I € 0 + LY, I € C))
<Pm’ TILZZ 1 (‘T GC) 211:1[(937601) _t
cecten) \/ I(@} € Co) + 3 320y I(wi € Cy))
Taking expectation with respect to x on both sides,
P(C)—+3" I(z;€C
P sup ( ) n ZL—l (I’ ) Z ¢
CeC(m1,...,n) P(C)
LS el e ) — LS I(x; € C,
< 4P sup Zl:l (ml el ) n Zz:l (x eC ) >t
CEC(@rrmmn) \/% (A Il €C)+ L3 I € C,))
< AP %2?1 I(aj e Cy) = 2 30 I(wi € Cy) ;
B Cec(zl’ ’x"’xl’ »7n) \/ iy I(x] € Co) + 5 30 I(wi € Ca)) -
= 4P 121 lgl( (x,'ecw)_[(miecx)) > ¢
ccctormn ) [} (LTI, (0, € Co) + 3 Ty o € C)
1 /
i e Cy)—I(x; € Cyp
— 4RP. sup w i Gl (2 € C) — (@ ) -

CcCternmtntet) \[L(E S 10 € Co) + 2 S, 1o € C)
By Hoeffding,

1 / _ .
AEP. Zz 1€ ( (.%‘ € Cw) I(-rz € Cﬂﬂ)) >t
CeClarmnitmi) VIR S I € C) + 10, 1w € C))
t2
< 4EAC(11,...,wn,m'1,4..77;,’n)(:rh cees Ty Illa s 7I/n) CeXp | —

2
23" (\/ (I(T €Cy)—I(z:€Ch)) >
2n

» L (I(zeCy)+I(x:€Cy))
S 4EAC(II7"'1In51/11~'~az;z)(x:l’ o Ty Ly ey T ) e 1

nt?

=4G(2n)e” "+
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Recall that the solution of SVM is f(z) = Y i | ;K (x4, %), where (z1,y1),..., (2n, yn) — data, with y; €
{=1,1}. The label is predicted by sign(f(z)) and P (yf(z) < 0) is misclassification error.

Let H =H((z1,¥1);-- -, (Tn,yn)) be random collection of functions, with card H < N'(n). Also, assume that
for any h € H, —h € 'H so that « can be positive.

Define

T T
:{Z)\lh“ T>1, \; >0, Z)\izl, hlEH}

i=1 i=1
For SVM, H = {+K(z;,z) :i=1,...,n} and card H < 2n.
Recall margin-sparsity bound (voting classifiers): algorithm outputs f = EiT:1 Aihi. Take random approxi-
mation g(z) = 3 Z] L Yj(), where Y7,...,Y} iid with P(Y; = hy) = N\, EY(2) = f(x).
Fix § > 0.

P(yf(z) <0) =P (yf(x) <0,yg(x P(yf(x) <0,yg(x) > 9)
< P(yg(x) <90) +Emy1P’y( ;i ) >0, yEyYi(z) <0
| :
<P(yg(x) <0) +EqyPy (k; yY;(x))) 20
< (by Hoeffding) P ) < 6) + By e k072

=P (yg(x) <0) + 6”“52/2

= EyP,, (yg(z) < 8) + e *0/2

Similarly to what we did before, on the data

l ZI vig (@i <5] S (i) < 20) + e 2

Can we bound

for any g7
Define
C={{yg(x) <3}, g € Fi, d € [-1,1]}
where
1k
Fr = EZh](x) hj €H
j=1

Note that H(x1,...,Tn) € H(x1, ..., Ty Tpy1) and H(m(x, ..., 70)) = H(z1,. .., Tn).
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In the last lecture, we proved

P(C -1 " I i C nt?
ny<sup (C) =Ly I(wi € >>t> < 4G4

cec P(C) N
where

G(n) =Elc(zy,.on) (@1, 20).

How many different g’s are there? At most card Fj, < N (n)*. For a fixed g,
card {{yg(z) <d}n{zy,...,z}, 6 €[-1,1]} < (n+1).

Indeed, we can order y1g(z1), ..., Yng(@n) — i, 9(ziy) < ... <y, g(x;,) and level § can be anywhere along
this chain.
Hence,

AC(zl,...,a:n)(xla e ,xn) S N(n)k(n + 1).

sup

P P(C)— >0 I(z; €C) T
Y\ cec P(C)

nt?

<AN(2n)*(2n +1)e” T

Setting the above bound to e~ and solving for ¢, we get

t= \/z(u + klog N (2n) + log(8n + 4))

So, with probability at least 1 — e™*, for all C'

(P(C)~ LY I(zi € 0))’
P(C)

< % (u+ klog N (2n) + log(8n +4)).

In particular,

(P (yg(x) <8) — L0 I(yig(x;) < 6))°
P (yg(z) < 9)

< % (u+ klog N (2n) + log(8n + 4)) .

Since @ is convex with respect to (z,y),

(EyPey (yg(z) <0) —Ey =300 I(yig(a;) < 5))2

Ey P, (yg(z) < 9)
P <) =1 I(yg(ai) <6))°
(32.1) <Ey (P(yg(x) <0) — 5 31 I(yig(wi) < 9))
P(yg(z) <6)

< % (u+ klog N (2n) + log(8n +4)).
Recall that
(32.2) P (yf(x) < 0) < EyP(yg(z) < 8) +e />
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and

1 — 2
. g(x;) <0) < = ) < 28) +e k2,
(32.3) Ey— ;Iy g(:) _ng )+

Choose k such that e *°/2 =1 je k= 21°g" Plug (32.2) and (32.3) into (32.1) (look at (a=b)?y Hence,
a

n 2
(P(yf(fv)g())—%_% zle(yif(xl)SQ(s)) <2 u+2lg
P(yf(z) <0)—2 n 62
with probability at least 1 —e™".

Recall that for SVM, N (n) = card {+K (z;,z)} < 2n.

log N (2n) 4 log(8n + 4))
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Lemma 33.1. For0<r <1,

inf ei(lﬂ\){zr*)‘ <2-—r.
0<A<1 =

Proof. Taking log, we need to show

. 1 9
(1 - — — — <0.
0<1r){f<1 < (1 =X)* = Alogr — log(2 r)) 0

Taking derivative with respect to A,

1
—5(1—)\)—logr:0
A=14+2logr<1

0<A=1+2logr
Hence,
e 1/2 <r.

Take
1+2logr e Y2<r

0 e 2>

Casea): r<e /2 \=0
i—log(Q—T)SO & r<2—ei. e /2<2 _e1,

Case a): r > e 12 X=1+2logr

(logr)? —logr — 2(log7)? —log(2 —7r) <0
Let
f(r) =log(2 —r) +logr + (logr)>.

Is f(r) > 07 Enough to prove f'(r) <0. Is

1 1 1
f'(r)=—=——+=+2logr--<0.
2—7r 7 T
rf'(r)z—ir +1+2logr <0.
2—r
Enough to show (rf/(r))" > 0:
2 2—r+r 2 2
’ r_c_ 2T _ s 4
(rf'(r))" = r (2-r)2 r(2—7r)2
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Let X be a set (space of examples) and P a probability measure on X. Let x1,...,z, beiid., (z1,...,z,) €

X", P"=Px...xP.
Consider a subset A € X". How can we define a distance from z € X" to A7 Example: hamming distance
between two points d(z,y) = > I(x; # y1).
We now define convex hull distance.
Definition 33.1. Define V(A,x), U(A,x), and d(A,z) as follows:
(1) V(4,z) ={(s1,-.-,8n) : 5; €{0,1},Fy € A s.t. if s; =0 then x; = y;}

x=( x, T2, ..., Tp)

= #£ ... =
y=0 Yy, ¥2, -5 Yn)
s=( 0, 1, ..., 0

Note that it can happen that x; = y; but s; # 0.
(2) U(A,z) = conv V(A,z) = {E Nul, v = (ul,...,ul) e V(A ), \; >0, X\ =1}

r U 'n

(3) d(Aa .13) = minuEU(A,a:) |u|2 = minueU(A,z) Zu?

Theorem 33.1.

1
Ee%d(A,z) _ /G%d(A’x)dPn(m) < Pn(A)
and
1
P(d(A,z) > t) < —t/4,

Proof. Proof is by induction on n.
n=1:

0, z€A

d(A,z) =
1, z¢A
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Hence,
1
/eid(A,z)dpn(x) = P(A)-1+ (1 - P(A))ed < =0
because
e < 1+ P(A).
- P4

n—-n+1:
Let = (z1,...,Tn, Tnt1) = (2, Zn41). Define

A(In-‘rl) = {(y17 s 7y7l) : (y17 s ayﬂ7xn+1) € A}
and

B = {(yla"'vyn) : 3yn+17 (yla"'ay’ruyn-‘rl) S A}

X n+l .

4

AK,.)

One can verify that

and

seU(A(zpy1,2)) = (5,0) €e U(A, (2, 2p41))

teU(B,z)= (t,1) e U(A, (z,Tn+1))-

Take 0 < A < 1. Then

As,0)+ (1= N)(t,1) e U(A, (z,2n41))
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since U (A, (z,Zn+1)) is convex. Hence,
d(A, (2,2041)) = d(A,z) < [X(5,0) + (1 = A)(t, 1)

= i()\si + (1= Nt)? + (1= N)?
=1

SAY SFHA=-ND (1=

So,
d(A,x) < M(A(Zpi1),2) + (1 —=Nd(B,2) + (1 -2

Now we can use induction:

/ et dAa) gprtl (z) = / / et Ao ) 4P (2)dP (2 11).
X n

Then inner integral is
/ e%d(A(Z?wnJrl))dPn(Z) < / 6%(/\d(A(z,L+1),z)+(17)\)d(B,z)+(17)\)2)dPn(Z)

_ i /e(%d(A(zn+1),z)))ﬁ»(%d(B,z))(lfA)dPn(Z)
We now use Holder’s inequality:

1/p 1/q 1 1
/fgdP < (/ fde> </ quP> where —+-=1
p g

e (1-2)? / e(%d(A(ac,,Hrl),z)))\+(%d(B,z))(17/\)dPn(Z)

1-X

A
< e%(l—)\)2 (/ eid(A(mn_H),z)dPn(Z)) (e%d(B,z)dPn(Z))

< (o oot 10 (Pn(A;W»)A (Fm) -

R YRSV <Pn(14(95n+1))>_A
P(B) P(B)

Optimizing over X € [0, 1], we use the Lemma proved in the beginning of the lecture with

_ Pr(A(@ni))
0<r= P"(B;— <L

Thus,

%e%(1—x)2 (P"(A(ﬂﬁwrl)))_A < PnlB) (2 _ P"(A(W) ,

P Pr(B) ( Pr(B)
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Now, integrate over the last coordinate. When averaging over x,,1, we get measure of A.

/ Ld(A, 'L)dPn+1 / / d(A’(Z’w"+1))dP7L(Z)dP(iL’nJrl)

S (o e

1 (o

1 P"'H(A) 5 Pn'H(A)

PrHI(A) P(B) ( ~ P(B) )
1

= P

because (2 —z) < 1for 0 <z < 1. O
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Let X = {0,1}, (z1,...,2,) € {0,1}", P(x; =1) = p, and P(z; =0) = 1 — p. Suppose A C {0,1}". What

is d(A, x) in this case?

For a given z, take all y € A and compute s:

x=( =, 2, ..., Tp)

= #* =
y:( Yi, Y2, ..., yn)
SZ( 0, 1, ... 0)

Build conv V(A,z) = U(A,z). Finally, d(A4,z) = min{|z — u|?*;u € conv A}

Theorem 34.1. Consider a convex and Lipschitz f : R™ — R, |f(z) — f(y)| < L|z —y|, Vz,y € R™. Then

P (f(xl, ) > M+L\/£) < 9et/4
and
P (f(:cl, ) <M — L\/%) < 9¢t/4

where M is median of f: P(f > M) >1/2 and P(f < M) > 1/2.
Proof. Fix a € R and consider A = {(z1,...,z,) € {0,1}", f(x1,...,2,) < a}. We proved that

1
P A > < - etA_ _ —  t/4
M ~P(A € JP’(fSa)e

event E
d(A,z) = min{|z — u|*;u € conv A} = |z — ug|?

for some ug € conv A. Note that |f(x) — f(ug)| < L|z — o]

Now, assume that z is such that d(A,z) < t, i.e. complement of event E. Then |z — ug| = \/d(A, z) < V1.

Hence,

() = f(uo)| < L|z —uo| < LV
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So, f(x) < f(uo) + Lv/t. What is f(ug)? We know that ug € conv A4, so ug = > \a;, a; € A, and
Ai >0, DA = 1. Since f is convex,

=f (Z /\iai> < Z)\if(ai) < Z)\ia =a.

This implies f(z) < a + L+v/t. We proved

Hence,

Therefore,

{d(A,z) <t} C {f(x) < a+ LV}

P(f(z) > M+ LVE) <2771,

To prove the second inequality, take a = M — L\/t. Then

which means

P(f=M)<

1

TP(f<M-LVY)

—t/4

)

P(f(e) < M- LVE) < 2e7/1,

Example 34.1. Let H C R” be a bounded set. Let

Let’s check:

(1) convexity:

f(.’L'l,...

O+ (1= Ay)

<

7

sup
heH

sup
heH

A sup
heH

Af ()

= sup
heH

Zh Az +
/\Zh T; +

=1

thl

i=1

+(1=A)f(y)

thl .

= Ayi)

=) Z hiyi

) sup
heH

Z hiyi
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(2) Lipschitz:

n n
|f(z) = f(y)] = |sup Zhixi — sup Zhvyz
her | = heH |
n
< sup hi(z; — y;)
her | =

< (by Cauchy-Schwartz) sup \/Z h? \/Z(wl —y;)?

heH

=lz—y sup v/ Y h?
| | heM Z ’

—————
L=Lipschitz constant

We proved the following

Theorem 34.2. If M is the median of f(x1,...,x,), and x1,...,2, are i.i.d with P(z; =1) = p and

P(z; =0) =1—p, then

heH

P (sup Zhixi > M + sup \/th . \/7E> < 2¢t/4
heH |

and

P | sup hiz;| < M — sup hf\/i §2€7t/4
<heH P - ADS
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Assume we have space X' and a class of functions F = {f : X — R}, not necessarily bounded. Define
Z(z) =Z(z1,...,2n supi (z4)
(or Sup fer |2 f(xs)])-

Example 35.1. f — L(f —Ef). Z(z) = SUp e x LS f(x)—Ef.

Consider ¢/ = («f,...,2},), an independent copy of x. Let
V(z) = Ey sup zh))?
E. MZ

be "random uniform variance” (unofficial name)

Theorem 35.1.

IP(Z()>EZ +2\/7)<4e e~t/4
IP(Z()<EZ 72\/7)<4ee

Recall the Symmetrization lemma:
Lemma 35.1. 517£Q,§3($,$/) A XX — R, 5; = Eyfz If

P(& > &+ \Et) <D,

then
P (¢l =&+ VEL) <Te-e ™
We have
EZ(x) =E.Z = [E,/ sup flx
(z) (2) fef;
and
V(z) = Ey sup Z zh))2.

feri 4

Use the Symmetrization Lemma with & = Z(x), §& = Z(2'), and

= su Y xi) — f(zh)2.
gs—feg;f( i) = f(@h)

It is enough to prove that

P|Z(x)>Z(@@')+2 tsupz ()2 | <4de /4,
fer i3
i.e.
sup flz) > sup f(z;)+2,|tsup )2 | < 4e~ /4,
Plmy > AR
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If we switch z; < 2}, nothing changes, so we can switch randomly. Implement the permutation z; < x:
I'= f(7) +ei(f () — f(af))
IT = f(2;) — e f(2:) — f(2F))
where ¢; = 0, 1. Hence,
(1) Ife; = 1, then I = f(x;) and IT = f(z)).
(2) Ife; =0, then I = f(z}) and IT = f(x;).
Take €1 ...e, 1.id. withP(g; =0) =P (¢, =1) =1/2.

=E; P [sup...>sup...+ 2,/ for fixed z,2’
fer fer

Define

and

®1(g), P2 (e) are convex and Lipschitz with L = supycz /> i, (f(#:) — f(#}))2. Moreover, Median(®;) =
Median(®y) and ®q(e1,...,6,) = Po(1 —€1,...,1 —€,). Hence,

P. (1 < M(®1) + LVE) 21— 271/

and
P. (@2 < M(®,) — L\/i) >1 - 2e7t/4,
With probability at least 1 — 4e~*/# both above inequalities hold:
By < M(Dy) + LVt = M(®3) + LVt < By + 2LV/E.
Thus,
P. (@1 > @5 +2LVE) <4e7!

and

]P)m,m’,s (q)l > (1)2 + QL\/%) S 467t/4~
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The "random uniform variance” is

feri 3
For example, if F = {f}, then
V(@) = B S (fw) — f(a))?

n

> (f@)? —2f(z)Ef +Ef?)

i=1

= f2 - 2fEf +Ef?

S|

= =N +()?-2fEf +(Ef)’+Ef* - (Ef)”
N——r
sample variance (f-Ef)? variance
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Let x € X™. Suppose A1, Ay C X™. We want to define d(A;, Az, ).
Definition 36.1.
d(Ay, Ay, z) = inf{card {i <n:x; #vy! and z; # 32}, y" € A1, 9> € A}

Theorem 36.1.

1
]EQd(Al,AQ,I) — /2d(A1,A2,CE)dPn <
(z) < Pr(A;)P7(As)

and
1

< PP

P (d(Ala AQ; Z‘) Z t)
We first prove the following lemma:

Lemma 36.1. Let 0 < g1,92 <1, g; : X — [0,1]. Then

/min <2, 91}@’ gzt@) dP(zx) - /gl(x)dP(x) . /gg(x)dP(x) <1

Proof. Notice that logax < x — 1.
) 1 1
/mm (Z,) dP + /gldP+/ggdP <3
g1 92
) 11
/ |:II11H <2, —, > + g1 +gz] dP <3
g1 92

1 1
min (2>7> + 91+ 92 <3.
gr 92

So enough to show
which is the same as

It’s enough to show

If min is equal to 2, then g1, g2 < % and the sum is less than 3.

If min is equal to g%’ then g; > % and g1 > g2, so min+g;1 + go < g% + 297 < 3. O
We now prove the Theorem:

Proof. Proof by induction on n.

n=1:

d(A1,As,z) =0if z € A; U Ay and d(A;, As,x) = 1 otherwise

1 1
2UAL A2 P (1) = / in (2 dP
/ (l’) . ’ I(.T € Al), I(SL’ € AQ) (I)

1

= T1(z € 4)dP(x) - [ 1z € A3)dP(x)
1
~ P(A)P(4y)
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n—-n+1:
Let . € X"t Ay, Ay C X"FL Denote © = (21, .., Tn, Tny1) = (2, Tnt1)-
Define
A1 (xpg1) ={z€ X" : (z,2p41) € A1}
Az(tns1) = {z € X" : (2, n41) € A2}
and
By = U A(Tny1), B2 = U A (Tny1)
Tt Tt
Then
d(Aq, Ag,x) = d(Ay, Ag, (2,2541)) < 14 d(By, Ba, 2),
d(Ay, Az, (2, 2n41)) < d(A1(2n41), Ba, 2),
and
d(Aq, As, (z,2p41)) < d(B1, As(Tnt1), 2).
Now,

/2d(A1’A2’C")dP"+1(Z,xn+1) _ //2d(A1,Aza(Z,l‘nJrl))dPn(Z) dP(2p 1)

I(@n+1)

The inner integral ca ne bounded by induction as follows
I(2p41) < /21+d(Bl’Bz,Z)dpn(Z)
<2. L

- P(B1)P"(B2)

Moreover, by induction,

1
I(x, S/Qd(A1($n+1)7Bz,z)dPn 2) <
( +1) ( ) P"(Al(xn+1))Pn(B2)
and
1
I(z, §/2d(BlvA2($n+1)7Z)dPn 2) <
( +1) () Pn(Bl)Pn(A2(xn+1))
Hence,

. 2 1 1
I(@ns1) < min (P”(Bl)P"(Bz)’ P (1)) P (Bs) P”(Bl)P”(A2($n+1))>
B 1 ., 1 1
TP B)P (B | T P (A () [PP(B1) P(As(wnar) /PP (Bo)

1/91(zn+41) 1/g2(xn+1)
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Lecture 36 Talagrand’s two-point inequality.

18.465

So,

1 1 1
Iz )dP(zi) < ———— [ min (2, —, — ) dP
JREEDUENS P"(Bl)P"(Bz)/ ( o 92)
< 1 1
= P*(By)P"(Bs) [q1dP- [ godP
1 1

Pr(B;)P"(B;) Pnt1(Ay)/P(By) - Prt1(A,)/Pn(By)
1
Pn+1 (Al)Pn+1(A2)

because [ P"(A1(zy4+1))dP(znt1) = PP Ay).
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Lecture 37 Talagrand’s concentration inequality for empirical processes. 18.465

Lemma 37.1. Let .
V() =By sup > (f(w:) — f(a}))?

feri 4
and a < f <b for all f € F. Then

P(V<4EV + (b—a)’t) >1—4-27".

Proof. Consider M-median of V,ie. P(V>M)>1/2,P(V<M)>1/2. Let A={ye X", V(y) <M} C
X™. Hence, A consists of points with typical behavior. We will use control by 2 points to show that any
other point is close to these two points.

By control by 2 points,
1

P(A)P(A)
Take any x € X™. With probability at least 1 —4-27% d(A, A,x2) < t. Hence, we can find y! € 4,y> € A
such that card {i < n,z; # yl,x; #y?} < t.

Let

P(d(A A x) >t) < 27t <4270

11:{Z§n~xzzyzl}7 I2:{Z§n:x1#y},xz:yl2}7
and
Li={i<n:az; £y} v #y’}

Then we can decompose V' as follows

V(z) =Ep sup ¥ (f(x:) — f(a)))?

fer 4

=Borsup [ Y (f(:) = F@) + D (fla) = f(27)” + D (f(@i) — f(x))?

fer Lien, i€l i€ls
N INY ) N 2 ) N 2
< Ey Jélelgiezjjl(f(xz) f@}))? +E, ;lelgi;z(f(xz) F@))? +E, Jscggi;g(f(xz) F(x}))

<Eysup 3 () = F@D) + B sup 3 (F7) = S + (b= o)t
€ =1

S a—
=V(y") + V() + (b -a)’t
<M+ M+ (b—a)’t
because 3!, y? € A. Hence,
P(V(z) <2M + (b—a)’t) > 1—4-27"

Finally, M < 2EV because

EV 1
> < = = i > >
P(V 2 2EV) < o = 5 while PV >M)>
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Lecture 37 Talagrand’s concentration inequality for empirical processes. 18.465

Now, let Z(x) = sup;cxz[>1" f(2i)]. Then

Z(x) < EZ +2\/V(z)t < EZ + 2y/(4EV + (b — a)2t)t.
with prob. >1—(4e)e—t/4 with prob. >1-4.2-¢

Using inequality ve+d < /¢ +Vd,
Z(x) <EZ +4VEVt+2(b—a)t
with high probability.

We proved Talagrand’s concentration inequality for empirical processes:

Theorem 37.1. Assumea < f <bforall f € F. Let Z = suppcz > 7y f(i)] and V = sup ez > (f(@)—
f(x')%. Then

(3

P (Z <EZ + 4VEVE+2(b - a)t) >1— (de)et/* — 4.2,
This is an analog of Bernstein’s inequality:
4vEVt — Gaussian behavior

2(b — a)t — Poisson behavior

Now, consider the following lower bound on V.

V =Esup Z(f(:b”z) — f(z))?

fer ;.4

= sup 2nVar(f) = 2n sup Var(f) = 2no?
fexr fer

As for the upper bound,

Esup Y (f(zi) — f(}))* = Esup (Z(f(x» — f(a}))* — 2nVar(f) + 2nVar(f)>

fer ;4 feFr

<Esup Y [(f(z:) — f(2}))* = E(f(z:) — f(x}))*] + 2n sup Var(f)

feF

(by symmetrization)

2R n ’ ) — F()? + 2ne?
< ?22;5(]0(“ f(x3))” + 2no

feris

<2E (sup > ailf(w) - f(x2>)2> + 2n0?
N
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Note that the square function [—(b—a), (b—a)] — R is a contraction. Its largest derivative on [—(b—a), (b—a)]

is at most 2(b — a). Note that |f(z;) — f(«})| < b — a. Hence,

fer iz fer iz

2E (sup Zst(f(xl) - f(a:;))Q) +2n0% <2-2(b—a)E (sup Zsl(f(xl) - f(mé))) + 2no?
+ +

Ab — a)Es ni ) — f(2)] + 2no?
<4(b—a) ;gggelf(w) f@i)| + 2no

< 4(b—a) - 2E sup Z€Z|f(x2)| + 2no?
fer i

=8(b—a)EZ + 2no?
We have proved the following
Lemma 37.2.
EV < 8(b— a)EZ + 2no?,
where 0% = sup ;¢ Var(f).

Corollary 37.1. Assume a < f <b for all f € F. Let Z = supscx > iy f(x:)| and 0® = sup;c » Var(f).
Then

P (Z <EZ +4y/(8(b — )EZ + 2no?)t + 2(b — a)t) >1— (de)et/* — 4.2,

Using other approaches, one can get better constants:

P (Z <EZ+/(4(b—a)EZ + 2no?)t + (b — a);) >1—e '
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Lecture 38 Applications of Talagrand’s concentration inequality. 18.465

If we substitute f —Ef instead of f, the result of Lecture 37 becomes:

n

> (f(zi) —Ef)

i=1

sup
fer

< E sup
feFr

> (fla) - Ef)‘

i=1

n

> (f(xi) —Ef)

i=1

+ 4(b — a)E sup
fer

+2n02> t+(b— a)%

with probability at least > 1 —e~*. Here, a < f < b for all f € F and 02 = sup s 7 Var(f).

Now divide by n to get

LS fla) - Bf

n-
i=1

sup
fer

t t
<Esup]...|+ 4b—a)Esup|...|+ 202 | =+ (b—a)—
fer feF n 3

n

Compare this result to the Martingale-difference method (McDiarmid):

n

LS flay) —Ef

2(b—a)?t
<Esup]|...|+ 20 —aft
i3

feF n

sup
fer

The term 2(b — a)? is worse than 4(b — a)Esup ez |...| + 202
An algorithm outputs fy € F, fo depends on data z1,...,x,. What is Efy? Assume 0 < f < 1 (loss

function). Then

< use Talagrand’s inequality .

Ef—%Zf(ifi)

i=1

Efo— -3 fola)

i=1

What if we knew that Efy < ¢ and the family F. = {f € F,Ef < e} is much smaller than F. Then looking

< sup
feF

at sup e |Ef— 137" | f(x)] is too conservative.

Pin down location of fy. Pretend we know Efy < ¢, fo € F.. Then with probability at least 1 —e™¢,

Efo— % > folw)
=1

Ef == ()
=1

< sup
fefE

< E sup
eF.

Ef — %Zf(%‘)
i=1

t t
+ (4]E sup |...|+20§> -+ —
feF. n  3n

where 02 = sup ;. Var(f). Note that for f € F.
Var(f) =Ef* — (Ef)* <Ef* <Ef <e
since 0 < f < 1.

Denote ¢(e) = Esupser |[Ef — =327 f(x;)|. Then

< (o) + 1/ (ple) +20) -~ + o

Efo - % > folw)
=1

with probability at least 1 — e™*.
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Lecture 38 Applications of Talagrand’s concentration inequality. 18.465

Take e = 27% k= 0,1,2,.... Change t — t + 2log(k + 2). Then, for a fixed k, with probability at least

1— C_tﬁ,
1 & t+2log(k+2) t+2log(k+2)
Efo — — Dl < 4 2
fo—~ ;fo(m) < o(e) + \/( p(e) + 2) > A—

For all k£ > 0, the statement holds with probability at least

o0

1 —t —t
_ >1-
; k+22° = ¢
=

2 _q
6
For fo, find k such that 27! < Ef; < 27% (hence, 27% < 2Ef;). Use the statement for &, = 27,

k <log, ]Eifo.

t+ 2log(k + 2) N t+2log(k +2)
n 3n

Efo — %Z fo(zi)| < plex) + \/(490(%) + 2¢x)
i=1

t + 2log(log, ﬁ +2)  t+2log(log, Eifo +2)
+

- 3 = ®(Efo)

< 9(2Efo) + \/(4S0(2Ef0) +4E fo)
Hence, Efy < 23" | fo(x;) + ®(Efo). Denote = Efy. Then z < f + ®(x).

X

f+ o)

XD

Theorem 38.1. Let0 < f <1 forall f € F. Define F. = {f € F,Ef <e} and p(c) = Esupcr. |IEf— DD f(:cl)|

Then, with probability at least 1 — e™t, for any fo € F, Efy < x*, where x* is the largest solution of
1 n
i )+ ®(z*).
v = Do)+ )
Main work is to find ¢(g). Consider the following example.

Example 38.1. If
sup log D(F,u,d,) < D(F,u),

L1y Tm

then

E sup

< k/ﬁlogl/zl?(}", £)de.
feFe \/ﬁ 0

Ef ~ -3 fw)
=1
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Lecture 39 Applications of Talagrand’s convex-hull distance inequality. Bin packing. 18.465
Let x € X", x = (21,...,2n). Suppose A C X". Define
V(A,,I) = {(I(Il #yl),,l(xn #yn)) : y: (ylv"'7y7l) € A}7
U(A,z) =conv V(A4,x)
and
d(A,r) = min{|s|* = Zsf, seU(Ax)}
i=1
In the previous lectures, we proved
Theorem 39.1.
1
P(d(A,z) >t) < —t/4
(@A) 2 1) < e
Today, we prove
Theorem 39.2. The following are equivalent:
(1) d(A,z) <t
(2) Vo= (a1,...,an),y € A, st. i al(mi #yi) < /Dopoqgai-t
Proof. (1)=(2):
Choose any o = (aq,...,ap).
(39.1) 222; al(x; £y;) = Segl(lflllz) ozlsZ < Z ;s?
(39.2) < Zoz Z (89)2 < Za? -t
i=1 i=1
where in the last inequality we used assumption (1). In the above, min is achieved at s°.
(2)=(1):
Let a = (sY,...,s9). There exists y € A such that
Z%‘I(l’i #£1;) < Za? -t
i=1 i=1
Note that " a;s? is constant on L because s° is perpendicular to the face.
Zazso < Za, T £yi) < 1/2(1%
Hence, >°(s9)2 < />°(s9)2t and /> (s9)2 < v/t. Therefore, d(A,z) < > (s?)? < t. O

We now turn to an application of the above results: Bin Packing.
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Lecture 39 Applications of Talagrand’s convex-hull distance inequality. Bin packing. 18.465

conv 'V

Example 39.1. Assume we have x1,...,2,, 0 < z; < 1, and let B(z1,...,z,) be the smallest number of
bins of size 1 needed to pack all (z1,...,2,). Let S1,...,S5 C {1,...,n} such that all z; with i € Sy, are
packed into one bin, J Sk = {1,...,n}, > ;cq, i < 1.

Lemma 39.1. B(zy,...,z,) <2 x;+ 1.

Proof. For all but one k, % < Dic s, Ti- Otherwise we can combine two bins into one. Hence, B — 1 <

QZkZieSk T =2 O

Theorem 39.3.

P(B(xl,...,mn) <M+2\/Zx%'t+1> > 1 — 2e /4,

Proof. Let A={y:B(y1,...,yn) < M}, where P(B > M) >1/2, P(B < M) > 1/2. We proved that

1

—t/4

P(d(A,x) > 1) <

Take x such that d(A,z) < t. Take a = (x1,...,2,). Since d(A,z) < t, there exists y € A such that
Sad(zi # yi) < /D2t -t

To pack the set {i: x; = y;} we need < B(yi,...,yn) < M bins.

To pack {i:x; # y;}:

B(xll(xl 7é yl)v'-wxnl(l‘n 7é yn)) < ZZZ‘Z‘I(SL‘Z* 7é yi) +1

<2/ a?-t+1

by Lemma.

Hence,

B(z1,...,x,) §M+2\/Zx?~t+1

with probability at least 1 — 2e~/4.
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Lecture 39 Applications of Talagrand’s convex-hull distance inequality. Bin packing. 18.465

By Bernstein’s inequality we get

2
P 2 < nFa? 4 /nEax? -t +Zt) >1—e b
(Zwl_n r] + \/nlir] +3 > e
B(x1,...,2,) S M+ 2y/nEax? - t

Hence,
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Lecture 40 Entropy tensorization inequality. Tensorization of Laplace transform. 18.465

In this lecture, we expose the technique of deriving concentration inequalities with the entropy tensorization
inequality. The entropy tensorization inequality enables us to bound the entropy of a function of n variables
by the sum of the n entropies of this function in terms of the individual variables. The second step of this
technique uses the variational formulation of the n entropies to form a differential inequality that gives an
upper bound of the log-Laplace transform of the function. We can subsequently use Markov inequality to
get a deviation inequality involving this function.

Let (X, F,P) be a measurable space, and u : X — RT a measurable function. The entropy of u with regard
to P is defined as Entp(u f ulogudP — [ - (log ([ udP))dP. If Q is another probability measure and

u = then Entp(u) = f (log ) dQ is the KL-divergence between two probability measures Q and P.

d]P”

The following lemma gives variational formulations for the entropy.

Lemma 40.1.

Entp(u) = inf{/(u~(10gu—logx)—(u—x))dP:x€R+}

sup{/(u~g) dP /exp(g)dP < 1}.

Proof. For the first formulation, we define = pointsizely by 2 [ (u- (logu —logz) — (u — x)) dP = 0, and
get = [udP > 0.

For the second formulation, the Laplacian corresponding to sup { f u-g)dP: f exp(g)dP < 1} is L(g,\) =

[ (ug)dP — X (f exp(g)dP — 1) It is linear in A and concave in g, thus sup, infy>0 £ = inf)> sup, £. Define
g pointwisely by 2 79 L =u— Aexp(g) =0. Thus g =log {, and sup, £ = Ik (u log %) dP — [udP + X. We set
[ud® 1 =0, and get A = [udP. As a result, infy sup, £ = Entp(u). O

msupgﬁz—

Entropy Entp(u) is a convex function of u for any probability measure P, since

Ent]p(z Aiu;) = sup {/ (Z il -g) dP : /exp(g)d]}” < 1}

Z)\i sup {/ (u; - g;)dP: /exp(gi)d]P’ < 1}
> AiEntp(u;).

Lemma 40.2. [Tensorization of entropy] X = (X1, -+, Xpn), P* = Py x -+ X Py, u = u(xy, - ,x,),
Entpn (u) < [ (X1, Entp, (u)) dP™.

IN

Proof. Proof by induction. When n = 1, the above inequality is trivially true. Suppose

/ wlogudP® < / udP" log / udP" + / ZEnt]p )dP™.
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Lecture 40 Entropy tensorization inequality. Tensorization of Laplace transform. 18.465

Integrate with regard to P, 1,

/u log udP™ ™1

/—/Uh /—/UA
< / / udP™ log / udP™ | P,y + / ZEnt]p )dP™ 1

v v v

—— —— —— n
= //udIP’” dPp 41 - log//udP" dP,y1 | +Entp, /udIP’” —l—/Z;Ent]pi (u)dP™
1=

definition of entropy

= udP™ .
-

Foubini’s theorem

< / udP™ .
~~

convexity of entropy

udP”+1>+ Ent[p o (w)dP / ZEntp )dP

n+1
Z Entp, (u)dP™+

IN
—
S
S
ac|
3
*

By definition of entropy, Entpn+1(u) < [ Z"H Entp, (u)dP" 1. O

The tensorization of entropy lemma can be trivially applied to get the following tensorization of Laplace

transform.
Theorem 40.3. [Tensorization of Laplace transform] Let x1,--- ,x, be independent random variables and
xh, -+ @l their indepent copies, Z = Z(x1,+ ,xpn), Z° = Z(x1,+ ,Ti_1, T, Tit1, 0, Tn), P(T) = ¥ —

x—1, and ¥(x) = ¢(x) + e*Pp(—x) = x - (* — 1), and I be the indicator function. Then

E (e} - \Z) — Ee* - logEeM

N
=
B

..-,mmx’v...’m%ekz Z¢ (_)\(Z _ Zz))

E (e} - A\Z) — Ee* - log Ee*”

A
&
B

e, € W (=NZ = ZY)) - 1(Z = 7).
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Proof. Let u = exp(AZ) where A € R, and apply the tensorization of entropy lemma,
E (e’ - \Z) — Ee* -logEet
Entpn logu
n
< EZ Entp e
i=1
= EZinf {/ (M (NZ = Az) — (M = ) dP; 1w € R+}
variational formulatidi?
< EZE'E o ( AZ )\Z )\ZZ) ( )\Zie)\Zl))
= EZEzwée)\Z (e_)\(Z_Zi) o (_)‘ ’ (Z o Zi)) - 1)
i=1
= Eupognal, T;LGAZZM N (Z-2Y)
i=1
Moreover,
)\Z Z ¢ Z Zl))
= IEZe)‘Zz,b (z2-2z)) [1(2>2)+1(2">2)
11
= IEZ MG (N (20— 2)) - 1 (2> Z)+e¢ (=N (Z2—2ZY)) - 1(Z > Z7)
switch Z and Z* in II I
= EY. M 1(2>2) [ MDD g (=X (20~ 2)) +¢ (-A- (2 - ZY))
=t i 1
n
= EY M- 1(2>27")-¢(-\- (2 - 2)).
i=1
O
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Lecture 41 Application of the entropy tensorization technique. 18.465

Recall the tensorization of entropy lemma we proved previously. Let zi,---,z, be independent random
variables, x,- - , 2/, be their independent copies, Z = Z (21, ,an), Z° = (T1, s Ti 1, T, Tiv1, + ,Tn),
and ¢(z) = e® — z — 1. We have Ee*? — Ee*? logEe?? < Ee* Y7 | ¢(—A(Z — Z*)). We will use the ten-
sorization of entropy technique to prove the following Hoeffding-type inequality. This theorem is Theorem 9 of
Pascal Massart. About the constants in Talagrand’s concentration inequalities for empiri-

cal processes. The Annals of Probability, 2000, Vol 28, No. 2, 863-884.

Theorem 41.1. Let F be a finite set of functions |F| < co. For any f = (f1,-+, fn) € F, a; < fi < by,
L =sup; > (b — a;)?, and Z = supy iy fi. Then P(Z > BZ + V2Lt) < e™*.

Proof. Let

Z' = sup ai—&—ij

e i#i

" def. -
Z = sup fi = fi
It follows that

0<Z-2"<Y 7= f7 —ai=f7 —ai <bi(f°) — ai(f°).
i j#i

Since

% = % is increasing in R and lim,_. 43;? — %, it follows that Vz < 0, ¢(z) < %127 and

Ee\Z —Ee* logEe™ < EeM > ¢ (-\Z - 2Y))
1 AZ 2 i\2
< SEe ;A (Z - 7%
< %LVE&Z.

Center Z, and we get

EMZED\(Z —EZ) —logRe?7E2) < LR Z-E2),
= 2
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Lecture 41 Application of the entropy tensorization technique. 18.465

Let F(\) = EerMZ=E2) Tt follows that Fj(\) = EerN?~E2)(Z —EZ) and

AFS(\) — F(\)1log F(\) < §LA2F(A)
1F(\) 1 1
- — —logF < =L
NPy e lef o= 3
1 ! 1
~log F < =L
(5o “>)A < .
1 1 A1 !
XlogF()\) = ElogF(t)|t_>O+/O (tlogF(t)>tdt
1
< =L
< 3 A
1 2
F(\) < exp(iL/\ ).

By Chebychev inequality, and minimize over A\, we get

P(Z>EZ+t) < e MEANZED
< e AMesLA?

minimize over A

P(Z >EZ +t) et°/CD)

IN

O

Let f; above be Rademacher random variables and apply Hoeffding’s inequality, we get P(Z > EZ+ \/T/Z) <
e~!. As a result, The above inequality improves the constant of Hoeffding’s inequality.

The following Bennett type concentration inequality is Theorem 10 of

Pascal Massart. About the constants in Talagrand’s concentration inequalities for empiri-

cal processes. The Annals of Probability, 2000, Vol 28, No. 2, 863-884.

Theorem 41.2. Let F be a finite set of functions |F| < co. Vf = (f1,---,fn) € F,0< f; <1, Z =
sup; Yy fi, and define h as h(u) = (14u)log(1+u)—u where w > 0. ThenP(Z > EZ+x) < e EZna/EZ)

Proof. Let

Z = supifi déf'zn:fio
i=1

fer i

Z' = sup ij.
It follows that 0 < Z — Z% < f? < 1. Since ¢ = e® — x — 1 is a convex function of z,

H(-NZ—=2")=¢(-\-(Z-Z")+0-(1-(Z~2"))) < (Z~ Z")¢(-N)
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and

E (M Ze*) —EeM logEeM? < E (&Z P ICNCAS Zi))>
i=1

IN

c(enngie-o)

i

$(—AE (e*z : fo)

IN

Set Z = Z —EZ (i.e., center Z), and we get
E (AZ&Z) _EMIogEr? < $(—NE (Z : e’\Z) < $(-NE ((Z + EZ) - e’\Z)
(A= ¢(—\)E (Ze)‘2> “EM logEeM < $(—N)-EZ-Ee .

Let v=EZ, F(\) =Eer, =log I, and we get

(= o) ~TorF() < 06(-)
(41.1) (A= 6(=1)) log F(N)y —log F(A) < vg(=N).
Solving the differential equation
(41.2) A=0(=A) | log F(A) | —logF(A) = wvg(=A),
W N T

yields ¥y = v - ¢(A). We will proceed to show that ¥ satisfying 41.1 has the property ¥ < Wq:

Substract 41.2 from 41.1, and let 1 =¥ —¥

(1—e MV -1, < 0
(A1) (1) =1 e and (A1) (1) =)
(r=1)(1—e?) ! v — < v < 0
A1 e’ T
(e;‘pil)x
¥i(A) 10
< 1 =0.
er—1 — )\li»r(lJ er—1 0

It follows that ¥ < vé(\), and F = Ee*? < e, By Chebychev’s inequality, P (Z > EZ + t) < e~ M+ve(A),
Minimizing over all A > 0, we get P(Z > EZ +t) < e~ ?"¥/%) where h(z) = (1 + z) - log(1 + z) — z. O

The following sub-additive increments bound can be found as Theorem 2.5 in
Olivier Bousquet. Concentration Inequalities and Empirical Processes Theory Applied to the

Analysis of Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.
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Theorem 41.3. Let Z = supscr »_ fi, Efi = 0, sup ez var(f) = supse >0y f? = o, Vie{l,- -

w1 ThenP(Z > EZ+ /I +wBZ ¥ nos+ %) <.

Proof. Let

Zy = sup )y f;
f§
Z, =[x such that Z = sup Zfz

fer i#k
It follows that Z;, < Z — Zj, < u. Let ¢(z) = e~ + 2 — 1. Then
MYNZ — 2Zy)) = M — e L \NZ - Zy)eM

= fWN(Z=2Z) M+ A= fFN)(Z = Z) e + M =M

= fN(Z-2Zk) M +g(Z — Zy)e?n.

1n}afi S

In the above, g(z) = 1 — e* + (A — f(\)) ze®, and we define f(A) = (1 —e*+ Xe*) / (e* + o — 1) where

a=1/(14u). We will need the following lemma to make use of the bound on the variance.

Lemma 41.4. Forallz <1, A>0and a > 1, g(2) < f(z) (az® — z).

Continuing the proof, we have

AMYNZ = Z)) = N (Z = Z) N 4 g(Z — Zy)e
< SN @ =2 w0 (a(Z - 207 - (2= Z))
< O (Z = Zi) M + P p()) (a - Zk)
Sum over all k=1, - ,n, and take expectation, we get

I NNE=Z) < SN2+ NS % (a(2})* - 1)

/\Zzw (Z—2Z) < fO)EZEM + F(A ZE@’\Zk (a —Zk)
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Since EZ;, =0, Ex, (Z,;)2 =Ef7 = var(f) < supsczvar(f) < o?, it follows that
EeM (a (Z1)? - Z,;) — R (aEfk (Z,)* —Ey, Z,g)

ac’Eerw

IN

2R A ZK+AEZ]

IN

oo

Jensen’s inequality
’
ac?EerrTAZ

IN

ac’Eer.

IN

Thus

E (\Ze*?) — Ee* log Ee*

IN

Ee* Y " p(MZ - Zi))
k

IA

FEZer + f(N)ano®Eer”.
Let Zy = Z — E, and center Z, we get
E (\Zpe*?") — Ee*0logEer < f(NEZpe*? + f(\) (ano® + EZ) Ee* .

Let F'(\) = Ee*?0, and W(\) = log F()\), we get

A=FO)F'N) = FNlog F(\) < f(\) (ano® +EZ) F(\)
F'(A)
(A= f(N) OV —logF(\) < f(A) (ano®* +EZ).
N—— T(N)
()
Solve this inequality, we get F(\) < e??(=*) where v = no? + (1 +u)EZ. O
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This lecture reviews the method for proving concentration inequalities developed by Sourav Chatterjee based
on Stein’s method of exchangeable pairs. The lecture is based on
Sourav Chatterjee. Stein’s method for concentration inequalities. Probab. Theory Relat.

Fields (2007) 138:305-321. DOI 10.1007/s00440-006-0029-y.

Theorem 42.1. Let (X, X’) be an exchangeable pair on X (i.e., dP(X,X’) = dP(X',X). Let F(z,2') =
—F(x,2") be antisymmetric, f(x) = B(F(z,2')|x). Then Ef(x) = 0. If further
1
A(w) = SE (I(f(z) = f@) F(z,2')||z) < Bf(z) + C,
then P(f(z) > t) < exp (—M).
Proof.

by definition of f(X)
E((X)f(X)) = E(h(X) E(F(X,X|X))=E(hX) F(X, X))

X,X’ are exchangeable

= E((X)- F(X', X))

F(X,X’) is anti-symmetric

— —E(h(X')-F(X.X"))

- %IE (h(X) — h(X")) - F(X, X")).

Take h(X)=1, we get Ef (z) = 0. Take h(X) = f(X), we get Ef? = 3E ((f(X) — (X)) - F(X, X")).
We proceed to bound the moment generating function m(\) = Eexp(Af(X)), and use Chebychev’s inequality

to complete the proof. The derivative of m(\) satisfies,

mO = [E [0 5(x)
R(X)

_ ';IE: ((e/\f(X) B eAf(X’)) CF(X, X’))’

A
=

((eAﬂX) _ e/\f(X’)) L F(X, X/))‘

e{;iib :f01 eb+t(a—b)dt§f01 (tea-‘r(l—t)eb)dt:%(e”-&-eb)

(76004 M) |5 () = FX) - FOX, X

IN

>

=
/~
DO =

)

= PE| MR (\; (F(X) = F(X) - F(X, X)

A(X)

AE (MO (B f(X) +C)) = [Al- (B-m\(A) + C-m(}))

IN
—
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Since m(A) is a convex function in A, and m’(0) = 0, m/(X\) always has the same sign as A. In the interval

0 < X\ < 1/B, the above inequality can be expressed as

m'(A)

IN

A+ (B-m/'(A) + C-m(N)

logm(\), < — C

(1-=XB)

C A 1 C-\2
1 < < - - .
ogm(A) < / s B < sds

1 - )\ : B 0 2 ]. - )\ * B '
By Chebybhev s inequality P(f(xz) > t) < exp ( M —|— 1. /\)‘ ) Minimize the inequality over 0 < \ < 3
2

We will use the following three examples to illustrate how to use the above theorem to prove concentration

inequalities.

Example 42.2. Let X1, -+, X, be i.i.d random variables with Ez; = y;, var(z;) = 02, and |x; — u;| < ¢;.
Let X =31, X;, our goal is to bound | X — EX| probabilistically. To apply the above theorem, take X/ be
an independent copy of X; for i = 1,--- ,n, I ~ unif{l,--- ,n} be a random variable uniformly distributed
over 1,---,n, and X' =3, ,; X; + X;. Define F(X, X'), f(X), and A(X) as the following,

FX,X) ¥ n.(X-X)=n-(X;-X})

fx) = E(F(X,X’)IX):E(n-(XzfX})IX):%ZE(W(XzfX})IX):X*]EX
E ((f(X) = f(X") - F(X,X")| | X)

- %ZIE ((X, _x))? yX)

I=1

N3 N

DN | =

Y E | (xr-Ex)? X +]E((X;—EX})2)
—_———
I=1

2
Sej =02
;

IN

(cf + af) .

NE

1
2

~
Il
—-

It follows that

12
P(ZXi_EZXiZt) < exp <_W>
P((—ZXi)—E(—ZXi) Zt) < exp (—ZZCZ:JFU?>
union bound /2
IP’() f Zt) < 2exp <—W)
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Example 42.3. Let (a;j)i j=1,.. » be a real matrix where a;; € [0,1] for 1 < 4,j < n, 7 be a random variable
uniformly distributed over the permutations of 1,--- ;n. Let X = ZLI a; x(s), then EX = % Z” a; ;, and
our goal is to bound | X — EX| probabilistically. To apply the above theorem, we define exchangeable pairs
of permutations in the following way. Given permutation 7, pick I, J uniformly and independently from
{1,---,n}, and construct 7’ = 7o (I,J) where (I,J) is a transposition of I and J. The two random

variables 7 and 7’ are exchangeable. We can define F(X, X'), f(X), and A(X) as the following,

def. n n n n
F(X7 X/) ; 5 (X — X’) — 5 <Z ai,Tr(i) - Z aim/(i)>
=1

=1

f(X) = EFX, X)X)
n
= 3 (a'lm(I) +agn(r) —AIx(g) — aJ,w(I)|7T)
_n lza L lza _n Lza _n iza
= 3 n : La() + 5+ : Ta() T nQII L1 =5 nQI] 1,0

1

= D a5 D%
i ]

- X-EX

: %E ((X —x')? |7r)

2
E ((aI,Tr(I) +ayn) — 1 () — aJ,Tr(I)) |7T)

OIS 3 N

E (arr(r) + Qym(s) = Q1n(s) — Qgm(n)|T)

Apply the theorem above, and take union bound, we get P (|X —EX| > t) < 2exp (—ﬁ%).

Example 42.4. In this example, we consider a concentration behavior of the Curie-Weiss model. Let

o= (o1, - ,0n) € {—1,1}" be random variables observing the probability distribution
1 Jé] ~
G (o1, ,0n)) = — €XP EZ:JZ-UJ—I-Q hz;al
1<j i=

We are interested in the concentration of m(s) = 2 3. 0; around tanh (8- m(c) + 3 - h) where tanh(z) =

ef—e "

o= Given any o, we can pick I uniformly and independently from {1,---,n}, and generate o7 according

to the conditional distribution of o; on {o; : j # i} (Gibbs sampling):
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exp(g Zj;éi oj+3-h)
2 (exp(8 32, 05+ B-h) +exp(=E 32, 05— B-h)
eXp(—§ Zj;&i oj—B3-h)
2 (exp(% Zj;éi oj+B-h)+ eXP(—% Zj;éi o;—B- h))
Let 0’;» = o; for j # I. The two random variables o and ¢’ are exchangeable pairs. To apply the above

theorem, we define F(X, X'), f(X), and A(X) as the following,

g ai—g ol =05 — o}

flo) = E(F(0,0')|o)

Ploj =+1{o; : j #i}) =

Ploj=—1{o; :j #i}) =

e
jacd

= E(or - o}lo)
— 1 - / !/ / . .
= = Z E (0; — 0;]0) , where 07, - ,0,, are all by Gibbs sampling.
n
i=1
1 & 1 — Jé]
= E;Ui_ﬁgtanh E§Gj+ﬂh

AX) Y LRG0 - (X)X X |X)

2
|F(0,0")|<2,|f(0) = f(0")|<2(1+8) /n
< 1,.2048
- 2 n
2 .
Thus P (‘% >0 — + 3, tanh (g > j2iOi t Bh)‘ > t) < 2exp (—ﬁ). Since |tanh(Bm;(o) + Bh) —
tanh(8m(o)+8h)| < % where m; (o) = %Z#i o;, we have P (|% >, 0i — tanh (8- m(o) + Bh)| > % + ﬁ) <

t’n
2 exp (774(1-5-/3))'
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