Contents

Lecture 2	Voting classifiers, training error of boosting	1
Lecture 3	Support vector machines (SVM)	4
Lecture 4	Generalization error of SVM	6
Lecture 5	One dimensional concentration inequalities. Bennett's inequality	9
Lecture 6	Bernstein's inequality	11
Lecture 7	Hoeffding, Hoeffding-Chernoff, and Khinchine inequalities	13
Lecture 8	Vapnik-Chervonenkis classes of sets	17
Lecture 9	Properties of VC classes of sets	19
Lecture 10	Symmetrization. Pessimistic VC inequality	21
Lecture 11	Optimistic VC inequality	24
Lecture 12	VC subgraph classes of functions. Packing and covering numbers	27
Lecture 13	Covering numbers of the VC subgraph classes	30
Lecture 14	Kolmogorov's chaining method. Dudley's entropy integral	32
Lecture 15	More symmetrization. Generalized VC inequality	35
Lecture 16	Consequences of the generalized VC inequality	38
Lecture 17	Covering numbers of the convex hull	42
Lecture 18	Uniform entropy condition of VC-hull classes	45
Lecture 19	Generalization error bound for VC-hull classes	48
Lecture 20	Bounds on the generalization error of voting classifiers	50
Lecture 21	Bounds on the generalization error of voting classifiers	53
Lecture 22	Bounds on the generalization error of voting classifiers	55
Lecture 23	Bounds in terms of sparsity	58
Lecture 24	Bounds in terms of sparsity (example)	61
Lecture 25	Martingale-difference inequalities	64
Lecture 26	Comparison inequality for Rademacher processes	67
Lecture 27	Application of Martingale inequalities. Generalized Martingale inequalities	71
Lecture 28	Generalization bounds for neural networks	74
Lecture 29	Generalization bounds for neural networks	76
Lecture 30	Generalization bounds for kernel methods	79
Lecture 31	Optimistic VC inequality for random classes of sets	81
Lecture 32	Applications of random VC inequality to voting algorithms and SVM	84
Lecture 33	Talagrand's convex-hull distance inequality	87
Lecture 34	Consequences of Talagrand's convex-hull distance inequality	92
		121

Lecture 35	Talagrand's concentration inequality for empirical processes	95
Lecture 36	Talagrand's two-point inequality	98
Lecture 37	Talagrand's concentration inequality for empirical processes	101
Lecture 38	Applications of Talagrand's concentration inequality	104
Lecture 39	Applications of Talagrand's convex-hull distance inequality. Bin packing	106
Lecture 40	Entropy tensorization inequality. Tensorization of Laplace transform	109
Lecture 41	Application of the entropy tensorization technique	112
Lecture 42	Stein's method for concentration inequalities	117

In this lecture we consider the classification problem, i.e. $\mathcal{Y} = \{-1, +1\}$.

Consider a family of weak classifiers

$$\mathcal{H} = \{h \colon \mathcal{X} \to \{-1, +1\}\}$$

Let the empirical minimizer be

$$h_0 = \operatorname{argmin} \frac{1}{n} \sum_{i=1}^n I(h(X_i) \neq Y_i)$$

and assume its expected error,

$$\frac{1}{2} > \varepsilon = Error(h_0), \ \varepsilon > 0$$

Examples:

- $\mathcal{X} = \mathbb{R}^d, \, \mathcal{H} = \{ \operatorname{sign}(wx+b) \colon w \in \mathbb{R}^d, b \in \mathbb{R} \}$
- Decision trees: restrict depth.
- Combination of simple classifiers:

$$f = \sum_{t=1}^{T} \alpha_t h_t(x),$$

where $h_t \in \mathcal{H}, \sum_{t=1}^{T} \alpha_t = 1$. For example,

$$h_1 = \boxed{\begin{array}{ccc} 1 & -1 \\ 1 & -1 \end{array}}, \qquad h_2 = \boxed{\begin{array}{ccc} 1 & 1 \\ -1 & -1 \end{array}}, \qquad h_3 = \boxed{\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}}$$

$$f = \frac{1}{7}(h_1 + 3h_2 + 3h_3) = \boxed{\begin{array}{c} 7 & 5 \\ 1 & -1 \end{array}}, \qquad \text{sign}(f) = \boxed{\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array}}$$

AdaBoost

Assign weight to training examples $w_1(i) = 1/n$.

for t = 1..T

1) find "good" classifier $h_t \in \mathcal{H}$; Error $\varepsilon_t = \sum_{i=1}^n w_t(i) I(h(X_i) \neq Y_i)$

2) update weight for each i:

$$w_{t+1}(i) = \frac{w_t(i)e^{-\alpha_t Y_i h_t(X_i)}}{Z_t}$$
$$Z_t = \sum_{i=1}^n w_t(i)e^{-\alpha_t Y_i h_t(X_i)}$$
$$\alpha_t = \frac{1}{2}\ln\frac{1-\varepsilon_t}{\varepsilon_t} > 0$$

3) t = t+1

end

Output the final classifier: $f = \operatorname{sign}(\sum \alpha_t h_t(x))$.

Theorem 2.1. Let $\gamma_t = 1/2 - \varepsilon_t$ (how much better h_t is than tossing a coin). Then

$$\frac{1}{n} \sum_{i=1}^{n} I(f(X_i) \neq Y_i) \le \prod_{t=1}^{T} \sqrt{1 - 4\gamma_t^2}$$

Proof.

$$I(f(X_i) \neq Y_i) = I(Y_i f(X_i) = -1) = I(Y_i \sum_{t=1}^T \alpha_t h_t(X_i) \le 0) \le e^{-Y_i \sum_{t=1}^T \alpha_t h_t(X_i)}$$

Consider how weight of example i changes:

$$w_{T+1}(i) = \frac{w_T(i)e^{-Y_i\alpha_T h_T(X_i)}}{Z_t}$$

= $\frac{e^{-Y_i\alpha_T h_T(X_i)}}{Z_t} \frac{w_{T-1}(i)e^{-Y_i\alpha_{T-1}h_{T-1}(X_i)}}{Z_{T-1}}$
...
= $\frac{e^{-Y_i\sum_{t=1}^T \alpha_t h_t(X_i)}}{\prod_{t=1}^t Z_t} \frac{1}{n}$

Hence,

$$w_{T+1}(i) \prod Z_t = \frac{1}{n} e^{-Y_i \sum_{t=1}^T \alpha_t h_t(X_i)}$$

and therefore

$$\frac{1}{n}\sum_{i=1}^{n}I(f(X_i)\neq Y_i) \le \frac{1}{n}\sum_{i=1}^{n}e^{-Y_i\sum_{t=1}^{T}\alpha_t h_t(X_i)} = \prod_{t=1}^{T}Z_t\sum_{i=1}^{n}w_{T+1}(i) = \prod_{t=1}^{T}Z_t$$

$$Z_{t} = \sum_{i=1}^{n} w_{t}(i)e^{-\alpha_{t}Y_{i}h_{t}(X_{i})}$$

= $\sum_{i=1}^{n} w_{t}(i)e^{-\alpha_{t}}I(h_{t}(X_{i}) = Y_{i}) + \sum_{i=1}^{n} w_{t}(i)e^{+\alpha_{t}}I(h_{t}(X_{i}) \neq Y_{i})$
= $e^{+\alpha_{t}}\sum_{i=1}^{n} w_{t}(i)I(h_{t}(X_{i}) \neq Y_{i}) + e^{-\alpha_{t}}\sum_{i=1}^{n} w_{t}(i)(1 - I(h_{t}(X_{i}) \neq Y_{i}))$
= $e^{\alpha_{t}}\varepsilon_{t} + e^{-\alpha_{t}}(1 - \varepsilon_{t})$

Minimize over α_t to get

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \varepsilon_t}{\varepsilon_t}$$

and

$$e^{\alpha_t} = \left(\frac{1-\varepsilon_t}{\varepsilon_t}\right)^{1/2}.$$

6	2	۱	
	,	,	
4		4	

Finally,

$$Z_t = \left(\frac{1-\varepsilon_t}{\varepsilon_t}\right)^{1/2} \varepsilon_t + \left(\frac{\varepsilon_t}{1-\varepsilon_t}\right)^{1/2} (1-\varepsilon_t)$$
$$= 2(\varepsilon_t(1-\varepsilon_t))^{1/2} = 2\sqrt{(1/2-\gamma_t)(1/2+\gamma_t)}$$
$$= \sqrt{1-4\gamma_t^2}$$

As in the previous lecture, consider the classification setting. Let $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{+1, -1\}$, and

$$\mathcal{H} = \{ \psi x + b, \ \psi \in \mathbb{R}^d, \ b \in \mathbb{R} \}$$

where $|\psi| = 1$.

We would like to maximize over the choice of hyperplanes the minimal distance from the data to the hyperplane:

$$\max_{H} \min_{i} d(x_i, H),$$

where

$$d(x_i, H) = y_i(\psi x_i + b).$$

Hence, the problem is formulated as maximizing the margin:

$$\max_{\psi,b} \underbrace{\min_{i} y_i(\psi x_i + b)}_{m \text{ (margin)}}.$$

Rewriting,

$$y_i(\psi'x_i+b') = \frac{y_i(\psi x_i+b)}{m} \ge 1,$$

 $\psi' = \psi/m, \ b' = b/m, \ |\psi'| = |\psi|/m = 1/m.$ Maximizing m is therefore minimizing $|\psi'|$. Rename $\psi' \to \psi$, we have the following formulation:

$$\min |\psi|$$
 such that $y_i(\psi x_i + b) \ge 1$

Equivalently,

$$\min \frac{1}{2}\psi \cdot \psi \quad \text{such that} \quad y_i(\psi x_i + b) \ge 1$$

Introducing Lagrange multipliers:

$$\phi = \frac{1}{2}\psi \cdot \psi - \sum \alpha_i (y_i(\psi x_i + b) - 1), \ \alpha_i \ge 0$$

Take derivatives:

$$\frac{\partial \phi}{\partial \psi} = \psi - \sum \alpha_i y_i x_i = 0$$
$$\frac{\partial \phi}{\partial b} = -\sum \alpha_i y_i = 0$$

Hence,

$$\psi = \sum \alpha_i y_i x_i$$

and

$$\sum \alpha_i y_i = 0.$$

Substituting these into ϕ ,

$$\phi = \frac{1}{2} \left(\sum \alpha_i y_i x_i \right)^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\sum_{j=1}^n \alpha_j y_j x_j x_i + b \right) - 1 \right)$$
$$= \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j - \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j - b \sum \alpha_i y_i + \sum \alpha_i$$
$$= \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j x_i x_j$$

The above expression has to be maximized this with respect to α_i , $\alpha_i \ge 0$, which is a Quadratic Programming problem.

Hence, we have $\psi = \sum_{i=1}^{n} \alpha_i y_i x_i$. Kuhn-Tucker condition:

$$\alpha_i \neq 0 \Leftrightarrow y_i(\psi x_i + b) - 1 = 0.$$

Throwing out non-support vectors x_i does not affect hyperplane $\Rightarrow \alpha_i = 0$.

The mapping ϕ is a *feature* mapping:

$$x \in \mathbb{R}^d \longrightarrow \phi(x) = (\phi_1(x), \phi_2(x), \ldots) \in \mathcal{X}'$$

where \mathcal{X}' is called *feature space*.

Support Vector Machines find optimal separating hyperplane in a very high-dimensional space. Let $K(x_i, x_j) = \sum_{k=1}^{\infty} \phi_k(x_i)\phi_k(x_j)$ be a scalar product in \mathcal{X}' . Notice that we don't need to know mapping $x \to \phi(x)$. We only need to know $K(x_i, x_j) = \sum_{k=1}^{\infty} \phi_k(x_i)\phi_k(x_j)$, a symmetric positive definite kernel. Examples:

(1) Polynomial: $K(x_1, x_2) = (x_1 x_2 + 1)^{\ell}, \ \ell \ge 1.$

- (2) Radial Basis: $K(x_1, x_2) = e^{-\gamma |x_1 x_2|^2}$.
- (3) Neural (two-layer): $K(x_1, x_2) = \frac{1}{1 + e^{\alpha x_1 x_2 + \beta}}$ for some α, β (for some it's not positive definite).

Once α_i are known, the decision function becomes

$$\operatorname{sign}\left(\sum \alpha_i y_i x_x \cdot x + b\right) = \operatorname{sign}\left(\sum \alpha_i y_i K(x_i, x) + b\right)$$

Assume we have samples $z_1 = (x_1, y_1), \ldots, z_n = (x_n, y_n)$ as well as a new sample z_{n+1} . The classifier trained on the data z_1, \ldots, z_n is f_{z_1, \ldots, z_n} .

The error of this classifier is

$$\operatorname{Error}(z_1, \dots, z_n) = \mathbb{E}_{z_{n+1}} I(f_{z_1, \dots, z_n}(x_{n+1}) \neq y_{n+1}) = \mathbb{P}_{z_{n+1}} (f_{z_1, \dots, z_n}(x_{n+1}) \neq y_{n+1})$$

and the Average Generalization Error

A.G.E. =
$$\mathbb{E} \operatorname{Error}(z_1, \dots, z_n) = \mathbb{E}\mathbb{E}_{z_{n+1}}I(f_{z_1,\dots,z_n}(x_{n+1}) \neq y_{n+1}).$$

Since $z_1, \ldots, z_n, z_{n+1}$ are i.i.d., in expectation training on $z_1, \ldots, z_i, \ldots, z_n$ and evaluating on z_{n+1} is the same as training on $z_1, \ldots, z_{n+1}, \ldots, z_n$ and evaluating on z_i . Hence, for any i,

A.G.E. =
$$\mathbb{E}\mathbb{E}_{z_i}I(f_{z_1,\dots,z_{n+1},\dots,z_n}(x_i)\neq y_i)$$

and

A.G.E. =
$$\mathbb{E}\left[\underbrace{\frac{1}{n+1}\sum_{i=1}^{n+1}I(f_{z_1,\dots,z_{n+1},\dots,z_n}(x_i)\neq y_i)}_{\text{leave-one-out error}}\right]$$

Therefore, to obtain a bound on the generalization ability of an algorithm, it's enough to obtain a bound on its leave-one-out error. We now prove such a bound for SVMs. Recall that the solution of SVM is $\varphi = \sum_{i=1}^{n+1} \alpha_i^0 y_i x_i.$

Theorem 4.1.

$$L.O.O.E. \le \frac{\min(\# \ support \ vect., D^2/m^2)}{n+1}$$

where D is the diameter of a ball containing all x_i , $i \leq n+1$ and m is the margin of an optimal hyperplane.

Remarks:

- dependence on sample size is $\frac{1}{n}$
- dependence on margin is $\frac{1}{m^2}$
- number of support vectors (sparse solution)

Lemma 4.1. If x_i is a support vector and it is misclassified by leaving it out, then $\alpha_i^0 \geq \frac{1}{D^2}$.

Given Lemma 4.1, we prove Theorem 4.1 as follows.

Proof. Clearly,

$$\text{L.O.O.E.} \le \frac{\# \text{ support vect.}}{n+1}.$$

Indeed, if x_i is not a support vector, then removing it does not affect the solution. Using Lemma 4.1 above,

 $\sum_{i \in \text{supp.vect}} I(x_i \text{ is misclassified}) \le \sum_{i \in \text{supp.vect}} \alpha_i^0 D^2 = D^2 \sum \alpha_i^0 = \frac{D^2}{m^2}.$

In the last step we use the fact that $\sum \alpha_i^0 = \frac{1}{m^2}$. Indeed, since $|\varphi| = \frac{1}{m}$,

$$\frac{1}{m^2} = |\varphi|^2 = \varphi \cdot \varphi = \varphi \cdot \sum \alpha_i^0 y_i x_i$$
$$= \sum \alpha_i^0 (y_i (\varphi \cdot x_i))$$
$$= \underbrace{\sum \alpha_i^0 (y_i (\varphi \cdot x_i + b) - 1)}_0 + \sum \alpha_i^0 - b \underbrace{\sum \alpha_i^0 y_i}_0$$
$$= \sum \alpha_i^0$$

We now prove Lemma 4.1. Let u * v = K(u, v) be the dot product of u and v, and $||u|| = (K(u, u))^{1/2}$ be the corresponding L_2 norm. Given $x_1, \dots, x_{n+1} \in \mathbb{R}^d$ and $y_1, \dots, y_{n+1} \in \{-1, +1\}$, recall that the primal problem of training a support vector classifier is $\operatorname{argmin}_{\psi} \frac{1}{2} ||\psi||^2$ subject to $y_i(\psi * x_i + b) \ge 1$. Its dual problem is $\operatorname{argmax}_{\alpha} \sum \alpha_i - \frac{1}{2} ||\sum \alpha_i y_i x_i||^2$ subject to $\alpha_i \ge 0$ and $\sum \alpha_i y_i = 0$, and $\psi = \sum \alpha_i y_i x_i$. Since the Kuhn-Tucker condition can be satisfied, $\min_{\psi} \frac{1}{2} \psi * \psi = \max_{\alpha} \sum \alpha_i - \frac{1}{2} ||\sum \alpha_i y_i x_i||^2 = \frac{1}{2m^2}$, where m is the margin of an optimal hyperplane.

Proof. Define $w(\alpha) = \sum_{i} \alpha_i - \frac{1}{2} \|\sum \alpha_i y_i x_i\|^2$. Let $\alpha^0 = \operatorname{argmax}_{\alpha} w(\alpha)$ subject to $\alpha_i \ge 0$ and $\sum \alpha_i y_i = 0$. Let $\alpha' = \operatorname{argmax}_{\alpha} w(\alpha)$ subject to $\alpha_p = 0$, $\alpha_i \ge 0$ for $i \ne p$ and $\sum \alpha_i y_i = 0$. In other words, α^0 corresponds to the support vector classifier trained from $\{(x_i, y_i) : i = 1, \cdots, n+1\}$ and α' corresponds to the support vector classifier trained from $\{(x_i, y_i) : i = 1, \cdots, n+1\}$. Let $\gamma = \begin{pmatrix} 1 & p^{-1} & p & p+1 & n+1 \\ 0, \cdots, 0 & 1, 0 & \cdots, 0 \end{pmatrix}$. It follows that $w(\alpha^0 - \alpha_p^0 \cdot \gamma) \le w(\alpha') \le w(\alpha^0)$. (For the dual problem, α' maximizes $w(\alpha)$ with a constraint that $\alpha_p = 0$, thus $w(\alpha')$ is no less than $w(\alpha^0 - \alpha_p^0 \cdot \gamma)$, which is a special case that satisfies the constraints, including $\alpha_p = 0$. α^0 maxmizes $w(\alpha)$ with a constraint $\alpha_p \ge 0$, which raises the constraint $\alpha_p = 0$, thus $w(\alpha')$. For the primal problem, the training problem corresponding to α' has less samples (x_i, y_i) , where $i \ne p$, to separate with maximum margin, thus its margin $m(\alpha')$ is no less than the margin $m(\alpha^0)$.

and $w(\alpha') \leq w(\alpha^0)$. On the other hand, the hyperplane determined by $\alpha^0 - \alpha_p^0 \cdot \gamma$ might not separate (x_i, y_i) for $i \neq p$ and corresponds to a equivalent or larger "margin" $1/||\psi(\alpha^0 - \alpha_p^0 \cdot \gamma)||$ than $m(\alpha')$). Let us consider the inequality

$$\max_{t} w(\alpha' + t \cdot \gamma) - w(\alpha') \le w(\alpha^{0}) - w(\alpha') \le w(\alpha^{0}) - w(\alpha^{0} - \alpha_{p}^{0} \cdot \gamma).$$

For the left hand side, we have

$$w(\alpha' + t\gamma) = \sum \alpha'_i + t - \frac{1}{2} \left\| \sum \alpha'_i y_i x_i + t \cdot y_p x_p \right\|^2$$

= $\sum \alpha'_i + t - \frac{1}{2} \left\| \sum \alpha'_i y_i x_i \right\|^2 - t \left(\sum \alpha'_i y_i x_i \right) * (y_p x_p) - \frac{t^2}{2} \left\| y_p x_p \right\|^2$
= $w(\alpha') + t \cdot (1 - y_p \cdot \underbrace{(\sum \alpha'_i y_i x_i)}_{\psi'} * x_p) - \frac{t^2}{2} \left\| x_p \right\|^2$

and $w(\alpha' + t\gamma) - w(\alpha') = t \cdot (1 - y_p \cdot \psi' * x_p) - \frac{t^2}{2} ||x_p||^2$. Maximizing the expression over t, we find $t = (1 - y_p \cdot \psi' * x_p)/||x_p||^2$, and

$$\max_{t} w(\alpha' + t\gamma) - w(\alpha') = \frac{1}{2} \frac{(1 - y_p \cdot \psi' * x_p)^2}{\|x_p\|^2}.$$

For the right hand side,

$$w(\alpha^{0} - \alpha_{p}^{0} \cdot \gamma) = \sum_{i} \alpha_{i}^{0} - \alpha_{p}^{0} - \frac{1}{2} \| \underbrace{\sum_{\psi_{0}} \alpha_{i}^{0} y_{i} x_{i}}_{\psi_{0}} - \alpha_{p}^{0} y_{p} x_{p} \|^{2}$$

$$= \sum_{i} \alpha_{i}^{0} - \alpha_{p}^{0} - \frac{1}{2} \|\psi_{0}\|^{2} + \alpha_{p}^{0} y_{p} \psi_{0} * x_{p} - \frac{1}{2} (\alpha_{p}^{0})^{2} \|x_{p}\|^{2}$$

$$= w(\alpha_{0}) - \alpha_{p}^{0} (1 - y_{p} \cdot \psi_{0} * x_{p}) - \frac{1}{2} (\alpha_{p}^{0})^{2} \|x_{p}\|^{2}$$

$$= w(\alpha_{0}) - \frac{1}{2} (\alpha_{p}^{0})^{2} \|x_{p}\|^{2}.$$

The last step above is due to the fact that (x_p, y_p) is a support vector, and $y_p \cdot \psi_0 * x_p = 1$. Thus $w(\alpha^0) - w(\alpha^0 - \alpha_p^0 \cdot \gamma) = \frac{1}{2} \left(\alpha_p^0\right)^2 \|x_p\|^2$ and $\frac{1}{2} \frac{(1-y_p \cdot \psi' * x_p)^2}{\|x_p\|^2} \leq \frac{1}{2} \left(\alpha_p^0\right)^2 \|x_p\|^2$. Thus $\alpha_p^0 \geq \frac{|1-y_p \cdot \psi' * x_p|}{\|x_p\|^2}$ $\geq \frac{1}{D^2}.$

The last step above is due to the fact that the support vector classifier associated with ψ' misclassifies (x_p, y_p) according to assumption, and $y_p \cdot \psi' * x_p \leq 0$, and the fact that $||x_p|| \leq D$.

For a fixed $f \in \mathcal{F}$, if we observe $\frac{1}{n} \sum_{i=1}^{n} I(f(X_i) \neq Y_i)$ is small, can we say that $\mathbb{P}(f(X) \neq Y)$ is small? By

the Law of Large Numbers,

$$\frac{1}{n}\sum_{i=1}^{n}I\left(f(X_{i})\neq Y_{i}\right)\rightarrow\mathbb{E}I(f(X)\neq Y)=\mathbb{P}\left(f(X)\neq Y\right).$$

The Central Limit Theorem says

$$\frac{\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}I\left(f(X_{i})\neq Y_{i}\right)-\mathbb{E}I(f(X)\neq Y)\right)}{\sqrt{\operatorname{Var}I}}\to\mathcal{N}(0,1).$$

Thus,

$$\frac{1}{n}\sum_{i=1}^{n}I\left(f(X_{i})\neq Y_{i}\right)-\mathbb{E}I(f(X)\neq Y)\sim\frac{k}{\sqrt{n}}.$$

Let $Z_1, \dots, Z_n \in \mathbb{R}$ be i.i.d. random variables. We're interested in bounds on $\frac{1}{n} \sum Z_i - \mathbb{E}Z$.

- (1) Jensen's inequality: If ϕ is a convex function, then $\phi(\mathbb{E}Z) \leq \mathbb{E}\phi(X)$.
- (2) Chebyshev's inequality: If $Z \ge 0$, then $\mathbb{P}(Z \ge t) \le \frac{\mathbb{E}Z}{t}$. Proof:

$$\begin{split} \mathbb{E} Z &= \mathbb{E} Z I(Z < t) + \mathbb{E} Z I(Z \geq t) \geq \mathbb{E} Z I(Z \geq t) \\ &\geq \mathbb{E} t I(Z \geq t) = t \mathbb{P} \left(Z \geq t \right). \end{split}$$

(3) Markov's inequality: Let Z be a signed r.v. Then for any $\lambda > 0$

$$\mathbb{P}\left(Z \geq t\right) = \mathbb{P}\left(e^{\lambda Z} \geq e^{\lambda t}\right) \leq \frac{\mathbb{E}e^{\lambda Z}}{e^{\lambda t}}$$

and therefore

$$\mathbb{P}\left(Z \ge t\right) \le \inf_{\lambda > 0} e^{-\lambda t} \mathbb{E} e^{\lambda Z}.$$

Theorem 5.1. [Bennett] Assume $\mathbb{E}Z = 0$, $\mathbb{E}Z^2 = \sigma^2$, |Z| < M = const, Z_1, \dots, Z_n independent copies of Z, and $t \ge 0$. Then

$$\mathbb{P}\left(\sum_{i=1}^{n} Z_i \ge t\right) \le \exp\left(-\frac{n\sigma^2}{M^2}\phi\left(\frac{tM}{n\sigma^2}\right)\right),\,$$

where $\phi(x) = (1+x)\log(1+x) - x$.

Proof. Since Z_i are i.i.d.,

$$\mathbb{P}\left(\sum_{i=1}^{n} Z_{i} \geq t\right) \leq e^{-\lambda t} \mathbb{E}e^{\lambda \sum_{i=1}^{n} Z_{i}} = e^{-\lambda t} \prod_{i=1}^{n} \mathbb{E}e^{\lambda Z_{i}} = e^{-\lambda t} \left(\mathbb{E}e^{\lambda Z}\right)^{n}.$$

Expanding,

$$\mathbb{E}e^{\lambda Z} = \mathbb{E}\sum_{k=0}^{\infty} \frac{(\lambda Z)^k}{k!} = \sum_{k=0}^{\infty} \lambda^k \frac{\mathbb{E}Z^k}{k!}$$
$$= 1 + \sum_{k=2}^{\infty} \frac{\lambda^k}{k!} \mathbb{E}Z^2 Z^{k-2} \le 1 + \sum_{k=2}^{\infty} \frac{\lambda^k}{k!} M^{k-2} \sigma^2$$
$$= 1 + \frac{\sigma^2}{M^2} \sum_{k=2}^{\infty} \frac{\lambda^k M^k}{k!} = 1 + \frac{\sigma^2}{M^2} \left(e^{\lambda M} - 1 - \lambda M\right)$$
$$\le \exp\left(\frac{\sigma^2}{M^2} \left(e^{\lambda M} - 1 - \lambda M\right)\right)$$

where the last inequality follows because $1 + x \le e^x$. Combining the results,

$$\mathbb{P}\left(\sum_{i=1}^{n} Z_{i} \geq t\right) \leq e^{-\lambda t} \exp\left(\frac{n\sigma^{2}}{M^{2}}\left(e^{\lambda M}-1-\lambda M\right)\right)$$
$$= \exp\left(-\lambda t + \frac{n\sigma^{2}}{M^{2}}\left(e^{\lambda M}-1-\lambda M\right)\right)$$

Now, minimize the above bound with respect to λ . Taking derivative w.r.t. λ and setting it to zero:

$$-t + \frac{n\sigma^2}{M^2} \left(M e^{\lambda M} - M \right) = 0$$
$$e^{\lambda M} = \frac{tM}{n\sigma^2} + 1$$
$$\lambda = \frac{1}{M} \log \left(1 + \frac{tM}{n\sigma^2} \right).$$

The bound becomes

$$\mathbb{P}\left(\sum_{i=1}^{n} Z_{i} \geq t\right) \leq \exp\left(-\frac{t}{M}\log\left(1 + \frac{tM}{n\sigma^{2}}\right) + \frac{n\sigma^{2}}{M^{2}}\left(\frac{tM}{n\sigma^{2}} + 1 - \log\left(1 + \frac{tM}{n\sigma^{2}}\right)\right)\right) \\
= \exp\left(\frac{n\sigma^{2}}{M^{2}}\left(\frac{tM}{n\sigma^{2}} - \log\left(1 + \frac{tM}{n\sigma^{2}}\right) - \frac{tM}{n\sigma^{2}}\log\left(1 + \frac{tM}{n\sigma^{2}}\right)\right)\right) \\
= \exp\left(\frac{n\sigma^{2}}{M^{2}}\left(\frac{tM}{n\sigma^{2}} - \left(1 + \frac{tM}{n\sigma^{2}}\right)\log\left(1 + \frac{tM}{n\sigma^{2}}\right)\right)\right) \\
= \exp\left(-\frac{n\sigma^{2}}{M^{2}}\phi\left(\frac{tM}{n\sigma^{2}}\right)\right)$$

Last time we proved Bennett's inequality: $\mathbb{E}X = 0$, $\mathbb{E}X^2 = \sigma^2$, |X| < M = const, X_1, \dots, X_n independent copies of X, and $t \ge 0$. Then

Bernstein's inequality.

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{n\sigma^2}{M^2}\phi\left(\frac{tM}{n\sigma^2}\right)\right),\,$$

where $\phi(x) = (1+x)\log(1+x) - x$. If X is small, $\phi(x) = (1+x)(x - \frac{x^2}{2} + \cdots) - x = x + x^2 - \frac{x^2}{2} - x + \cdots = \frac{x^2}{2} + \cdots$. If X is large, $\phi(x) \sim x \log x$.

We can weaken the bound by decreasing $\phi(x)$. Take¹ $\phi(x) = \frac{x^2}{2+\frac{2}{3}x}$ to obtain **Bernstein's inequality**:

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{n\sigma^2}{M^2}\left(\frac{\left(\frac{tM}{n\sigma^2}\right)^2}{2+\frac{2}{3}\frac{tM}{n\sigma^2}}\right)\right)$$
$$= \exp\left(-\frac{t^2}{2n\sigma^2+\frac{2}{3}tM}\right)$$
$$= e^{-u}$$

where $u = \frac{t^2}{2n\sigma^2 + \frac{2}{3}tM}$. Solve for t:

$$t^{2} - \frac{2}{3}uMt - 2n\sigma^{2}u = 0$$
$$t = \frac{1}{3}uM + \sqrt{\frac{u^{2}M^{2}}{9} + 2n\sigma^{2}u}.$$

Substituting,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge \sqrt{\frac{u^2 M^2}{9} + 2n\sigma^2 u} + \frac{uM}{3}\right) \le e^{-u}$$

or

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \le \sqrt{\frac{u^2 M^2}{9} + 2n\sigma^2 u} + \frac{uM}{3}\right) \ge 1 - e^{-u}$$

Using inequality $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \le \sqrt{2n\sigma^2 u} + \frac{2uM}{3}\right) \ge 1 - e^{-u}$$

For non-centered X_i , replace X_i with $X_i - \mathbb{E}X$ or $\mathbb{E}X - X_i$. Then $|X_i - \mathbb{E}X| \leq 2M$ and so with high probability

$$\sum (X_i - \mathbb{E}X) \le \sqrt{2n\sigma^2 u} + \frac{4uM}{3}$$

Normalizing by n,

$$\frac{1}{n}\sum X_i - \mathbb{E}X \le \sqrt{\frac{2\sigma^2 u}{n}} + \frac{4uM}{3n}$$

and

$$\mathbb{E}X - \frac{1}{n}\sum X_i \le \sqrt{\frac{2\sigma^2 u}{n}} + \frac{4uM}{3n}$$

¹exercise: show that this is the best approximation

Whenever $\sqrt{\frac{2\sigma^2 u}{n}} \geq \frac{4uM}{3n}$, we have $u \leq \frac{n\sigma^2}{8M^2}$. So, $|\frac{1}{n}\sum X_i - \mathbb{E}X| \lesssim \sqrt{\frac{2\sigma^2 u}{n}}$ for $u \lesssim n\sigma^2$ (range of normal deviations). This is predicted by the Central Limit Theorem (condition for CLT is $n\sigma^2 \to \infty$). If $n\sigma^2$ does not go to infinity, we get Poisson behavior.

Recall from the last lecture that the we're interested in concentration inequalities because we want to know $\mathbb{P}(f(X) \neq Y)$ while we only observe $\frac{1}{n} \sum_{i=1}^{n} I(f(X_i) \neq Y_i)$. In Bernstein's inequality take "X" to be $I(f(X_i) \neq Y_i)$. Then, since 2M = 1, we get

$$\mathbb{E}I(f(X_i) \neq Y_i) - \frac{1}{n} \sum_{i=1}^n I(f(X_i) \neq Y_i) \le \sqrt{\frac{2\mathbb{P}(f(X_i) \neq Y_i)(1 - \mathbb{P}(f(X_i) \neq Y_i))u}{n}} + \frac{2u}{3n}$$

because $\mathbb{E}I(f(X_i) \neq Y_i) = \mathbb{P}(f(X_i) \neq Y_i) = \mathbb{E}I^2$ and therefore $\operatorname{Var}(I) = \sigma^2 = \mathbb{E}I^2 - (\mathbb{E}I)^2$. Thus,

$$\mathbb{P}\left(f(X_i) \neq Y_i\right) \le \frac{1}{n} \sum_{i=1}^n I\left(f(X_i) \neq Y_i\right) + \sqrt{\frac{2\mathbb{P}\left(f(X_i) \neq Y_i\right)u}{n}} + \frac{2u}{3n}$$

with probability at least $1 - e^{-u}$. When the training error is zero,

$$\mathbb{P}\left(f(X_i) \neq Y_i\right) \le \sqrt{\frac{2\mathbb{P}\left(f(X_i) \neq Y_i\right)u}{n}} + \frac{2u}{3n}.$$

If we forget about 2u/3n for a second, we obtain $\mathbb{P}(f(X_i) \neq Y_i)^2 \leq 2\mathbb{P}(f(X_i) \neq Y_i) u/n$ and hence

$$\mathbb{P}\left(f(X_i) \neq Y_i\right) \le \frac{2u}{n}$$

The above *zero-error rate* is better than $n^{-1/2}$ predicted by CLT.

Let $a_1, \ldots, a_n \in \mathbb{R}$ and let $\varepsilon_1, \ldots, \varepsilon_n$ be i.i.d. Rademacher random variables: $\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = 0.5$.

Theorem 7.1. [Hoeffding] For $t \ge 0$,

$$\mathbb{P}\left(\sum_{i=1}^{n}\varepsilon_{i}a_{i}\geq t\right)\leq\exp\left(-\frac{t^{2}}{2\sum_{i=1}^{n}a_{i}^{2}}\right).$$

Proof. Similarly to the proof of Bennett's inequality (Lecture 5),

$$\mathbb{P}\left(\sum_{i=1}^{n}\varepsilon_{i}a_{i} \geq t\right) \leq e^{-\lambda t}\mathbb{E}\exp\left(\lambda\sum_{i=1}^{n}\varepsilon_{i}a_{i}\right) = e^{-\lambda t}\prod_{i=1}^{n}\mathbb{E}\exp\left(\lambda\varepsilon_{i}a_{i}\right)$$

Using inequality $\frac{e^x + e^{-x}}{2} \le e^{x^2/2}$ (from Taylor expansion), we get

$$\mathbb{E}\exp\left(\lambda\varepsilon_{i}a_{i}\right) = \frac{1}{2}e^{\lambda a_{i}} + \frac{1}{2}e^{-\lambda a_{i}} \leq e^{\frac{\lambda^{2}a_{i}^{2}}{2}}.$$

Hence, we need to minimize the bound with respect to $\lambda > 0$:

$$\mathbb{P}\left(\sum_{i=1}^{n}\varepsilon_{i}a_{i}\geq t\right)\leq e^{-\lambda t}e^{\frac{\lambda^{2}}{2}\sum_{i=1}^{n}a_{i}^{2}}$$

Setting derivative to zero, we obtain the result.

Now we change variable: $u = \frac{t^2}{2\sum_{i=1}^n a_i^2}$. Then $t = \sqrt{2u\sum_{i=1}^n a_i^2}$.

$$\mathbb{P}\left(\sum_{i=1}^{n}\varepsilon_{i}a_{i}\geq\sqrt{2u\sum_{i=1}^{n}a_{i}^{2}}\right)\leq e^{-u}$$

and

$$\mathbb{P}\left(\sum_{i=1}^{n}\varepsilon_{i}a_{i} \leq \sqrt{2u\sum_{i=1}^{n}a_{i}^{2}}\right) \geq 1 - e^{-u}$$

Here $\sum_{i=1}^{n} a_i^2 = \operatorname{Var}(\sum_{i=1}^{n} \varepsilon_i a_i).$

Rademacher sums will play important role in future. Consider again the problem of estimating $\frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}f$. We will see that by the Symmetrization technique,

$$\frac{1}{n}\sum_{i=1}^{n}f(X_{i}) - \mathbb{E}f \sim \frac{1}{n}\sum_{i=1}^{n}f(X_{i}) - \frac{1}{n}\sum_{i=1}^{n}f(X_{i}').$$

In fact,

$$\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f\right| \leq \mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\frac{1}{n}\sum_{i=1}^{n}f(X_{i}')\right| \leq 2\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f\right|.$$

The second inequality above follows by adding and subtracting $\mathbb{E}f$:

$$\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\frac{1}{n}\sum_{i=1}^{n}f(X_{i}')\right| \leq \mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f\right|+\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i}')-\mathbb{E}f\right|$$
$$= 2\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f\right|$$

while for the first inequality we use Jensen's inequality:

$$\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f\right| = \mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}f(X_{i}')\right|$$
$$\leq \mathbb{E}_{X}\mathbb{E}_{X'}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}f(X_{i}')\right|$$

Note that $\frac{1}{n} \sum_{i=1}^{n} f(X_i) - \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}f(X'_i)$ is equal in distribution to $\frac{1}{n} \sum_{i=1}^{n} \varepsilon_i (f(X_i) - f(X'_i))$. We now prove Hoeffding-Chernoff Inequality:

Theorem 7.2. Assume $0 \leq X_i \leq 1$ and $\mu = \mathbb{E}X$. Then

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu \geq t\right) \leq e^{-n\mathcal{D}(\mu+t,\mu)}$$

where the KL-divergence $\mathcal{D}(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$.

Proof. Note that $\phi(x) = e^{\lambda x}$ is convex and so $e^{\lambda x} = e^{\lambda(x \cdot 1 + (1-x) \cdot 0)} \le xe^{\lambda} + (1-x)e^{\lambda \cdot 0} = 1 - x + xe^{\lambda}$. Hence,

$$\mathbb{E}e^{\lambda X} = 1 - \mathbb{E}X + \mathbb{E}Xe^{\lambda} = 1 - \mu + \mu e^{\lambda}.$$

Again, we minimize the following bound with respect to $\lambda > 0$:

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \ge n(\mu+t)\right) \le e^{-\lambda n(\mu+t)} \mathbb{E}e^{\lambda \sum X_{i}} \\
= e^{-\lambda n(\mu+t)} \left(\mathbb{E}e^{\lambda X}\right)^{n} \\
\le e^{-\lambda n(\mu+t)} \left(1-\mu+\mu e^{\lambda}\right)^{n}$$

Take derivative w.r.t. $\lambda:$

$$-n(\mu+t)e^{-\lambda n(\mu+t)}(1-\mu+\mu e^{\lambda})^n + n(1-\mu+\mu e^{\lambda})^{n-1}\mu e^{\lambda}e^{-\lambda n(\mu+t)} = 0$$
$$-(\mu+t)(1-\mu+\mu e^{\lambda}) + \mu e^{\lambda} = 0$$
$$e^{\lambda} = \frac{(1-\mu)(\mu+t)}{\mu(1-\mu-t)}.$$

Substituting,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \ge n(\mu+t)\right) \le \left(\left(\frac{\mu(1-\mu-t)}{(1-\mu)(\mu+t)}\right)^{\mu+t} \left(1-\mu+\frac{(1-\mu)(\mu+t)}{1-\mu-t}\right)\right)^{n} \\
= \left(\left(\frac{\mu}{\mu+t}\right)^{\mu+t} \left(\frac{1-\mu}{1-\mu-t}\right)^{1-\mu-t}\right)^{n} \\
= \exp\left(-n\left((\mu+t)\log\frac{\mu+t}{\mu} + (1-\mu-t)\log\frac{1-\mu-t}{1-\mu}\right)\right),$$

completing the proof. Moreover,

$$\mathbb{P}\left(\mu - \frac{1}{n}\sum_{i=1}^{n} X_i \ge t\right) = \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu_Z \ge t\right) \le e^{-n\mathcal{D}(\mu_z + t, \mu_Z)} = e^{-n\mathcal{D}(1 - \mu_X + t, 1 - \mu_X)}$$

where $Z_i = 1 - X_i$ (and thus $\mu_Z = 1 - \mu_X$).

If $0 < \mu \le 1/2$,

$$\mathcal{D}(1-\mu+t,1-\mu) \ge \frac{t^2}{2\mu(1-\mu)}$$

Hence, we get

$$\mathbb{P}\left(\mu - \frac{1}{n}\sum_{i=1}^{n} X_i \ge t\right) \le e^{-\frac{nt^2}{2\mu(1-\mu)}} = e^{-u}.$$

Solving for t,

$$\mathbb{P}\left(\mu - \frac{1}{n}\sum_{i=1}^{n} X_i \ge \sqrt{\frac{2\mu(1-\mu)u}{n}}\right) \le e^{-u}.$$

If $X_i \in \{0, 1\}$ are i.i.d. Bernoulli trials, then $\mu = \mathbb{E}X = \mathbb{P}(X = 1)$, $\operatorname{Var}(X) = \mu(1-\mu)$, and $\mathbb{P}\left(\mu - \frac{1}{n}\sum_{i=1}^{n}X_i \ge t\right) \le e^{-\frac{nt^2}{2\operatorname{Var}(X)}}$.

The following inequality says that if we pick n reals $a_1, \dots, a_n \in \mathbb{R}$ and add them up each multiplied by a random sign ± 1 , then the expected value of the sum should not be far off from $\sqrt{\sum |a_i|^2}$.

Theorem 7.3. [Khinchine inequality] Let $a_1, \dots, a_n \in \mathbb{R}$, $\epsilon_i, \dots, \epsilon_n$ be i.i.d. Rademacher random variables: $\mathbb{P}(\epsilon_i = 1) = \mathbb{P}(\epsilon_i = -1) = 0.5$, and 0 . Then

$$A_{p} \cdot \left(\sum_{i=1}^{n} |a_{i}|^{2}\right)^{1/2} \leq \left(\mathbb{E}\left|\sum_{i=1}^{n} a_{i} \epsilon_{i}\right|^{p}\right)^{1/p} \leq B_{p} \cdot \left(\sum_{i=1}^{n} |a_{i}|^{2}\right)^{1/2}$$

for some constants A_p and B_p depending on p.

Proof. Let $\sum |a_i|^2 = 1$ without lossing generality. Then

$$\begin{split} \mathbb{E} \left| \sum a_i \epsilon_i \right|^p &= \int_0^\infty \mathbb{P} \left(\left| \sum a_i \epsilon_i \right|^p \ge s^p \right) \, ds^p \\ &= \int_0^\infty \mathbb{P} \left(\left| \sum a_i \epsilon_i \right| \ge s \right) \cdot ps^{p-1} \, ds^p \\ &= \int_0^\infty \mathbb{P} \left(\left| \sum a_i \epsilon_i \right| \ge s \right) \cdot ps^{p-1} \, ds^p \\ &\le \int_0^\infty 2 \exp(-\frac{s^2}{2}) \cdot ps^{p-1} \, ds^p \text{, Hoeffding's inequality} \\ &= (B_p)^p \text{, when } p \ge 2. \end{split}$$

When 0 ,

$$\mathbb{E} \left| \sum a_{i} \epsilon_{i} \right|^{p} \leq \mathbb{E} \left| \sum a_{i} \epsilon_{i} \right|^{2}$$

$$= \mathbb{E} \left| \sum a_{i} \epsilon_{i} \right|^{\frac{2}{3}p + (2 - \frac{2}{3}p)}$$

$$\leq \left(\mathbb{E} \left| \sum a_{i} \epsilon_{i} \right|^{p} \right)^{\frac{2}{3}} \left(\mathbb{E} \left| \sum a_{i} \epsilon_{i} \right|^{6 - 2p} \right)^{\frac{1}{3}}, \text{ Holder's inequality}$$

$$\leq (B_{6 - 2p})^{2 - \frac{2}{3}p} \cdot \left(\mathbb{E} \left| \sum a_{i} \epsilon_{i} \right|^{p} \right)^{\frac{2}{3}}.$$

Thus $\mathbb{E} |\sum a_i \epsilon_i|^p \leq (B_{6-2p})^{6-2p}$, completing the proof.

Assume $f \in \mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$ and x_1, \dots, x_n are i.i.d. Denote $\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(x_i)$ and $\mathbb{P} f = \int f dP = \mathbb{E} f$. We are interested in bounding $\frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E} f$.

Worst-case scenario is the value

$$\sup_{f\in\mathcal{F}} |\mathbb{P}_n f - \mathbb{P}f|$$

The Glivenko-Cantelli property $GC(\mathcal{F}, P)$ says that

$$\mathbb{E}\sup_{f\in\mathcal{F}}|\mathbb{P}_nf-\mathbb{P}f|\to 0$$

as $n \to \infty$.

- Algorithm can output any $f \in \mathcal{F}$
- Objective is determined by $\mathbb{P}_n f$ (on the data)
- Goal is $\mathbb{P}f$
- Distribution P is unknown

The most pessimistic requirement is

$$\sup_{P} \mathbb{E} \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f| \to 0$$

which we denote

uniform $GC(\mathcal{F})$.

VC classes of sets

Let $\mathcal{C} = \{C \subseteq X\}, f_C(x) = I(x \in C)$. The most pessimistic value is

$$\sup_{P} \mathbb{E} \sup_{C \in \mathcal{C}} \left| \mathbb{P}_{n} \left(C \right) - \mathbb{P} \left(C \right) \right| \to 0.$$

For any sample $\{x_1, \ldots, x_n\}$, we can look at the ways that \mathcal{C} intersects with the sample:

$$\{C \cap \{x_1, \ldots, x_n\} : C \in \mathcal{C}\}.$$

Let

$$\triangle_n(\mathcal{C}, x_1, \dots, x_n) = \operatorname{card} \{C \cap \{x_1, \dots, x_n\} : C \in \mathcal{C}\}$$

the number of different subsets picked out by $C \in \mathcal{C}$. Note that this number is at most 2^n . Denote

$$\Delta_n(\mathcal{C}) = \sup_{\{x_1,\dots,x_n\}} \Delta_n(\mathcal{C}, x_1,\dots,x_n) \le 2^n.$$

We will see that for some classes, $\triangle_n(\mathcal{C}) = 2^n$ for $n \leq V$ and $\triangle_n(\mathcal{C}) < 2^n$ for n > V for some constant V. What if $\triangle_n(\mathcal{C}) = 2^n$ for all $n \geq 1$? That means we can always find $\{x_1, \ldots, x_n\}$ such that $C \in \mathcal{C}$ can pick out any subset of it: " \mathcal{C} shatters $\{x_1, \ldots, x_n\}$ ". In some sense, we do not learn anything.

Definition 8.1. If $V < \infty$, then \mathcal{C} is called a VC class. V is called VC dimension of \mathcal{C} .

Sauer's lemma states the following:

Lemma 8.2.

$$\forall \{x_1, \dots, x_n\}, \quad \bigtriangleup_n(\mathcal{C}, x_1, \dots, x_n) \le \left(\frac{en}{V}\right)^V \text{ for } n \ge V.$$

Hence, C will pick out only very few subsets out of 2^n (because $\left(\frac{en}{V}\right)^V \sim n^V$).

Lemma 8.3. The number $\triangle_n(\mathcal{C}, x_1, \dots, x_n)$ of subsets picked out by \mathcal{C} is bounded by the number of subsets shattered by \mathcal{C} .

Proof. Without loss of generality, we restrict C to $C := \{C \cap \{x_1, \ldots, x_n\} : C \in C\}$, and we have $card(C) = \Delta_n(C, x_1, \cdots, x_n)$.

We will say that C is **hereditary** if and only if whenever $B \subseteq C \in C$, $B \in C$. If C is hereditary, then every $C \in C$ is shattered by C, and the lemma is obvious. Otherwise, we will transform $C \to C'$, hereditary, without changing the cardinality of C and without increasing the number of shattered subsets.

Define the operators T_i for $i = 1, \dots, n$ as the following,

$$T_i(C) = \begin{cases} C - \{x_i\} & \text{if } C - \{x_i\} \text{ is not in } \mathcal{C} \\ C & \text{otherwise} \end{cases}$$
$$T_i(\mathcal{C}) = \{T_i(C) : C \in \mathcal{C}\}.$$

It follows that card $T_i(\mathcal{C}) = \text{card } \mathcal{C}$. Moreover, every $A \subseteq \{x_1, \dots, x_n\}$ that is shattered by $T_i(\mathcal{C})$ is also shattered by \mathcal{C} . If $x_i \notin A$, then $\forall C \in \mathcal{C}, A \cap C = A \cap T_i(C)$, thus \mathcal{C} and $T_i(\mathcal{C})$ both or neither shatter A. On the other hand, if $x_i \in A$ and A is shattered by $T_i(\mathcal{C})$, then $\forall B \subseteq A, \exists C \in \mathcal{C}$, such that $B \cap \{x_i\} = A \cap T_i(C)$. This means that $x_i \in T_i(C)$, and that $C \setminus \{x_i\} \in \mathcal{C}$. Thus both $B \cup \{x_i\}$ and $B \setminus \{x_i\}$ are picked out by \mathcal{C} . Since either $B = B \cup \{x_i\}$ or $B = B \setminus \{x_i\}$, B is picked out by \mathcal{C} . Thus A is shattered by \mathcal{C} . Apply the operator $T = T_1 \circ \ldots \circ T_n$ until $T^{k+1}(\mathcal{C}) = T^k(\mathcal{C})$. This will happen for at most $\sum_{C \in \mathcal{C}} \text{card}(C)$ times, since $\sum_{C \in \mathcal{C}} \text{card}(T_i(C)) < \sum_{C \in \mathcal{C}} \text{card}(C)$ if $T_i(\mathcal{C}) \neq \mathcal{C}$. The resulting collection \mathcal{C}' is hereditary. This proves the lemma.

Sauer's lemma is proved, since for arbitrary $\{x_1, \ldots, x_n\}$,

 $\Delta_n(\mathcal{C}, x_1, \dots, x_n) \leq \text{card (shattered subsets of } \{x_1, \dots, x_n\})$ $\leq \text{card (subsets of size } \leq V)$ $\sum_{i=1}^{V} \binom{n}{i}$

$$= \sum_{i=0}^{N} {\binom{i}{i}}$$
$$\leq \left(\frac{en}{V}\right)^{V}.$$

Recall the definition of VC-dimension. Consider some examples:

- $\mathcal{C} = \{(-\infty, a) \text{ and } (a, \infty) : a \in \mathbb{R}\}. VC(\mathcal{C}) = 2.$
- $C = \{(a, b) \cup (c, d)\}. VC(C) = 4.$
- $f_1, \ldots, f_d : \mathcal{X} \to \mathbb{R}, \ \mathcal{C} = \{\{x : \sum_{k=1}^d \alpha_k f_k(x) > 0\} : \alpha_1, \ldots, \alpha_d \in \mathbb{R}\}$

Theorem 9.1. $VC(\mathcal{C})$ in the last example above is at most d.

Proof. Observation: For any $\{x_1, \ldots, x_{d+1}\}$ if we cannot shatter $\{x_1, \ldots, x_{d+1}\} \longleftrightarrow \exists I \subseteq \{1 \ldots d+1\}$ s.t. we cannot pick out $\{x_i, i \in I\}$. If we can pick out $\{x_i, i \in I\}$, then for some $C \in \mathcal{C}$ there are $\alpha_1, \ldots, \alpha_d$ s.t. $\sum_{k=1}^d \alpha_k f_k(x) > 0$ for $i \in I$ and $\sum_{k=1}^d \alpha_k f_k(x) \leq 0$ for $i \notin I$.

Denote

$$\left(\sum_{k=1}^{d} \alpha_k f_k(x_1), \dots, \sum_{k=1}^{d} \alpha_k f_k(x_{d+1})\right) = F(\alpha) \in \mathbb{R}^{d+1}.$$

By linearity,

$$F(\alpha) = \sum_{k=1}^{d} \alpha_k \left(f_k(x_1), \dots, f(x_{d+1}) \right) = \sum_{k=1}^{d} \alpha_k F_k \subseteq H \subset \mathbb{R}^{d+1}$$

and *H* is a *d*-dim subspace. Hence, $\exists \phi \neq 0, \ \phi \cdot h = 0, \forall h \in H \ (\phi \text{ orthogonal to } H)$. Let $I = \{i : \phi_i > 0\}$, where $\phi = (\phi_1, \dots, \phi_{d+1})$. If $I = \emptyset$ then take $-\phi$ instead of ϕ so that ϕ has positive coordinates. Claim: We cannot pick out $\{x_i, i \in I\}$. Suppose we can: then $\exists \alpha_1, \dots, \alpha_d$ s.t. $\sum_{k=1}^d \alpha_k f_k(x_i) > 0$ for $i \in I$ and $\sum_{k=1}^d \alpha_k f_k(x_i) \leq 0$ for $i \notin I$. But $\phi \cdot F(\alpha) = 0$ and so

$$\phi_1 \sum_{k=1}^d \alpha_k f_k(x_1) + \ldots + \phi_{d+1} \sum_{k=1}^d \alpha_k f_k(x_{d+1}) = 0.$$

Hence,

$$\sum_{i \in I} \underbrace{\phi_i \left(\sum_{k=1}^d \alpha_k f_k(x_i) \right)}_{>0} = \sum_{i \notin I} \underbrace{(-\phi_i)}_{\geq 0} \underbrace{\left(\sum_{k=1}^d \alpha_k f_k(x_i) \right)}_{\leq 0}.$$

Contradiction.

• Half-spaces in \mathbb{R}^d : {{ $\alpha_1 x_1 + \ldots + \alpha_d x_d + \alpha_{d+1} > 0$ } : $\alpha_1, \ldots, \alpha_{d+1} \in \mathbb{R}$ }.

By setting $f_1 = x_1, \ldots, f_d = x_d, f_{d+1} = 1$, we can use the previous result and therefore $VC(\mathcal{C}) \leq d+1$ for half-spaces.

Reminder: $\triangle_n(\mathcal{C}, x_1, \dots, x_n) = \operatorname{card}\{\{x_1, \dots, x_n\} \cap C : C \in \mathcal{C}\}.$

Lemma 9.1. If C and D are VC classes of sets,

- (1) $\mathcal{C} = \{C^c : C \in \mathcal{C}\}$ is VC
- (2) $\mathcal{C} \cap \mathcal{D} = \{C \cap D : C \in \mathcal{C}, D \in \mathcal{D}\}$ is VC
- (3) $\mathcal{C} \cup \mathcal{D} = \{C \cup D : C \in \mathcal{C}, D \in \mathcal{D}\}$ is VC

19

- (1) obvious we can shatter x_1, \ldots, x_n by \mathcal{C} iff we can do the same by \mathcal{C}^c .
 - (a) By Sauer's Lemma,

$$\Delta_n(\mathcal{C} \cap \mathcal{D}, x_1, \dots, x_n) \leq \Delta_n(\mathcal{C}, x_1, \dots, x_n) \Delta_n(\mathcal{C} \cap \mathcal{D}, x_1, \dots, x_n)$$
$$\leq \left(\frac{en}{V_{\mathcal{C}}}\right)_{\mathcal{C}}^V \left(\frac{en}{V_{\mathcal{D}}}\right)_{\mathcal{D}}^V \leq 2^n$$

for large enough n.

(b) $(C \cup D) = (C^c \cap D^c)^c$, and the result follows from (1) and (2).

Example 9.1. Decision trees on \mathbb{R}^d with linear decision rules: $\{C_1 \cap \ldots C_\ell\}$ is VC and $\bigcup_{\text{leaves}} \{C_1 \cap \ldots C_\ell\}$ is VC.

Neural networks with depth ℓ and binary leaves.

$$\mathbb{P}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C)-\mathbb{P}\left(C\right)\right|\geq t\right)$$

In Lecture 7 we hinted at Symmetrization as a way to deal with the unknown $\mathbb{P}(C)$.

Lemma 10.1. [Symmetrization] If
$$t \ge \sqrt{\frac{2}{n}}$$
, then

$$\mathbb{P}\left(\sup_{C\in\mathcal{C}} \left|\frac{1}{n}\sum_{i=1}^{n} I(X_i\in C) - \mathbb{P}(C)\right| \ge t\right) \le 2\mathbb{P}\left(\sup_{C\in\mathcal{C}} \left|\frac{1}{n}\sum_{i=1}^{n} I(X_i\in C) - \frac{1}{n}\sum_{i=1}^{n} I(X'_i\in C)\right| \ge t/2\right).$$

Proof. Suppose the event

$$\sup_{C \in \mathcal{C}} \left| \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C) - \mathbb{P}(C) \right| \ge t$$

occurs. Let $X = (X_1, \dots, X_n) \in \{\sup_{C \in \mathcal{C}} \left| \frac{1}{n} \sum_{i=1}^n I(X_i \in C) - \mathbb{P}(C) \right| \ge t \}$. Then

$$\exists C_X \text{ such that } \left| \frac{1}{n} \sum_{i=1}^n I(X_i \in C_X) - \mathbb{P}(C_X) \right| \ge t.$$

For a fixed C,

$$\begin{aligned} \mathbb{P}_{X'}\left(\left|\frac{1}{n}\sum_{i=1}^{n}I(X'_{i}\in C)-\mathbb{P}\left(C\right)\right|\geq t/2\right) &= \mathbb{P}\left(\left(\frac{1}{n}\sum_{i=1}^{n}I(X'_{i}\in C)-\mathbb{P}\left(C\right)\right)^{2}\geq t^{2}/4\right) \\ &\leq \text{ (by Chebyshev's Ineq) } \frac{4\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}I(X'_{i}\in C)-\mathbb{P}\left(C\right)\right)^{2}}{t^{2}} \\ &= \frac{4}{n^{2}t^{2}}\sum_{i,j}\mathbb{E}(I(X'_{i}\in C)-\mathbb{P}\left(C\right))(I(X'_{j}\in C)-\mathbb{P}\left(C\right)) \\ &= \frac{4}{n^{2}t^{2}}\sum_{i=1}^{n}\mathbb{E}(I(X'_{i}\in C)-\mathbb{P}\left(C\right))^{2} = \frac{4n\mathbb{P}\left(C\right)\left(1-\mathbb{P}\left(C\right)\right)}{n^{2}t^{2}} \leq \frac{1}{nt^{2}} \leq \frac{1}{2} \end{aligned}$$

since we chose $t \ge \sqrt{\frac{2}{n}}$. So,

$$\mathbb{P}_{X'}\left(\left|\frac{1}{n}\sum_{i=1}^{n}I(X'_{i}\in C_{X})-\mathbb{P}(C_{X})\right|\leq t/2\left|\exists C_{X}\right)\geq 1/2$$

if $t \ge \sqrt{2/n}$. Assume that the event

$$\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C_{X})-\mathbb{P}\left(C_{X}\right)\right|\leq t/2$$

occurs. Recall that

$$\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C_{X})-\mathbb{P}\left(C_{X}\right)\right|\geq t.$$

Hence, it must be that

$$\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C_{X})-\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C_{X})\right|\geq t/2.$$

We conclude

$$\frac{1}{2} \leq \mathbb{P}_{X'} \left(\left| \frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C_X) - \mathbb{P}(C_X) \right| \leq t/2 \left| \exists C_X \right) \right.$$
$$\leq \mathbb{P}_{X'} \left(\left| \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C_X) - \frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C_X) \right| \geq t/2 \left| \exists C_X \right) \right.$$
$$\mathbb{P}_{X'} \left(\sup_{C \in \mathcal{C}} \left| \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C) - \frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C) \right| \geq t/2 \left| \exists C_X \right) \right.$$

Since indicators are 0, 1-valued,

$$\frac{1}{2}I\left(\underbrace{\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C)-\mathbb{P}\left(C\right)\right|\geq t}_{\exists C_{X}}\right)$$
$$\leq \mathbb{P}_{X'}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C)-\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C)\right|\geq t/2\left|\exists C_{X}\right)\cdot I\left(\exists C_{X}\right)$$
$$\leq \mathbb{P}_{X,X'}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C)-\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C)\right|\geq t/2\right).$$

Now, take expectation with respect to $X_i \mbox{'s}$ to obtain

$$\mathbb{P}_X\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^n I(X_i\in C) - \mathbb{P}(C)\right| \ge t\right)$$
$$\le 2 \cdot \mathbb{P}_{X,X'}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^n I(X_i\in C) - \frac{1}{n}\sum_{i=1}^n I(X'_i\in C)\right| \ge t/2\right).$$

Theorem 10.1. If $VC(\mathcal{C}) = V$, then

$$\mathbb{P}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C)-\mathbb{P}\left(C\right)\right|\geq t\right)\leq 4\left(\frac{2en}{V}\right)^{V}e^{-\frac{nt^{2}}{8}}.$$

Proof.

$$2\mathbb{P}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C)-\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C)\right|\geq t/2\right)$$
$$=2\mathbb{P}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\left(I(X_{i}\in C)-I(X_{i}'\in C)\right)\right|\geq t/2\right)$$
$$=2\mathbb{E}_{X,X'}\mathbb{P}_{\varepsilon}\left(\sup_{C\in\mathcal{C}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\left(I(X_{i}\in C)-I(X_{i}'\in C)\right)\right|\geq t/2\right).$$

2	9
4	4

The first equality is due to the fact that X_i and X'_i are i.i.d., and so switching their names (i.e. introducing random signs ε_i , $\mathbb{P}(\varepsilon_i = \pm 1) = 1/2$) does not have any effect. In the last line, it's important to see that the probability is taken with respect to ε_i 's, while X_i and X'_i 's are fixed.

By Sauer's lemma,

$$riangle_{2n}(\mathcal{C}, X_1, \dots, X_n, X'_1, \dots, X'_n) \leq \left(\frac{2en}{V}\right)^V.$$

In other words, any class will be equivalent to one of C_1, \ldots, C_N on the data, where $N \leq \left(\frac{2en}{V}\right)^V$. Hence,

L		н

Last time we proved the Pessimistic VC inequality:

$$\mathbb{P}\left(\sup_{C} \left| \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C) - \mathbb{P}(C) \right| \ge t \right) \le 4 \left(\frac{2en}{V} \right)^V e^{-\frac{nt^2}{8}},$$

which can be rewritten with

$$t = \sqrt{\frac{8}{n} \left(\log 4 + V \log \frac{2en}{V} + u \right)}$$

as

$$\mathbb{P}\left(\sup_{C} \left| \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C) - \mathbb{P}(C) \right| \le \sqrt{\frac{8}{n} \left(\log 4 + V \log \frac{2en}{V} + u \right)} \right) \ge 1 - e^{-u}.$$

Hence, the rate is $\sqrt{\frac{V \log n}{n}}$. In this lecture we will prove Optimistic VC inequality, which will improve on this rate when $\mathbb{P}(C)$ is small.

As before, we have pairs (X_i, Y_i) , $Y_i = \pm 1$. These examples are labeled according to some unknown C_0 such that Y = 1 if $X = C_0$ and Y = 0 if $X \notin C_0$.

Let $\mathcal{C} = \{C : C \subseteq \mathcal{X}\}$, a set of classifiers. C makes a mistake if

$$X \in C \setminus C_0 \cup C_0 \setminus C = C \triangle C_0.$$

Similarly to last lecture, we can derive bounds on

$$\sup_{C} \left| \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C \triangle C_0) - \mathbb{P}(C \triangle C_0) \right|,$$

where $\mathbb{P}(C \triangle C_0)$ is the generalization error.

Let $\mathcal{C}' = \{C \triangle C_0 : C \in \mathcal{C}\}$. One can prove that $VC(\mathcal{C}') \leq VC(\mathcal{C})$ and $\triangle_n(C', X_1, \dots, X_n) \leq \triangle_n(C, X_1, \dots, X_n)$. By Hoeffding-Chernoff, if $\mathbb{P}(C) \leq \frac{1}{2}$,

$$\mathbb{P}\left(\mathbb{P}\left(C\right) - \frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C) \leq \sqrt{\frac{2\mathbb{P}\left(C\right)t}{n}}\right) \geq 1 - e^{-t}.$$

Theorem 11.1. [Optimistic VC inequality]

$$\mathbb{P}\left(\sup_{C} \frac{\mathbb{P}(C) - \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C)}{\sqrt{\mathbb{P}(C)}} \ge t\right) \le 4\left(\frac{2en}{V}\right)^{V} e^{-\frac{nt^2}{4}}.$$

Proof. Let C be fixed. Then

$$\mathbb{P}_{(X_i')}\left(\frac{1}{n}\sum_{i=1}^n I(X_i' \in C) \ge \mathbb{P}\left(C\right)\right) \ge \frac{1}{4}$$

whenever $\mathbb{P}(C) \geq \frac{1}{n}$. Indeed, $\mathbb{P}(C) \geq \frac{1}{n}$ since $\sum_{i=1}^{n} I(X'_i \in C) \geq n\mathbb{P}(C) \geq 1$. Otherwise $\mathbb{P}(\sum_{i=1}^{n} I(X'_i \in C) = 0) = \prod_{i=1}^{n} \mathbb{P}(X'_i \notin C) = (1 - \mathbb{P}(C))^n$ can be as close to 0 as we want.

Similarly to the proof of the previous lecture, let

$$(X_i) \in \left\{ \sup_C \frac{\mathbb{P}(C) - \frac{1}{n} \sum_{i=1}^n I(X_i \in C)}{\sqrt{\mathbb{P}(C)}} \ge t \right\}.$$
24

Hence, there exists C_X such that

$$\frac{\mathbb{P}(C) - \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C)}{\sqrt{\mathbb{P}(C)}} \ge t.$$

Exercise 1. Show that if

$$\frac{\mathbb{P}(C_X) - \frac{1}{n} \sum_{i=1}^n I(X_i \in C_X)}{\sqrt{\mathbb{P}(C_X)}} \ge t$$

and

$$\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C_{X})\geq \mathbb{P}\left(C_{X}\right),$$

then

$$\frac{\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C_{X})-\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C_{X})}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\in C_{X})+\frac{1}{n}\sum_{i=1}^{n}I(X_{i}'\in C_{X})}} \ge \frac{t}{\sqrt{2}}$$

Hint: use the fact that $\phi(s) = \frac{s-a}{\sqrt{s}} = \sqrt{s} - \frac{s}{\sqrt{s}}$ *is increasing in s.*

From the above exercise it follows that

$$\frac{1}{4} \leq \mathbb{P}_{(X')} \left(\frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C_X) \geq \mathbb{P}(C_X) \middle| \exists C_X \right)$$
$$\leq \mathbb{P}_{(X')} \left(\frac{\frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C_X) - \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C_X)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} I(X_i \in C_X) + \frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C_X)}} \geq \frac{t}{\sqrt{2}} \middle| \exists C_X \right)$$

Since indicator is 0, 1-valued,

$$\begin{split} &\frac{1}{4}I\left(\underbrace{\sup_{C} \frac{\mathbb{P}\left(C\right) - \frac{1}{n}\sum_{i=1}^{n}I(X_{i} \in C)}{\sqrt{\mathbb{P}\left(C\right)}}}_{\exists C_{X}} \ge t}\right) \\ &\leq \mathbb{P}_{\left(X'\right)}\left(\frac{\frac{1}{n}\sum_{i=1}^{n}I(X_{i}' \in C_{X}) - \frac{1}{n}\sum_{i=1}^{n}I(X_{i} \in C_{X})}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}I(X_{i} \in C_{X}) + \frac{1}{n}\sum_{i=1}^{n}I(X_{i}' \in C_{X})}} \ge \frac{t}{\sqrt{2}} \middle| \exists C_{X}\right) \cdot I\left(\exists C_{X}\right) \\ &\leq \mathbb{P}_{\left(X'\right)}\left(\sup_{C} \frac{\frac{1}{n}\sum_{i=1}^{n}I(X_{i}' \in C) - \frac{1}{n}\sum_{i=1}^{n}I(X_{i} \in C)}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}I(X_{i} \in C) + \frac{1}{n}\sum_{i=1}^{n}I(X_{i}' \in C)}} \ge \frac{t}{\sqrt{2}}\right). \end{split}$$

Hence,

$$\frac{1}{4} \mathbb{P}\left(\sup_{C} \frac{\mathbb{P}(C_X) - \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C_X)}{\sqrt{\mathbb{P}(C_X)}} \ge t\right) \\
\leq \mathbb{P}\left(\sup_{C} \frac{\frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C) - \frac{1}{n} \sum_{i=1}^{n} I(X_i \in C)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} I(X_i \in C) + \frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C)}} \ge \frac{t}{\sqrt{2}}\right) \\
= \mathbb{E}\mathbb{P}_{\varepsilon}\left(\sup_{C} \frac{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \left(I(X'_i \in C) - I(X_i \in C)\right)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} I(X_i \in C) + \frac{1}{n} \sum_{i=1}^{n} I(X'_i \in C)}} \ge \frac{t}{\sqrt{2}}\right).$$

18.465

There exist C_1, \ldots, C_N , with $N \leq \triangle_{2n}(\mathcal{C}, X_1, \ldots, X_n, X'_1, \ldots, X'_n)$. Therefore,

$$\mathbb{EP}_{\varepsilon} \left(\sup_{C} \frac{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left(I(X_{i}^{\prime} \in C) - I(X_{i} \in C) \right)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} I(X_{i} \in C) + \frac{1}{n} \sum_{i=1}^{n} I(X_{i}^{\prime} \in C)}} \ge \frac{t}{\sqrt{2}} \right) \\ = \mathbb{EP}_{\varepsilon} \left(\bigcup_{k \le N} \left\{ \frac{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left(I(X_{i}^{\prime} \in C_{k}) - I(X_{i} \in C_{k}) \right)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} I(X_{i} \in C_{k}) + \frac{1}{n} \sum_{i=1}^{n} I(X_{i}^{\prime} \in C_{k})}} \ge \frac{t}{\sqrt{2}} \right\} \right) \\ \le \mathbb{E} \sum_{k=1}^{N} \mathbb{P}_{\varepsilon} \left(\frac{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left(I(X_{i}^{\prime} \in C_{k}) - I(X_{i} \in C_{k}) \right)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} I(X_{i} \in C_{k}) + \frac{1}{n} \sum_{i=1}^{n} I(X_{i}^{\prime} \in C_{k})}}} \ge \frac{t}{\sqrt{2}} \right) \\ = \mathbb{E} \sum_{k=1}^{N} \mathbb{P}_{\varepsilon} \left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left(I(X_{i}^{\prime} \in C_{k}) - I(X_{i} \in C_{k}) \right)}{\frac{1}{n} \sum_{i=1}^{n} I(X_{i}^{\prime} \in C_{k})} - I(X_{i} \in C_{k})} \right) \ge \frac{t}{\sqrt{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} I(X_{i} \in C_{k}) + \frac{1}{n} \sum_{i=1}^{n} I(X_{i}^{\prime} \in C_{k})}}{\frac{1}{n} \sum_{i=1}^{n} I(X_{i}^{\prime} \in C_{k})}} \right)$$

The last expression can be upper-bounded by Hoeffding's inequality as follows:

$$\mathbb{E}\sum_{k=1}^{N} \mathbb{P}_{\varepsilon} \left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left(I(X_{i}' \in C_{k}) - I(X_{i} \in C_{k}) \right) \geq \frac{t}{\sqrt{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(I(X_{i} \in C_{k}) + I(X_{i}' \in C_{k}) \right) \right)} \\ \leq \mathbb{E}\sum_{k=1}^{N} \exp\left(-\frac{t^{2} \frac{1}{n} \sum_{i=1}^{n} \left(I(X_{i} \in C_{k}) + I(X_{i}' \in C_{k}) \right)}{2 \frac{1}{n^{2}} 2 \sum \left(I(X_{i}' \in C_{k}) - I(X_{i} \in C_{k}) \right)^{2}} \right)$$

since upper sum in the exponent is bigger than the lower sum (compare term-by-term)

$$\leq \mathbb{E} \sum_{k=1}^{N} e^{-\frac{nt^2}{4}} \leq \left(\frac{2en}{V}\right)^V e^{-\frac{nt^2}{4}}.$$

VC-subgraph classes of functions

Let $\mathcal{F} = \{ f : \mathcal{X} \mapsto \mathbb{R} \}$ and

 $C_f = \{ (x,t) \in \mathcal{X} \times \mathbb{R} : 0 \le t \le f(x) \text{ or } f(x) \le t \le 0 \}.$

Define class of sets $\mathcal{C} = \{C_f : f \in \mathcal{F}\}.$

Definition 12.1. If C is a VC class of sets, then \mathcal{F} is VC-subgraph class of functions and, by definition, $VC(\mathcal{F}) = VC(C)$.

Note that equivalent definition of C_f is

$$C'_f = \{(x,t) \in \mathcal{X} \times \mathbb{R} : |f(x)| \ge |t|\}.$$

Example 12.1. $C = \{C \subseteq \mathcal{X}\}, \mathcal{F}(C) = \{I(X \in C) : C \in C\}$. Then $\mathcal{F}(C)$ is VC-subgraph class if and only if C is a VC class of sets.

Assume d functions are fixed: $\{f_1, \ldots, f_d\} : \mathcal{X} \mapsto \mathbb{R}$. Let

$$\mathcal{F} = \left\{ \sum_{i=1}^{d} \alpha_i f_i(x) : \alpha_1, \dots, \alpha_d \in \mathbb{R} \right\}.$$

Then $VC(\mathcal{F}) \leq d+1$. To prove this, it's easier to use the second definition.

Packing and covering numbers

Let $f, g \in \mathcal{F}$ and assume we have a distance function d(f, g).

Example 12.2. If X_1, \ldots, X_n are data points, then

$$d_1(f,g) = \frac{1}{n} \sum_{i=1}^n |f(X_i) - g(X_i)|$$

and

$$d_2(f,g) = \left(\frac{1}{n}\sum_{i=1}^n \left(f(X_i) - g(X_i)\right)^2\right)^{1/2}.$$

Definition 12.2. Given $\varepsilon > 0$ and $f_1, \ldots, f_N \in \mathcal{F}$, we say that f_1, \ldots, f_N are ε -separated if $d(f_i, f_j) > \varepsilon$ for any $i \neq j$.

Definition 12.3. The ε -packing number, $\mathcal{D}(\mathcal{F}, \varepsilon, d)$, is the maximal cardinality of an ε -separated set.

Note that $\mathcal{D}(\mathcal{F},\varepsilon,d)$ is decreasing in ε .

Definition 12.4. Given $\varepsilon > 0$ and $f_1, \ldots, f_N \in \mathcal{F}$, we say that the set f_1, \ldots, f_N is an ε -cover of \mathcal{F} if for any $f \in \mathcal{F}$, there exists $1 \le i \le N$ such that $d(f, f_i) \le \varepsilon$.

Definition 12.5. The ε -covering number, $\mathcal{N}(\mathcal{F}, \varepsilon, d)$, is the minimal cardinality of an ε -cover of \mathcal{F} .

Lemma 12.1.

$$\mathcal{D}(\mathcal{F}, 2\varepsilon, d) \leq \mathcal{N}(\mathcal{F}, \varepsilon, d) \leq \mathcal{D}(\mathcal{F}, \varepsilon, d).$$

Proof. To prove the first inequality, assume that $\mathcal{D}(\mathcal{F}, 2\varepsilon, d) > \mathcal{N}(\mathcal{F}, \varepsilon, d)$. Let the packing corresponding to the packing number $\mathcal{D}(\mathcal{F}, 2\varepsilon, d) = D$ be f_1, \ldots, f_D . Let the covering corresponding to the covering number $\mathcal{N}(\mathcal{F}, \varepsilon, d) = N$ be f'_1, \ldots, f'_N . Since D > N, there exist f_i and f_j such that for some f'_k

$$d(f_i, f'_k) \leq \varepsilon$$
 and $d(f_j, f'_k) \leq \varepsilon$.

Therefore, by triangle inequality, $d(f_i, f_j) \leq 2\varepsilon$, which is a contradiction.

To prove the second inequality, assume f_1, \ldots, f_D is an optimal packing. For any $f \in \mathcal{F}, f_1, \ldots, f_D, f$ would also be ε -packing if $d(f, f_i) > \varepsilon$ for all i. Since f_1, \ldots, f_D is optimal, this cannot be true, and, therefore, for any $f \in \mathcal{F}$ there exists f_i such that $d(f, f_i) \leq \varepsilon$. Hence f_1, \ldots, f_D is also a cover. Hence, $\mathcal{N}(\mathcal{F}, \varepsilon, d) \leq \mathcal{D}(\mathcal{F}, \varepsilon, d)$.

Example 12.3. Consider the L_1 -ball $\{x \in \mathbb{R}^d, |x| \leq 1\} = B_1(0)$ and $d(x, y) = |x - y|_1$. Then

$$\mathcal{D}(B_1(0),\varepsilon,d) \le \left(\frac{2+\varepsilon}{\varepsilon}\right)^d \le \left(\frac{3}{\varepsilon}\right)^d,$$

where $\varepsilon \leq 1$. Indeed, let f_1, \ldots, f_D be optimal ε -packing. Then the volume of the ball with $\varepsilon/2$ -fattening (so that the center of small balls fall within the boundary) is

$$\operatorname{Vol}\left(1+\frac{\varepsilon}{2}\right) = C_d\left(1+\frac{\varepsilon}{2}\right)^d.$$

Moreover, the volume of each of the small balls

$$\operatorname{Vol}\left(\frac{\varepsilon}{2}\right) = C_d \left(\frac{\varepsilon}{2}\right)^d$$

and the volume of all the small balls is

$$DC_d \left(\frac{\varepsilon}{2}\right)^d$$
. 28

Therefore,

$$D \le \left(\frac{2+\varepsilon}{\varepsilon}\right)^d.$$

Definition 12.6. $\log \mathcal{N}(\mathcal{F}, \varepsilon, d)$ is called metric entropy.

For example, $\log \mathcal{N}(B_1(0), \varepsilon, d) \le d \log \frac{3}{\varepsilon}$.

Theorem 13.1. Assume \mathcal{F} is a VC-subgraph class and $VC(\mathcal{F}) = V$. Suppose $-1 \leq f(x) \leq 1$ for all $f \in \mathcal{F}$ and $x \in \mathcal{X}$. Let $x_1, \ldots, x_n \in \mathcal{X}$ and define $d(f,g) = \frac{1}{n} \sum_{i=1}^n |f(x_i) - g(x_i)|$. Then

$$\mathcal{D}(\mathcal{F},\varepsilon,d) \le \left(\frac{8e}{\varepsilon}\log\frac{7}{\varepsilon}\right)^V$$

(which is $\leq \left(\frac{K}{\varepsilon}\right)^{V+\delta}$ for some δ .)

Proof. Let $m = \mathcal{D}(\mathcal{F}, \varepsilon, d)$ and f_1, \ldots, f_m be ε -separated, i.e.

$$\frac{1}{n}\sum_{i=1}^{n}|f_r(x_i)-f_\ell(x_i)|>\varepsilon.$$

Let $(z_1, t_1), \ldots, (z_k, t_k)$ be constructed in the following way: z_i is chosen uniformly from x_1, \ldots, x_n and t_i is uniform on [-1, 1].

Consider f_r and f_ℓ from the ε -packing. Let C_{f_r} and C_{f_ℓ} be subgraphs of f_r and f_ℓ . Then

 $\mathbb{P}(C_{f_r} \text{ and } C_{f_\ell} \text{ pick out different subsets of } (z_1, t_1), \dots, (z_k, t_k))$ $= \mathbb{P}(\text{At least one point } (z_i, t_i) \text{ is picked by } C_{f_r} \text{ or } C_{f_\ell} \text{ but not picked by the other})$ $= 1 - \mathbb{P}(\text{All points } (z_i, t_i) \text{ are picked either by both or by none})$ $= 1 - \mathbb{P}((z_i, t_i) \text{ is picked either by both or by none})^k$

L		L

Since z_i is drawn uniformly from x_1, \ldots, x_n ,

$$\mathbb{P}\left((z_1, t_1) \text{ is picked by both } C_{f_r}, C_{f_\ell} \text{ or by neither}\right)$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{P}\left((x_i, t_1) \text{ is picked by both } C_{f_r}, C_{f_\ell} \text{ or by neither}\right)$$

$$= \frac{1}{n} \sum_{i=1}^n \left(1 - \frac{1}{2}|f_r(x_i) - f_\ell(x_i)|\right)$$

$$= 1 - \frac{1}{2} \frac{1}{n} \sum_{i=1}^n |f_r(x_i) - f_\ell(x_i)|$$

$$= 1 - \frac{1}{2} d(f_r, f_\ell) \le 1 - \varepsilon/2 \le e^{-\varepsilon/2}$$

Substituting,

$$\mathbb{P}(C_{f_r} \text{ and } C_{f_\ell} \text{ pick out different subsets of } (z_1, t_1), \dots, (z_k, t_k))$$

$$= 1 - \mathbb{P}((z_1, t_1) \text{ is picked by both } C_{f_r}, C_{f_\ell} \text{ or by neither})^k$$

$$\geq 1 - \left(e^{-\varepsilon/2}\right)^k$$

$$= 1 - e^{-k\varepsilon/2}$$

There are $\binom{m}{2}$ ways to choose f_r and f_ℓ , so

 $\mathbb{P}(\text{All pairs } C_{f_r} \text{ and } C_{f_\ell} \text{ pick out different subsets of } (z_1, t_1), \dots, (z_k, t_k)) \ge 1 - \binom{m}{2} e^{-k\varepsilon/2}.$

What k should we choose so that $1 - {m \choose 2} e^{-k\varepsilon/2} > 0$? Choose

$$k > \frac{2}{\varepsilon} \log \binom{m}{2}.$$

Then there exist $(z_1, t_1), \ldots, (z_k, t_k)$ such that all C_{f_ℓ} pick out different subsets. But $\{C_f : f \in \mathcal{F}\}$ is VC, so by Sauer's lemma, we can pick out at most $\left(\frac{ek}{V}\right)^V$ out of these k points. Hence, $m \leq \left(\frac{ek}{V}\right)^V$ as long as $k > \frac{2}{\varepsilon} \log {\binom{m}{2}}$. The latter holds for $k = \frac{2}{\varepsilon} \log m^2$. Therefore,

$$m \le \left(\frac{e}{V}\frac{2}{\varepsilon}\log m^2\right)^V = \left(\frac{4e}{V\varepsilon}\log m\right)^V,$$

where $m = \mathcal{D}(\mathcal{F}, \varepsilon, d)$. Hence, we get

$$m^{1/V} \leq \frac{4e}{\varepsilon} \log m^{1/V}$$

and defining $m^{1/V} = s$,

$$s \le \frac{4e}{\varepsilon} \log s.$$

Note that $\frac{s}{\log s}$ is increasing for $s \ge e$ and so for large enough s, the inequality will be violated. We now check that the inequality is violated for $s' = \frac{8e}{\varepsilon} \log \frac{7}{\varepsilon}$. Indeed, one can show that

$$\frac{4e}{\varepsilon}\log\left(\frac{7}{\varepsilon}\right)^2 > \frac{4e}{\varepsilon}\log\left(\frac{8e}{\varepsilon}\log\frac{7}{\varepsilon}\right)$$

since

$$\frac{49}{8e\varepsilon} > \log \frac{7}{\epsilon}.$$

Hence, $m^{1/V} = s \leq s'$ and, thus,

$$\mathcal{D}(\mathcal{F},\varepsilon,d) \le \left(\frac{8e}{\varepsilon}\log\frac{7}{\varepsilon}\right)^V$$

For
$$f \in F \subseteq [-1,1]^n$$
, define $R(f) = \frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i$. Let $d(f,g) := \left(\frac{1}{n} \sum_{i=1}^n (f_i - g_i)^2\right)^{1/2}$.

Theorem 14.1.

$$\mathbb{P}\left(\forall f \in F, R(f) \le \frac{2^{9/2}}{\sqrt{n}} \int_0^{d(0,f)} \log^{1/2} \mathcal{D}(F,\varepsilon,d) d\varepsilon + 2^{7/2} d(0,f) \sqrt{\frac{u}{n}}\right) \ge 1 - e^{-u}$$

for any u > 0.

Proof. Without loss of generality, assume $0 \in F$.

Kolmogorov's chaining technique: define a sequence of subsets

$$\{0\} = F_0 \subseteq F_1 \ldots \subseteq F_j \subseteq \ldots \subseteq F$$

where F_j is defined such that

- (1) $\forall f, g \in F_j, d(f, g) > 2^{-j}$
- (2) $\forall f \in F$, we can find $g \in F_j$ such that $d(f,g) \leq 2^{-j}$

How to construct F_{j+1} if we have F_j :

- $F_{j+1} := F_j$
- Find $f \in F$, $d(f,g) > 2^{-(j+1)}$ for all $g \in F_{j+1}$
- Repeat until you cannot find such f

Define projection $\pi_j : F \mapsto F_j$ as follows: for $f \in F$ find $g \in F_j$ with $d(f,g) \leq 2^{-j}$ and set $\pi_j(f) = g$. For any $f \in F$,

$$f = \pi_0(f) + (\pi_1(f) - \pi_0(f)) + (\pi_2(f) - \pi_1(f)) \dots$$
$$= \sum_{j=1}^{\infty} (\pi_j(f) - \pi_{j-1}(f))$$

Moreover,

$$d(\pi_{j-1}(f), \pi_j(f)) \le d(\pi_{j-1}(f), f) + d(f, \pi_j(f))$$
$$\le 2^{-(j-1)} + 2^{-j} = 3 \cdot 2^{-j} \le 2^{-j+2}$$

Define the links

$$L_{j-1,j} = \{ f - g : f \in F_j, g \in F_{j-1}, d(f,g) \le 2^{-j+2} \}.$$

Since R is linear, $R(f) = \sum_{j=1}^{\infty} R(\pi_j(f) - \pi_{j-1}(f))$. We first show how to control R on the links. Assume $\ell \in L_{j-1,j}$. Then by Hoeffding's inequality

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\ell_{i}\geq t\right)\leq\exp\left(-\frac{t^{2}}{2\sum\frac{1}{n^{2}}\ell_{i}^{2}}\right)$$
$$=\exp\left(-\frac{nt^{2}}{2\frac{1}{n}\sum_{i=1}^{n}\ell_{i}^{2}}\right)$$
$$\leq\exp\left(-\frac{nt^{2}}{2\cdot2^{-2j+4}}\right)$$

Note that

$$\operatorname{card} L_{j-1,j} \leq \operatorname{card} F_{j-1} \cdot \operatorname{card} F_j \leq (\operatorname{card} F_j)^2$$

$$\mathbb{P}\left(\forall \ell \in L_{j-1,j}, R(\ell) = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \ell_i \leq t\right) \geq 1 - (\operatorname{card} F_j)^2 e^{-\frac{nt^2}{2 \cdot 2^{-2j+5}}}$$
$$= 1 - \frac{1}{(\operatorname{card} F_j)^2} e^{-u}$$

after changing the variable such that

$$t = \sqrt{\frac{2^{-2j+5}}{n} \left(4\log(\text{card}F_j) + u\right)} \le \sqrt{\frac{2^{-2j+5}}{n} 4\log(\text{card}F_j)} + \sqrt{\frac{2^{-2j+5}}{n} u}.$$

Hence,

$$\mathbb{P}\left(\forall \ell \in L_{j-1,j}, R(\ell) \le \frac{2^{7/2} 2^{-j}}{\sqrt{n}} \log^{1/2} (\operatorname{card} F_j) + 2^{5/2} 2^{-j} \sqrt{\frac{u}{n}}\right) \ge 1 - \frac{1}{(\operatorname{card} F_j)^2} e^{-u}.$$

If $F_{j-1} = F_j$ then by definition $\pi_{j-1}(f) = \pi_f$ and $L_{j-1,j} = \{0\}$. By union bound for all steps,

$$\mathbb{P}\left(\forall j \ge 1, \forall \ell \in L_{j-1,j}, R(\ell) \le \frac{2^{7/2} 2^{-j}}{\sqrt{n}} \log^{1/2} (\operatorname{card} F_j) + 2^{5/2} 2^{-j} \sqrt{\frac{u}{n}}\right)$$

$$\ge 1 - \sum_{j=1}^{\infty} \frac{1}{(\operatorname{card} F_j)^2} e^{-u}$$

$$\ge 1 - \left(\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2}\right) e^{-u}$$

$$= 1 - (\pi^2/6 - 1) e^{-u} \ge 1 - e^{-u}$$

Recall that $R(f) = \sum_{j=1}^{\infty} R(\pi_j(f) - \pi_{j-1}(f))$. If f is close to 0, $-2^{k+1} < d(0, f) \le 2^{-k}$. Find such a k. Then $\pi_0(f) = \ldots = \pi_k(f) = 0$ and so

18.465

$$R(f) = \sum_{j=k+1}^{\infty} R(\pi_j(f) - \pi_{j-1}(f))$$

$$\leq \sum_{j=k+1}^{\infty} \left(\frac{2^{7/2}}{\sqrt{n}} 2^{-j} \log^{1/2} (\operatorname{card} F_j) + 2^{5/2} 2^{-j} \sqrt{\frac{u}{n}}\right)$$

$$\leq \sum_{j=k+1}^{\infty} \left(\frac{2^{7/2}}{\sqrt{n}} 2^{-j} \log^{1/2} \mathcal{D}(F, 2^{-j}, d)\right) + 2^{5/2} 2^{-k} \sqrt{\frac{u}{n}}$$

Note that $2^{-k} < 2d(f, 0)$, so

$$2^{5/2}2^{-k} < 2^{7/2}d(f,0).$$

Furthermore,

$$\frac{2^{9/2}}{\sqrt{n}} \sum_{j=k+1}^{\infty} \left(2^{-(j+1)} \log^{1/2} \mathcal{D}(F, 2^{-j}, d) \right) \le \frac{2^{9/2}}{\sqrt{n}} \int_{0}^{2^{-(k+1)}} \log^{1/2} \mathcal{D}(F, \varepsilon, d) d\varepsilon$$
$$\le \frac{2^{9/2}}{\sqrt{n}} \underbrace{\int_{0}^{d(0,f)} \log^{1/2} \mathcal{D}(F, \varepsilon, d) d\varepsilon}_{= -1}$$

Dudley's entropy integral

since $2^{-(k+1)} < d(0, f)$.
$$\mathbb{P}\left(\nu \ge t\right) \le \Gamma e^{-\gamma t}$$

where $\Gamma \geq 1, t \geq 0$, and $\gamma > 0$. Furthermore, for all a > 0 assume that

 $\mathbb{E}\phi(\xi) \le \mathbb{E}\phi(\nu)$

where $\phi(x) = (x - a)_+$. Then

$$\mathbb{P}\left(\xi \ge t\right) \le \Gamma \cdot e \cdot e^{-\gamma t}.$$

Proof. Since $\phi(x) = (x - a)_+$, we have $\phi(\xi) \ge \phi(t)$ whenever $\xi \ge t$.

$$\begin{split} \mathbb{P}\left(\xi \geq t\right) &\leq \mathbb{P}\left(\phi(\xi) \geq \phi(t)\right) \\ &\leq \frac{\mathbb{E}\phi(\xi)}{\phi(t)} \leq \frac{\mathbb{E}\phi(\nu)}{\phi(t)} = \frac{\mathbb{E}(\nu-a)_+}{(t-a)_+} \end{split}$$

Furthermore,

$$\begin{split} \mathbb{E}(\nu-a)_{+} &= \mathbb{E}\int_{0}^{(\nu-a)_{+}} 1dx \\ &= \mathbb{E}\int_{0}^{\infty} I(x \leq (\nu-a)_{+})dx \\ &= \int_{0}^{\infty} \mathbb{E}I(x \leq (\nu-a)_{+})dx \\ &= \int_{0}^{\infty} \mathbb{P}\left((\nu-a)_{+} \geq x\right)dx \\ &= \int_{0}^{\infty} \mathbb{P}\left(\nu \geq a+x\right)dx \\ &\leq \int_{0}^{\infty} \Gamma e^{-\gamma a-\gamma x}dx = \frac{\Gamma e^{-\gamma a}}{\gamma} \end{split}$$

Hence,

$$\mathbb{P}\left(\xi \ge t\right) \le \frac{\Gamma e^{-\gamma a}}{\gamma (t-a)_+} = \frac{\Gamma \cdot e \cdot e^{-\gamma t}}{1} = \Gamma \cdot e \cdot e^{-\gamma t}$$

•

where we chose optimal $a = t - \frac{1}{\gamma}$ to minimize $\frac{\Gamma e^{-\gamma a}}{\gamma}$.

Lemma 15.2. Let $x = (x_1, ..., x_n), x' = (x'_1, ..., x'_n)$. If for functions $\varphi_1(x, x'), \varphi_2(x, x'), \varphi_3(x, x')$

$$\mathbb{P}\left(\varphi_1(x,x') \ge \varphi_2(x,x') + \sqrt{\varphi_3(x,x') \cdot t}\right) \le \Gamma e^{-\gamma t}$$

then

$$\mathbb{P}\left(\mathbb{E}_{x'}\varphi_1(x,x') \ge \mathbb{E}_{x'}\varphi_2(x,x') + \sqrt{\mathbb{E}_{x'}\varphi_3(x,x') \cdot t}\right) \le \Gamma \cdot e \cdot e^{-\gamma t}$$

(i.e. if the inequality holds, then it holds with averaging over one of the copies)

Proof. First, note that $\sqrt{ab} = \inf_{\delta > 0} (\delta a + \frac{b}{4\delta})$ with $\delta_* = \sqrt{\frac{b}{4a}}$ achieving the infima. Hence,

$$\{\varphi_1 \ge \varphi_2 + \sqrt{\varphi_3 t}\} = \{\exists \delta > 0, \varphi_1 \ge \varphi_2 + \delta\varphi_3 + \frac{\iota}{4\delta}\}$$
$$= \{\exists \delta > 0, (\varphi_1 - \varphi_2 - \delta\varphi_3) \\ 4\delta \ge t\}$$
$$= \{\underbrace{\sup_{\delta > 0} (\varphi_1 - \varphi_2 - \delta\varphi_3) \\ 4\delta \ge t\}}_{\nu}$$

and similarly

$$\{\mathbb{E}_{x'}\varphi_1 \ge \mathbb{E}_{x'}\varphi_2 + \sqrt{\mathbb{E}_{x'}\varphi_3 t}\} = \{\underbrace{\sup_{\delta > 0} (\mathbb{E}_{x'}\varphi_1 - \mathbb{E}_{x'}\varphi_2 - \delta\mathbb{E}_{x'}\varphi_3) 4\delta}_{\xi} \ge t\}$$

By assumption, $\mathbb{P}(\nu \ge t) \le \Gamma e^{-\gamma t}$. We want to prove $\mathbb{P}(\xi \ge t) \le \Gamma \cdot e \cdot e^{-\gamma t}$. By the previous lemma, we only need to check whether $\mathbb{E}\phi(\xi) \le \mathbb{E}\phi(\nu)$.

$$\xi = \sup_{\delta > 0} \mathbb{E}_{x'} (\varphi_1 - \varphi_2 - \delta \varphi_3) 4\delta$$
$$\leq \mathbb{E}_{x'} \sup_{\delta > 0} (\varphi_1 - \varphi_2 - \delta \varphi_3) 4\delta$$
$$= \mathbb{E}_{x'} \nu$$

Thus,

$$\phi(\xi) \le \phi(\mathbb{E}_{x'}\nu) \le \mathbb{E}_{x'}\phi(\nu)$$

by Jensen's inequality (ϕ is convex). Hence,

$$\mathbb{E}\phi(\xi) \le \mathbb{E}\mathbb{E}_{x'}\phi(\nu) = \mathbb{E}\phi(\nu).$$

We will now use Lemma 15.2. Let $\mathcal{F} = \{f : \mathcal{X} \mapsto [c, c+1]\}$. Let $x_1, \ldots, x_n, x'_1, \ldots, x'_n$ be i.i.d. random variables. Define

$$F = \{ (f(x_1) - f(x'_1), \dots, f(x_n) - f(x'_n)) : f \in \mathcal{F} \} \subseteq [-1, 1]^n.$$
36

Define

$$d(f,g) = \left(\frac{1}{n}\sum_{i=1}^{n}\left(\left(f(x_i) - f(x'_i)\right) - \left(g(x_i) - g(x'_i)\right)\right)^2\right)^{1/2}.$$

In Lecture 14, we proved

$$\mathbb{P}_{\varepsilon}\left(\forall f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}(f(x_{i}) - f(x_{i}')) \leq \frac{2^{9/2}}{\sqrt{n}} \int_{0}^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon,d) d\varepsilon + 2^{7/2} d(0,f) \sqrt{\frac{t}{n}} \right) \geq 1 - e^{-t}.$$

Complement of the above is

$$\mathbb{P}_{\varepsilon}\left(\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i(f(x_i) - f(x_i')) \ge \frac{2^{9/2}}{\sqrt{n}} \int_0^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon,d) d\varepsilon + 2^{7/2} d(0,f) \sqrt{\frac{t}{n}}\right) \le e^{-t}.$$

Taking expectation with respect to x, x', we get

$$\mathbb{P}\left(\exists f \in \mathcal{F}, \ \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i(f(x_i) - f(x'_i)) \ge \frac{2^{9/2}}{\sqrt{n}} \int_0^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon,d) d\varepsilon + 2^{7/2} d(0,f) \sqrt{\frac{t}{n}}\right) \le e^{-t}.$$

Hence (see below)

$$\mathbb{P}\left(\exists f \in \mathcal{F}, \ \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - f(x'_i)) \ge \frac{2^{9/2}}{\sqrt{n}} \int_{0}^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon,d) d\varepsilon + 2^{7/2} d(0,f) \sqrt{\frac{t}{n}} \right) \le e^{-t}.$$

To see why the above step holds, notice that d(f,g) is invariant under permutations $x_i \leftrightarrow x'_i$. We can remove ε_i since x and x' are i.i.d and we can switch x_i and x'_i . To the right of " \geq " sign, only distance d(f,g) depends on x, x', but it's invariant to the permutations.

By Lemma 15.2 (minus technical detail " $\exists f$ "),

$$\mathbb{P}\left(\exists f \in \mathcal{F}, \ \mathbb{E}_{x'}\frac{1}{n}\sum_{i=1}^{n}(f(x_i) - f(x'_i)) \ge \mathbb{E}_{x'}\frac{2^{9/2}}{\sqrt{n}}\int_{0}^{d(0,f)}\log^{1/2}\mathcal{D}(\mathcal{F},\varepsilon,d)d\varepsilon + 2^{7/2}\sqrt{\frac{\mathbb{E}_{x'}d(0,f)^2t}{n}}\right) \le e \cdot e^{-t},$$

where

$$\mathbb{E}_{x'}\frac{1}{n}\sum_{i=1}^{n}(f(x_i) - f(x'_i)) = \frac{1}{n}\sum_{i=1}^{n}f(x_i) - \mathbb{E}f$$

and

$$\mathbb{E}_{x'}d(0,f)^2 = \mathbb{E}_{x'}\frac{1}{n}\sum_{i=1}^n (f(x_i) - f(x'_i))^2.$$

The Dudley integral above will be bounded by something non-random in the later lectures.

In Lecture 15, we proved the following Generalized VC inequality

$$\mathbb{P}\left(\forall f \in \mathcal{F}, \ \mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \le \frac{2^{9/2}}{\sqrt{n}} \mathbb{E}_{x'} \int_{0}^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon,d) d\varepsilon + 2^{7/2} \sqrt{\frac{\mathbb{E}_{x'} d(0,f)^2 t}{n}}\right) \ge 1 - e^{-t}$$
$$d(f,g) = \left(\frac{1}{n} \sum_{i=1}^{n} \left(f(x_i) - f(x'_i) - g(x_i) + g(x'_i)\right)^2\right)^{1/2}$$

Definition 16.1. We say that \mathcal{F} satisfies uniform entropy condition if

 $\forall n, \forall (x_1, \ldots, x_n), \mathcal{D}(\mathcal{F}, \varepsilon, d_x) \leq \mathcal{D}(\mathcal{F}, \varepsilon)$

where $d_x(f,g) = \left(\frac{1}{n} \sum_{i=1}^n (f(x_i) - g(x_i))^2\right)^{1/2}$

Lemma 16.1. If \mathcal{F} satisfies uniform entropy condition, then

$$\mathbb{E}_{x'} \int_0^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon,d) d\varepsilon \leq \int_0^{\sqrt{\mathbb{E}_{x'}d(0,f)^2}} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon/2) d\varepsilon$$

Proof. Using inequality $(a+b)^2 \leq 2(a^2+b^2)$,

$$d(f,g) = \left(\frac{1}{n}\sum_{i=1}^{n} \left(f(x_i) - g(x_i) + g(x'_i) - f(x'_i)\right)^2\right)^{1/2}$$

$$\leq \left(\frac{2}{n}\sum_{i=1}^{n} \left(\left(f(x_i) - g(x_i)\right)^2 + \left(g(x'_i) - f(x'_i)\right)^2\right)\right)^{1/2}$$

$$= 2\left(\frac{1}{2n}\sum_{i=1}^{n} \left(\left(f(x_i) - g(x_i)\right)^2 + \left(g(x'_i) - f(x'_i)\right)^2\right)\right)^{1/2}$$

$$= 2d_{x,x'}(f,g)$$

Since $d(f,g) \leq 2d_{x,x'}(f,g)$, we also have

$$\mathcal{D}(\mathcal{F},\varepsilon,d) \le \mathcal{D}(\mathcal{F},\varepsilon/2,d_{x,x'}).$$

Indeed, let $f_1, ..., f_N$ be optimal ε -packing w.r.t. distance d. Then

$$\varepsilon \le d(f_i, f_j) \le 2d_{x,x'}(f_i, f_j)$$

and, hence,

$$\varepsilon/2 \le d_{x,x'}(f_i, f_j).$$

So, $f_1, ..., f_N$ is $\varepsilon/2$ -packing w.r.t. $d_{x,x'}$. Therefore, can pack at least N and so $\mathcal{D}(\mathcal{F}, \varepsilon, d) \leq \mathcal{D}(\mathcal{F}, \varepsilon/2, d_{x,x'})$. 38

$$\mathbb{E}_{x'} \int_0^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon,d) d\varepsilon \leq \mathbb{E}_{x'} \int_0^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon/2,d_{x,x'}) d\varepsilon$$
$$\leq \int_0^{d(0,f)} \log^{1/2} \mathcal{D}(\mathcal{F},\varepsilon/2) d\varepsilon$$

Let $\phi(x) = \int_0^x \log^{1/2} \mathcal{D}(\mathcal{F}, \varepsilon) d\varepsilon$. It is concave because $\phi'(x) = \log^{1/2} \mathcal{D}(\mathcal{F}, \varepsilon/2)$ is decreasing when x is increasing (can pack less with larger balls). Hence, by Jensen's inequality,

$$\mathbb{E}_{x'}\phi(d(0,f)) \le \phi(\mathbb{E}_{x'}d(0,f)) = \phi(\mathbb{E}_{x'}\sqrt{d(0,f)^2}) \le \phi(\sqrt{\mathbb{E}_{x'}d(0,f)^2}).$$

Lemma 16.2. If $\mathcal{F} = \{f \colon \mathcal{X} \to [0,1]\}$, then

$$\mathbb{E}_{x'}d(0,f)^2 \le 2\max\left(\mathbb{E}f, \frac{1}{n}\sum_{i=1}^n f(x_i)\right)$$

Proof.

$$\mathbb{E}_{x'}d(0,f)^{2} = \mathbb{E}_{x'}\frac{1}{n}\sum_{i=1}^{n} (f(x_{i}) - f(x'_{i}))^{2}$$

$$= \frac{1}{n}\sum_{i=1}^{n} (f^{2}(x_{i}) - 2f(x_{i})\mathbb{E}f + \mathbb{E}f^{2})$$

$$\leq \frac{1}{n}\sum_{i=1}^{n} (f^{2}(x_{i}) + \mathbb{E}f^{2}) \leq \frac{1}{n}\sum_{i=1}^{n} f(x_{i}) + \mathbb{E}f$$

$$\leq 2\max\left(\mathbb{E}f, \frac{1}{n}\sum_{i=1}^{n} f(x_{i})\right)$$

Theorem 16.1. If \mathcal{F} satisfies Uniform Entropy Condition and $\mathcal{F} = \{f : \mathcal{X} \to [0,1]\}$. Then

$$\mathbb{P}\left(\forall f \in \mathcal{F}, \ \mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \leq \frac{2^{9/2}}{\sqrt{n}} \int_0^{\sqrt{2\mathbb{E}f}} \log^{1/2} \mathcal{D}(\mathcal{F}, \varepsilon/2) d\varepsilon + 2^{7/2} \sqrt{\frac{2\mathbb{E}f \cdot t}{n}}\right) \geq 1 - e^{-t}$$

Proof. If $\mathbb{E}f \geq \frac{1}{n} \sum_{i=1}^{n} f(x_i)$, then

$$2\max\left(\mathbb{E}f, \frac{1}{n}\sum_{i=1}^{n}f(x_i)\right) = 2\mathbb{E}f.$$

If $\mathbb{E}f \leq \frac{1}{n} \sum_{i=1}^{n} f(x_i)$,

$$\mathbb{E}f - \frac{1}{n}\sum_{i=1}^{n}f(x_i) \le 0$$

and the bound trivially holds.

 \square 39

Another result:

$$\mathbb{P}\left(\forall f \in \mathcal{F}, \ \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f \leq \frac{2^{9/2}}{\sqrt{n}} \int_{0}^{\sqrt{2\frac{1}{n} \sum_{i=1}^{n} f(x_i)}} \log^{1/2} \mathcal{D}(\mathcal{F}, \varepsilon/2) d\varepsilon + 2^{7/2} \sqrt{\frac{2(\frac{1}{n} \sum_{i=1}^{n} f(x_i))t}{n}}\right) \geq 1 - e^{-t}.$$

Example 16.1. [VC-type entropy condition]

$$\log \mathcal{D}(\mathcal{F},\varepsilon) \le \alpha \log \frac{2}{\varepsilon}.$$

For VC-subgraph classes, entropy condition is satisfied. Indeed, in Lecture 13, we proved that $\mathcal{D}(\mathcal{F}, \varepsilon, d) \leq \left(\frac{8e}{\varepsilon}\log\frac{7}{\varepsilon}\right)^V$ for a VC-subgraph class \mathcal{F} with $VC(\mathcal{F}) = V$, where $d(f,g) = d_1(f,g) = \frac{1}{n}\sum_{i=1}^n |f(x_i) - g(x_i)|$. Note that if $f, g: \mathcal{X} \mapsto [0, 1]$, then

$$d_2(f,g) = \left(\frac{1}{n}\sum_{i=1}^n (f(x_i) - g(x_i))^2\right)^{1/2} \le \left(\frac{1}{n}\sum_{i=1}^n |f(x_i) - g(x_i)|\right)^{1/2}$$

Hence, $\varepsilon < d_2(f,g) \le \sqrt{d_1(f,g)}$ implies

$$\mathcal{D}(\mathcal{F},\varepsilon,d_2) \le \mathcal{D}(\mathcal{F},\varepsilon^2,d_1) \le \left(\frac{8e}{\varepsilon^2}\log\frac{7}{\varepsilon^2}\right)^V = \mathcal{D}(\mathcal{F},\varepsilon).$$

The entropy is

$$\log \mathcal{D}(\mathcal{F},\varepsilon) \le \log \left(\frac{8e}{\varepsilon^2} \log \frac{7}{\varepsilon^2}\right)^V = V \log \left(\frac{8e}{\varepsilon^2} \log \frac{7}{\varepsilon^2}\right) \le K \cdot V \log \frac{2}{\varepsilon},$$

where K is an absolute constant.

We now give an upper bound on the Dudley integral for VC-type entropy condition.

Proof. First, check the inequality for $x \leq 1/e$. Taking derivatives,

$$\sqrt{\log\frac{1}{x}} \le 2\sqrt{\log\frac{1}{x}} + \frac{x}{\sqrt{\log\frac{1}{x}}} \left(-\frac{1}{x}\right)$$

$$\log \frac{1}{x} \le 2\log \frac{1}{x} - 1$$
$$1 \le \log \frac{1}{x}$$
$$x \le 1/e$$

Now, check for $x \ge 1/e$.

$$\int_0^x \sqrt{\log \frac{1}{\varepsilon}} d\varepsilon = \int_0^{\frac{1}{e}} \sqrt{\log \frac{1}{\varepsilon}} d\varepsilon + \int_{\frac{1}{e}}^x \sqrt{\log \frac{1}{\varepsilon}} d\varepsilon$$
$$\leq \frac{2}{e} + \int_{\frac{1}{e}}^x 1 dx$$
$$= \frac{2}{e} + x - \frac{1}{e} = x + \frac{1}{e} \leq 2x$$

Using the above result, we get

$$\mathbb{P}\left(\forall f \in \mathcal{F}, \ \mathbb{E}f - \frac{1}{n}\sum_{i=1}^{n} f(x_i) \le K\sqrt{\frac{\alpha}{n}\mathbb{E}f\log\frac{1}{\mathbb{E}f}} + K\sqrt{\frac{t\mathbb{E}f}{n}}\right) \ge 1 - e^{-t}.$$

Without loss of generality, we can assume $\mathbb{E}f \geq \frac{1}{n}$, and, therefore, $\log \frac{1}{\mathbb{E}f} \leq \log n$. Hence,

$$\mathbb{P}\left(\forall f \in \mathcal{F}, \ \frac{\mathbb{E}f - \frac{1}{n}\sum_{i=1}^{n} f(x_i)}{\sqrt{\mathbb{E}f}} \le K\sqrt{\frac{\alpha \log n}{n}} + K\sqrt{\frac{t}{n}}\right) \ge 1 - e^{-t}.$$

Consider the classification setting, i.e. $\mathcal{Y} = \{-1, +1\}$. Denote the set of weak classifiers

$$\mathcal{H} = \{h : \mathcal{X} \mapsto [-1, +1]\}$$

and assume \mathcal{H} is a VC-subgraph. Hence, $\mathcal{D}(\mathcal{H}, \varepsilon, d_x) \leq K \cdot V \log 2/\varepsilon$. A voting algorithm outputs

$$f = \sum_{i=1}^{T} \lambda_i h_i$$
, where $h_i \in \mathcal{H}$, $\sum_{i=1}^{T} \lambda_i \leq 1$, $\lambda_i > 0$.

Let

$$\mathcal{F} = \operatorname{conv} \mathcal{H} = \left\{ \sum_{i=1}^{T} \lambda_i h_i, \ h_i \in \mathcal{H}, \ \sum_{i=1}^{T} \lambda_i \leq 1, \ \lambda_i \geq 0, \ T \geq 1 \right\}.$$

Then sign(f(x)) is the prediction of the label y. Let

$$\mathcal{F}_d = \operatorname{conv}_d \mathcal{H} = \left\{ \sum_{i=1}^d \lambda_i h_i, \ h_i \in \mathcal{H}, \ \sum_{i=1}^T \lambda_i \le 1, \ \lambda_i \ge 0 \right\}.$$

Theorem 17.1. For any $x = (x_1, ..., x_n)$, if

$$\log \mathcal{D}(\mathcal{H},\varepsilon,d_x) \le KV \log 2/\varepsilon$$

then

$$\log \mathcal{D}(\operatorname{conv}_d \mathcal{H}, \varepsilon, d_x) \le KVd \log 2/\varepsilon$$

Proof. Let h^1, \ldots, h^D be ε -packing of \mathcal{H} with respect to d_x , $D = \mathcal{D}(\mathcal{H}, \varepsilon, d_x)$. Note that d_x is a norm.

$$d_x(f,g) = \left(\frac{1}{n}\sum_{i=1}^n (f(x_i) - g(x_i))^2\right)^{1/2} = \|f - g\|_x.$$

If $f = \sum_{i=1}^{d} \lambda_i h_i$, for all h_i we can find h^{k_i} such that $d(h_i, h^{k_i}) \leq \varepsilon$. Let $f' = \sum_{i=1}^{d} \lambda_i h^{k_i}$. Then

$$d(f, f') = \|f - f'\|_{x} = \left\|\sum_{i=1}^{d} \lambda_{i}(h_{i} - h^{k_{i}})\right\|_{x} \le \sum_{i=1}^{d} \lambda_{i}\|h_{i} - h^{k_{i}}\|_{x} \le \varepsilon.$$

Define

$$\mathcal{F}_{D,d} = \left\{ \sum_{i=1}^d \lambda_i h_i, \ h_i \in \{h^1, \dots, h^D\}, \ \sum_{i=1}^d \lambda_i \le 1, \ \lambda_i \ge 0 \right\}.$$

Hence, we can approximate any $f \in \mathcal{F}_d$ by $f' \in \mathcal{F}_{D,d}$ within ε . Now, let $f = \sum_{i=1}^d \lambda_i h_i \in \mathcal{F}_{D,d}$ and consider the following construction. We will choose $Y_1(x), \ldots, Y_k(x)$ from h_1, \ldots, h_d according to $\lambda_1, \ldots, \lambda_d$:

$$\mathbb{P}(Y_j(x) = h_i(x)) = \lambda_i$$
 and $\mathbb{P}(Y_j(x) = 0) = 1 - \sum_{i=1}^d \lambda_i.$

Note that with this construction

$$\mathbb{E}Y_j(x) = \sum_{i=1}^d \lambda_i h_i(x) = f(x).$$

Furthermore,

$$\mathbb{E} \left\| \frac{1}{k} \sum_{j=1}^{k} Y_j - f \right\|_x^2 = \mathbb{E} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{k} \sum_{j=1}^{k} Y_j(x_i) - f(x_i) \right)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left(\frac{1}{k} \sum_{j=1}^{k} (Y_j(x_i) - \mathbb{E} Y_j(x_i)) \right)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k^2} \sum_{j=1}^{k} \mathbb{E} (Y_j(x_i) - \mathbb{E} Y_j(x_i))^2$$
$$\leq \frac{4}{k}$$

because $|Y_j(x_i) - \mathbb{E}Y_j(x_i)| \le 2$. Choose $k = 4/\varepsilon^2$. Then

$$\mathbb{E}\left\|\frac{1}{k}\sum_{j=1}^{k}Y_{j}-f\right\|_{x}^{2}=\mathbb{E}d_{x}\left(\frac{1}{k}\sum_{j=1}^{k}Y_{j},f\right)^{2}\leq\varepsilon^{2}.$$

So, there exists a deterministic combination $\frac{1}{k} \sum_{j=1}^{k} Y_j$ such that $d_x(\frac{1}{k} \sum_{j=1}^{k} Y_j, f) \leq \varepsilon$. Define

$$\mathcal{F}'_{D,d} = \left\{ \frac{1}{k} \sum_{j=1}^{k} Y_j : k = 4/\varepsilon^2, \ Y_j \in \{h_1, \dots, h_d\} \subseteq \{h^1, \dots, h^D\} \right\}$$

Hence, we can approximate any $f = \sum_{i=1}^{d} \lambda_i h_i \in \mathcal{F}_{D,d}$, $h_i \in \{h^1, \ldots, h^D\}$, by $f' \in \mathcal{F}'_{D,d}$ within ε . Let us now bound the cardinality of $\mathcal{F}'_{D,d}$. To calculate the number of ways to choose k functions out of h_1, \ldots, h_d , assume each of h_i is chosen k_d times such that $k = k_1 + \ldots + k_d$. We can formulate the problem as finding the number of strings of the form

$$\underbrace{\underbrace{00\ldots0}_{k_1}1\underbrace{00\ldots0}_{k_2}1\ldots1\underbrace{00\ldots0}_{k_d}}_{k_d}.$$
43

In this string, there are d-1 "1"s and k "0"s, and total length is k+d-1. The number of such strings is $\binom{k+d-1}{k}$. Hence,

$$\operatorname{card} \mathcal{F}_{D,d}' \leq {\binom{D}{d}} \times {\binom{k+d}{k}}$$
$$\leq \frac{D^{D-d}D^d}{d^d(D-d)^{D-d}} \frac{(k+d)^{k+d}}{k^k d^d}$$
$$= \left(\frac{D(k+d)}{d^2}\right)^d \left(\frac{D}{D-d}\right)^{D-d} \left(\frac{k+d}{k}\right)^k$$
$$= \left(\frac{D(k+d)}{d^2}\right)^d \left(1 + \frac{d}{D-d}\right)^{D-d} \left(1 + \frac{d}{k}\right)^k$$

using inequality $1 + x \le e^x$

$$\leq \left(\frac{D(k+d)e^2}{d^2}\right)^d$$

where $k = 4/\varepsilon^2$ and $D = \mathcal{D}(\mathcal{F}, \varepsilon, d_x)$.

Therefore, we can approximate any $f \in \mathcal{F}_d$ by $f'' \in \mathcal{F}_{D,d}$ within ε and $f'' \in \mathcal{F}_{D,d}$ by $f' \in \mathcal{F}'_{D,d}$ within ε . Hence, we can approximate any $f \in \mathcal{F}_d$ by $f' \in \mathcal{F}'_{D,d}$ within 2ε . Moreover,

$$\log \mathcal{N}(\mathcal{F}_d = \operatorname{conv}_d \mathcal{H}, 2\varepsilon, d_x) \leq d \log \frac{e^2 D(k+d)}{d^2}$$
$$= d \left(2 + \log D + \log \frac{k+d}{d^2} \right)$$
$$\leq d \left(2 + KV \log \frac{2}{\varepsilon} + \log \left(1 + \frac{4}{\varepsilon^2} \right) \right)$$
$$\leq KV d \log \frac{2}{\varepsilon}$$

since $\frac{k+d}{d^2} \leq 1+k$ and $d \geq 1, V \geq 1$.

In this lecture, we show that although the VC-hull classes might be considerably larger than the VC-classes, they are small enough to have finite uniform entropy integral.

Theorem 18.1. Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measurable space, $\mathcal{F} \subset \{f | f : \mathcal{X} \to \mathbb{R}\}$ be a class of measurable functions with measurable square integrable envelope F (i.e., $\forall x \in \mathcal{X}, \forall f \in \mathcal{F}, |f(x)| < F(x)$, and $||F||_2 = (\int F^2 d\mu)^{1/2} < \infty$), and the ϵ -net of \mathcal{F} satisfies $N(\mathcal{F}, \epsilon ||F||_2, ||\cdot||) \leq C(\frac{1}{\epsilon})^V$ for $0 < \epsilon < 1$. Then there exists a constant K that depends only on C and V such that $\log N(\operatorname{conv}\mathcal{F}, \epsilon ||F||_2, ||\cdot||) \leq K(\frac{1}{\epsilon})^{\frac{2 \cdot V}{V+2}}$.

Proof. Let $N(\mathcal{F}, \epsilon \|F\|_2, \|\cdot\|_2) \leq C\left(\frac{1}{\epsilon}\right)^V \stackrel{\triangle}{=} n$. Then $\epsilon = C^{1/v} n^{-1/V}$, and $\epsilon \|F\|_2 = C^{1/V} \|F\|_2 \cdot n^{-1/V}$. Let $L = C^{1/V} \|F\|_2$. Then $N(\mathcal{F}, Ln^{-1/V}, \|\cdot\|_2) \leq n$ (i.e., the $L \cdot n^{-1/V}$ -net of \mathcal{F} contains at most n elements). Construct $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_n \subset \cdots$ such that each \mathcal{F}_n is a $L \cdot n^{-1/V}$ -net, and contains at most n elements. Let $W = \frac{1}{2} + \frac{1}{V}$. We proceed to show that there exists constants C_k and D_k that depend only on C and V and are upper bounded ($\sup_k C_k \lor D_k < \infty$), such that

(18.1)
$$\log N(\operatorname{conv}\mathcal{F}_{n \cdot k^q}, C_k L \cdot n^{-W}, \|\cdot\|_2) \leq D_k \cdot n^{-W}$$

for $n, k \ge 1$, and $q \ge 3 + V$. This implies the theorem, since if we let $k \to \infty$, we have $\log N(\operatorname{conv}\mathcal{F}, C_{\infty}L \cdot n^{-W}, \|\cdot\|_2) \le D_{\infty} \cdot n$. Let $\epsilon = C_{\infty}C^{1/V}n^{-W}$, and $K = D_{\infty}C_{\infty}^{\frac{2\cdot V}{V+2}}C^{\frac{2}{V+2}}$, we get $C_{\infty}L \cdot n^{-W} = C_{\infty}C^{1/V}\|F\|_2 n^{-W} = \epsilon \|F\|_2$, $n = \left(\frac{C_{\infty}C^{1/V}}{\epsilon}\right)^{1/W}$ and $\log N(\operatorname{conv}\mathcal{F}, \epsilon \|F\|_2, \|\cdot\|_2) \le K \cdot \left(\frac{1}{\epsilon}\right)^{\frac{2\cdot V}{V+2}}$. Inequality 18.1 will proved in two steps: (1)

(18.2)
$$\log N(\operatorname{conv}\mathcal{F}_n, C_1L \cdot n^{-W}, \|\cdot\|_2) \leq D_1 \cdot n^{-W}$$

by induction on n, using Kolmogorov's chaining technique, and (2) for fixed n,

(18.3)
$$\log N(\operatorname{conv}\mathcal{F}_{n \cdot k^q}, C_k L \cdot n^{-W}, \|\cdot\|_2) \leq D_k \cdot n^{-W}$$

by induction on k, using the results of (1) and Kolmogorov's chaining technique.

For any fixed n_0 and any $n \leq n_0$, we can choose large enough C_1 such that $C_1 L n_0^{-W} \geq ||F||_2$. Thus $N(\operatorname{conv}\mathcal{F}_n, C_1 L \cdot n^{-W}, ||\cdot||_2) = 1$ and 18.2 holds trivially. For general n, fix m = n/d for large enough d > 1. For any $f \in \mathcal{F}_n$, there exists a projection $\pi_m f \in \mathcal{F}_m$ such that $||f - \pi_m f|| \leq C^{\frac{1}{V}} m^{-\frac{1}{V}} ||F|| = L m^{-\frac{1}{V}}$ by definition of \mathcal{F}_m . Since $\sum_{f \in \mathcal{F}_n} \lambda_f \cdot f = \sum_{f \in \mathcal{F}_m} \mu_f \cdot f + \sum_{f \in \mathcal{F}_n} \lambda_f \cdot (f - \pi_m f)$, we have $\operatorname{conv}\mathcal{F}_n \subset \operatorname{conv}\mathcal{F}_m + \operatorname{conv}\mathcal{G}_n$, and the number of elements $|\mathcal{G}_n| \leq |\mathcal{F}_n| \leq n$, where $\mathcal{G}_n = \{f - \pi_m f : f \in \mathcal{F}_n\}$. We will find $\frac{1}{2}C_1Ln^{-\frac{1}{W}}$ -nets for both \mathcal{F}_m and \mathcal{G}_n , and bound the number of elements for them to finish to induction step. We need the following lemma to bound the number of elements for the $\frac{1}{2}C_1Ln^{-\frac{1}{W}}$ -net of \mathcal{G}_n .

Lemma 18.2. Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measurable space and \mathcal{F} be an arbitrary set of n measurable functions f: $\mathcal{X} \to \mathbb{R}$ of finite $L_2(\mu)$ - diameter diam \mathcal{F} ($\forall f, g \in \mathcal{F}, \int (f-g)^2 d\mu < \infty$). Then $\forall \epsilon > 0$, $N(conv\mathcal{F}, \epsilon diam\mathcal{F}, \| \cdot \|_2) \leq (e + en\epsilon^2)^{2/\epsilon^2}$.

Proof. Let $\mathcal{F} = \{f_1, \dots, f_n\}$. $\forall \sum_{i=1}^n \lambda_i f_i$, let Y_1, \dots, Y_k be i.i.d. random variables such that $P(Y_i = f_j) = \lambda_j$ for all $j = 1, \dots, n$. It follows that $\mathbb{E}Y_i = \sum \lambda_j f_j$ for all $i = 1, \dots, k$, and

$$\mathbb{E}\left(\frac{1}{k}\sum_{i=1}^{k}Y_{i}-\sum_{j=1}^{n}\lambda_{j}f_{j}\right) \leq \frac{1}{k}\mathbb{E}\left(Y_{1}-\sum_{j=1}^{n}\lambda_{j}f_{j}\right) \leq \frac{1}{k}\left(\operatorname{diam}\mathcal{F}\right)^{2}.$$

Thus at least one realization of $\frac{1}{k} \sum_{i=1}^{k} Y_i$ has a distance at most $k^{-1/2} \operatorname{diam} \mathcal{F}$ to $\sum \lambda_i f_i$. Since all realizations of $\frac{1}{k} \sum_{i=1}^{k} Y_i$ has the form $\frac{1}{k} \sum_{i=1}^{k} f_{j_k}$, there are at most $\binom{n+k-1}{k}$ of such forms. Thus

$$N(k^{-1/2}\operatorname{diam}\mathcal{F},\operatorname{conv}\mathcal{F}, \|\cdot\|_2) \leq \binom{n+k-1}{k}$$
$$\leq \frac{(k+n)^{k+n}}{k^k n^n} = \binom{k+n}{k}^k \binom{k+n}{n}^n$$
$$\leq e^k \left(\frac{k+n}{k}\right)^k = (e+en\epsilon^2)^{2/\epsilon^2}$$

By triangle inequality and definition of \mathcal{G}_n , diam $\mathcal{G}_n = \sup_{g_1, g_2 \in \mathcal{G}_n} \|g_1 - g_2\|_2 \le 2 \cdot Lm^{-1/V}$. Let $\epsilon \cdot \text{diam}\mathcal{G}_n = \epsilon \cdot 2Lm^{-1/V} = \frac{1}{2}C_1Ln^{-W}$. It follows that $\epsilon = \frac{1}{4}C_1m^{1/V} \cdot n^{-W}$, and

$$N(\operatorname{conv}\mathcal{G}_{n}, \epsilon \operatorname{diam}\mathcal{G}_{n}, \|\cdot\|_{2}) \leq \left(e + en \cdot \frac{1}{16} C_{1}^{2} m^{2/V} \cdot n^{-2W}\right)^{32 \cdot C_{1}^{-2} m^{2/V} n^{2 \cdot W}} \\ = \left(e + \frac{e}{16} C_{1}^{2} d^{-2/V}\right)^{32 \cdot C_{1}^{-2} d^{2/V} n}$$

By definition of \mathcal{F}_m and and induction assumption, $\log N(\operatorname{conv}\mathcal{F}_m, C_1L \cdot m^{-W}, \|\cdot\|_2) \leq D_1 \cdot m$. In other words, the $C_1L \cdot m^{-W}$ -net of $\operatorname{conv}\mathcal{F}_m$ contains at most e^{D_1m} elements. This defines a partition of $\operatorname{conv}\mathcal{F}_m$ into at most e^{D_1m} elements. Each element is isometric to a subset of a ball of radius C_1Lm^{-W} . Thus each set can be partitioned into $\left(\frac{3C_1Lm^{-W}}{\frac{1}{2}C_1Ln^{-W}}\right)^m = \left(6d^W\right)^{n/d}$ sets of diameter at most $\frac{1}{2}C_1Ln^{-W}$ according to the following lemma.

Lemma 18.3. The packing number of a ball of radius R in \mathbb{R}^d satisfies $D(B(0,r),\epsilon, \|\cdot\|) \leq \left(\frac{3R}{\epsilon}\right)^d$ for the usual norm, where $0 < \epsilon \leq R$.

As a result, the $C_1 L n^{-W}$ -net of conv \mathcal{F}_n has at most $e^{D_1 n/d} \left(6d^W\right)^{n/d} \left(e + eC_1^2 d^{-2/V}\right)^{8d^{2/V}C_1^{-2}n}$ elements. This can be upper-bounded by e^n by choosing C_1 and d depending only on V, and $D_1 = 1$.

For k > 1, construct $\mathcal{G}_{n,k}$ such that $\operatorname{conv}\mathcal{F}_{nk^q} \subset \operatorname{conv}\mathcal{F}_{n(k-1)^q} + \operatorname{conv}\mathcal{G}_{n,k}$ in a similar way as before. $\mathcal{G}_{n,k}$ contains at most nk^q elements, and each has a norm smaller than $L\left(n\left(k-1\right)^q\right)^{-1/V}$. To bound the cardinality of a $Lk^{-2}n^{-W}$ -net, we set $\epsilon \cdot 2L\left(n\left(k-1\right)^q\right)^{-1/V} = Lk^{-2}n^{-W}$, get $\epsilon = \frac{1}{2}n^{-1/2}\left(k-1\right)^{q/V}k^{-2}$, 46 and

$$N(\operatorname{conv}\mathcal{G}_{n,k}, \epsilon \operatorname{diam}\mathcal{G}_{n,k}, \|\cdot\|_2) \leq \left(e + enk^q \epsilon^2\right)^{2/\epsilon^2} \Rightarrow$$

$$N(\operatorname{conv}\mathcal{G}_{n,k}, \epsilon \operatorname{diam}\mathcal{G}_{n,k}, \|\cdot\|_2) \leq \left(e + \frac{e}{4}k^{-4+q+2q/V}\right)^{8 \cdot n \cdot k^4 (k-1)^{-2q/V}}$$

. As a result, we get

$$C_k = C_{k-1} + \frac{1}{k^2}$$

$$D_k = D_{k-1} + 8k^4(k-1)^{-2q/V}\log(e + \frac{e}{4}k^{-4+q+2q/V}).$$

For $2q/V - 4 \ge 2$, the resulting sequences C_k and D_k are bounded.

In a classification setup, we are given $\{(x_i, y_i) : x_i \in \mathcal{X}, y_i \in \{-1, +1\}\}_{i=1,\dots,n}$, and are required to construct a classifier $y = \operatorname{sign}(f(x))$ with minimum testing error. For any x, the term $y \cdot f(x)$ is called **margin** can be considered as the confidence of the prediction made by $\operatorname{sign}(f(x))$. Classifiers like SVM and AdaBoost are all **maximal margin classifiers**. Maximizing margin means, penalizing small margin, controling the complexity of all possible outputs of the algorithm, or controling the generalization error.

We can define $\phi_{\delta}(s)$ as in the following plot, and control the error $\mathbb{P}(y \cdot f(x) \leq 0)$ in terms of $\mathbb{E}\phi_{\delta}(y \cdot f(x))$:

$$\begin{split} \mathbb{P}(y \cdot f(x) \leq 0) &= \mathbb{E}_{x,y} I(y \cdot f(x) \leq 0) \\ &\leq \mathbb{E}_{x,y} \phi_{\delta}(y \cdot f(x)) \\ &= \mathbb{E} \phi_{\delta}(y \cdot f(x)) \\ &= \underbrace{\mathbb{E}_{n} \phi_{\delta}(y \cdot f(x))}_{\text{observed error}} + \underbrace{(\mathbb{E}(y \cdot f(x)) - \mathbb{E}_{n} \phi_{\delta}(y \cdot f(x)))}_{\text{generalization capability}} \end{split}$$

where $\mathbb{E}_n \phi_{\delta}(y \cdot f(x)) \stackrel{\Delta}{=} \frac{1}{n} \sum_{i=1}^n \phi_{\delta}(y \cdot f(x)).$ $\varphi_{\delta}(s)$ δ δ

Let us define $\phi_{\delta}(y\mathcal{F}) \stackrel{\triangle}{=} \{\phi_{\delta}(y \cdot f(x)) : f \in \mathcal{F}\}$. The function ϕ_{δ} satisfies Lipschetz condition $|\phi_{\delta}(a) - \phi_{\delta}(b)| \leq \frac{1}{\delta}|a-b|$. Thus given any $\{z_i = (x_i, y_i)\}_{i=1,\dots,n}$,

$$\begin{aligned} d_z(\phi_{\delta}(y \cdot f(x)), \phi_{\delta}(y \cdot g(x))) &= \left(\frac{1}{n} \sum_{i=1}^n \left(\phi_{\delta}(y_i f(x_i)) - \phi_{\delta}(y_i \cdot g(x_i))\right)^2\right)^{1/2} , \text{definition of } d_z \\ &\leq \frac{1}{\delta} \left(\frac{1}{n} \sum_{i=1}^n \left(y_i f(x_i) - y_i \cdot g(x_i)\right)^2\right)^{1/2} , \text{Lipschetz condition} \\ &= \frac{1}{\delta} d_x(f(x), g(x)) , \text{definition of } d_x, \end{aligned}$$

and the packing numbers for $\phi_{\delta}(y\mathcal{F})$ and \mathcal{F} satisfies inequality $D(\phi_{\delta}(y\mathcal{F}), \epsilon, d_z) \leq D(\mathcal{F}, \epsilon \cdot \delta, d_x)$. Recall that for a VC-subgraph class \mathcal{H} , the packing number satisfies $D(\mathcal{H}, \epsilon, d_x) \leq C(\frac{1}{\epsilon})^V$, where C is a constant, and V is a constant. For its corresponding VC-hull class, there exists K(C, V), such that $\log D(\mathcal{F} = \operatorname{conv}(\mathcal{H}), \epsilon, d_x) \leq K(\frac{1}{\epsilon})^{\frac{2V}{V+2}}$. Thus $\log D(\phi_{\delta}(y\mathcal{F}), \epsilon, d_z) \leq \log D(\mathcal{F}, \epsilon \cdot \delta, d_x) \leq K(\frac{1}{\epsilon \cdot \delta})^{\frac{2V}{V+2}}$.

On the other hand, for a VC-subgraph class \mathcal{H} , $\log D(\mathcal{H}, \epsilon, d_x) \leq KV \log \frac{2}{\epsilon}$, where V is the VC dimension of \mathcal{H} . We proved that $\log D(\mathcal{F}_d = \operatorname{conv}_d \mathcal{H}, \epsilon, d_x) \leq K \cdot V \cdot d \log \frac{2}{\epsilon}$. Thus $\log D(\phi_\delta(y\mathcal{F}_d), \epsilon, d_x) \leq K \cdot V \cdot d \log \frac{2}{\epsilon\delta}$. 48 Remark 19.1. For a VC-subgraph class \mathcal{H} , let V is the VC dimension of \mathcal{H} . The packing number satisfies $D(\mathcal{H}, \epsilon, d_x) \leq \left(\frac{k}{\epsilon} \log \frac{k}{\epsilon}\right)^V$. D Haussler (1995) also proved the following two inequalities related to the packing number: $D(\mathcal{H}, \epsilon, \|\cdot\|_1) \leq \left(\frac{k}{\epsilon}\right)^V$, and $D(\mathcal{H}, \epsilon, d_x) \leq K\left(\frac{1}{\epsilon}\right)^V$.

Since $\operatorname{conv}(\mathcal{H})$ satisfies the **uniform entroy condition** (Lecture 16) and $f \in [-1, 1]^{\mathcal{X}}$, with a probability of at least $1 - e^{-u}$,

(19.1)
$$\mathbb{E}\phi_{\delta}(y \cdot f(x)) - \mathbb{E}_{n}\phi_{\delta}(y \cdot f(x)) \leq \frac{K}{\sqrt{n}} \int_{0}^{\sqrt{\mathbb{E}\phi_{\delta}}} \sqrt{\left(\frac{1}{\epsilon \cdot \delta}\right)^{\frac{2V}{V+2}}} d\epsilon + K\sqrt{\frac{\mathbb{E}\phi_{\delta} \cdot u}{n}}$$
$$= Kn^{-\frac{1}{2}} \delta^{-\frac{V}{V+2}} \left(\mathbb{E}\phi_{\delta}\right)^{\frac{1}{V+2}} + K\sqrt{\frac{\mathbb{E}\phi_{\delta} \cdot u}{n}}$$

for all $f \in \mathcal{F} = \text{conv}\mathcal{H}$. The term $\mathbb{E}\phi_{\delta}$ to estimate appears in both sides of the above inequality. We give a bound $\mathbb{E}\phi_{\delta} \leq x^*(\mathbb{E}_n\phi_{\delta}, n, \delta)$ as the following. Since

$$\begin{split} \mathbb{E}\phi_{\delta} &\leq \mathbb{E}_{n}\phi_{\delta} \\ \mathbb{E}\phi_{\delta} &\leq Kn^{-\frac{1}{2}}\delta^{-\frac{V}{V+2}} (\mathbb{E}\phi_{\delta})^{\frac{1}{V+2}} \quad \Rightarrow \quad \mathbb{E}\phi_{\delta} &\leq Kn^{-\frac{1}{2}\frac{V+2}{V+1}}\delta^{-\frac{V}{V+1}} \\ \mathbb{E}\phi_{\delta} &\leq K\sqrt{\frac{\mathbb{E}\phi_{\delta} \cdot u}{n}} \quad \Rightarrow \quad \mathbb{E}\phi_{\delta} &\leq K\frac{u}{n}, \end{split}$$

It follows that with a probability of at least $1 - e^{-u}$,

(19.2)
$$\mathbb{E}\phi_{\delta} \leq K \cdot \left(\mathbb{E}_n \phi_{\delta} + n^{-\frac{1}{2}\frac{V+2}{V+1}} \delta^{-\frac{V}{V+1}} + \frac{u}{n}\right)$$

for some constant K. We proceed to bound $\mathbb{E}\phi_{\delta}$ for $\delta \in \{\delta_k = \exp(-k) : k \in \mathbb{N}\}$. Let $\exp(-u_k) = \left(\frac{1}{k+1}\right)^2 e^{-u}$, it follows that $u_k = u + 2 \cdot \log(k+1) = u + 2 \cdot \log(\log \frac{1}{\delta_k} + 1)$. Thus with a probability of at least $1 - \sum_{k \in \mathbb{N}} \exp(-u_k) = 1 - \sum_{k \in \mathbb{N}} \left(\frac{1}{k+1}\right)^2 e^{-u} = 1 - \frac{\pi^2}{6} \cdot e^{-u} < 1 - 2 \cdot e^{-u}$,

(19.3)
$$\mathbb{E}\phi_{\delta_{k}}(y \cdot f(x)) \leq K \cdot (\mathbb{E}_{n}\phi_{\delta_{k}}(y \cdot f(x)) + n^{-\frac{1}{2}\frac{V+2}{V+1}}\delta_{k}^{-\frac{V}{V+1}} + \frac{u_{k}}{n})$$
$$= K \cdot (\mathbb{E}_{n}\phi_{\delta_{k}}(y \cdot f(x)) + n^{-\frac{1}{2}\frac{V+2}{V+1}}\delta_{k}^{-\frac{V}{V+1}} + \frac{u+2 \cdot \log(\log\frac{1}{\delta_{k}}+1)}{n})$$

for all $f \in \mathcal{F}$ and all $\delta_k \in \{\delta_k : k \in \mathbb{N}\}$. Since $\mathbb{P}(y \cdot f(x) \leq 0) = \mathbb{E}_{x,y}I(y \cdot f(x) < 0) \leq \mathbb{E}_{x,y}\phi_{\delta}(y \cdot f(x))$, and $\mathbb{E}_n\phi_{\delta}(y \cdot f(x)) = \frac{1}{n}\sum_{i=1}^n \phi_{\delta}(y_i \cdot f(x_i)) \leq \frac{1}{n}\sum_{i=1}^n I(y_i \cdot f(x_i) \leq \delta) = \mathbb{P}_n(y_i \cdot f(x_i) \leq \delta)$, with probability at least $1 - 2 \cdot e^{-u}$,

$$\mathbb{P}(y \cdot f(x)) \le 0) \le K \cdot \inf_{\delta} \left(\mathbb{P}_n(y \cdot f(x) \le \delta) + n^{-\frac{V+2}{2(V+1)}} \delta^{-\frac{V}{V+1}} + \frac{u}{n} + \frac{2\log(\log\frac{1}{\delta} + 1)}{n} \right).$$

As in the previous lecture, let $\mathcal{H} = \{h : \mathcal{X} \mapsto [-1, 1]\}$ be a VC-subgraph class and $f \in \mathcal{F} = \operatorname{conv} \mathcal{H}$. The

classifier is sign(f(x)). The set

$$\{y \neq \operatorname{sign}(f(x))\} = \{yf(x) \le 0\}$$

is the set of misclassified examples and $\mathbb{P}(yf(x) \leq 0)$ is the misclassification error.

Assume the examples are labeled according to $C_0 = \{x \in \mathcal{X} : y = 1\}$. Let $C = \{\operatorname{sign}(f(x)) > 0\}$. Then $C_0 \triangle C$ are misclassified examples.

$$\mathbb{P}(C \triangle C_0) = \frac{1}{n} \sum_{i=1}^n I(x_i \in C \triangle C_0) + \underbrace{\mathbb{P}(C \triangle C_0) - \frac{1}{n} \sum_{i=1}^n I(x_i \in C \triangle C_0)}_{\text{Homotopy}} .$$

small. estimate uniformly over sets ${\scriptscriptstyle C}$

For voting classifiers, the collection of sets C can be "very large".

Example 20.1. Let \mathcal{H} be the class of simple step-up and step-down functions on the [0,1] interval, parametrized by a and b.

Then $VC(\mathcal{H}) = 2$. Let $\mathcal{F} = \operatorname{conv} \mathcal{H}$. First, rescale the functions: $f = \sum_{i=1}^{T} \lambda_i h_i = 2 \sum_{i=1}^{T} \lambda_i \left(\frac{h_i+1}{2}\right) - 1 = 2f' - 1$ where $f' = \sum_{i=1}^{T} \lambda_i h'_i$, $h'_i = \frac{h_i+1}{2}$. We can generate any non-decreasing function f' such that f'(0) = 0 and f'(1) = 1. Similarly, we can generate any non-increasing f' such that f'(0) = 1 and f'(1) = 0. Rescaling back to f, we can get any non-increasing and non-decreasing functions of the form

Any function with sum of jumps less than 1 can be written as $f = \frac{1}{2}(f_1 + f_2)$. Hence, we can generate basically all sets by $\{f(x) > 0\}$, i.e. conv \mathcal{H} is bad.

Recall that $\mathbb{P}(yf(x) \leq 0) = \mathbb{E}I(yf(x) \leq 0)$. Define function $\varphi_{\delta}(s)$ as follows: Then,

$$I(s \le 0) \le \varphi_{\delta}(s) \le I(s \le \delta).$$

Hence,

$$\mathbb{P}\left(yf(x) \le 0\right) \le \mathbb{E}\varphi_{\delta}\left(yf(x)\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right) + \left(\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right)\right)$$
$$\le \frac{1}{n} \sum_{i=1}^{n} I(y_{i}f(x_{i}) \le \delta) + \left(\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right)\right)$$

By going from $\frac{1}{n} \sum_{i=1}^{n} I(y_i f(x_i) \leq 0)$ to $\frac{1}{n} \sum_{i=1}^{n} I(y_i f(x_i) \leq \delta)$, we are penalizing small confidence predictions. The margin yf(x) is a measure of the confidence of the prediction. For the sake of simplicity, denote $\mathbb{E}\varphi_{\delta} = \mathbb{E}\varphi_{\delta}(yf(x))$ and $\bar{\varphi_{\delta}} = \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}(y_i f(x_i))$.

Lemma 20.2. Let $\mathcal{F}_d = conv_d \ \mathcal{H} = \{\sum_{i=1}^d \lambda_i h_i, h_i \in \mathcal{H}\}$ and fix $\delta \in (0, 1]$. Then

$$\mathbb{P}\left(\forall f \in \mathcal{F}_d, \ \frac{\mathbb{E}\varphi_{\delta} - \bar{\varphi_{\delta}}}{\sqrt{\mathbb{E}\varphi_{\delta}}} \le K\left(\sqrt{\frac{dV\log\frac{n}{\delta}}{n}} + \sqrt{\frac{t}{n}}\right)\right) \ge 1 - e^{-t}$$

Proof. Denote

$$\varphi_{\delta}\left(y\mathcal{F}_{d}(x)\right) = \{\varphi_{\delta}\left(yf(x)\right), f \in \mathcal{F}_{d}\}.$$

Note that $\varphi_{\delta}(yf(x)) : \mathcal{X} \times \mathcal{Y} \mapsto [0, 1].$

For any n, take any possible points $(x_1, y_1), \ldots, (x_n, y_n)$. Since

$$\left|\varphi_{\delta}\left(s\right)-\varphi_{\delta}\left(t\right)\right| \leq \frac{1}{\delta}|s-t|,$$
51

we have

$$d_{x,y}\left(\varphi_{\delta}\left(yf(x)\right),\varphi_{\delta}\left(yg(x)\right)\right) = \left(\frac{1}{n}\sum_{i=1}^{n}(\varphi_{\delta}\left(y_{i}f(x_{i})\right) - \varphi_{\delta}\left(y_{i}g(x_{i})\right)\right)^{2}\right)^{1/2}$$
$$\leq \left(\frac{1}{\delta^{2}}\frac{1}{n}\sum_{i=1}^{n}(y_{i}f(x_{i}) - y_{i}g(x_{i}))^{2}\right)^{1/2}$$
$$= \frac{1}{\delta}\left(\frac{1}{n}\sum_{i=1}^{n}(f(x_{i}) - g(x_{i}))^{2}\right)^{1/2}$$
$$= \frac{1}{\delta}d_{x}(f,g)$$

where $f, g \in \mathcal{F}_d$.

Choose $\varepsilon \cdot \delta$ -packing of \mathcal{F}_d so that

$$d_{x,y}\left(arphi_{\delta}\left(yf(x)
ight) ,arphi_{\delta}\left(yg(x)
ight)
ight) \leqrac{1}{\delta}d_{x}(f,g)\leqarepsilon.$$

Hence,

$$\mathcal{N}(\varphi_{\delta}(y\mathcal{F}_{d}(x)),\varepsilon,d_{x,y}) \leq \mathcal{D}(\mathcal{F}_{d},\varepsilon\delta,d_{x})$$

and

$$\log \mathcal{N}(\varphi_{\delta}(y\mathcal{F}_{d}(x)),\varepsilon,d_{x,y}) \leq \log \mathcal{D}(\mathcal{F}_{d},\varepsilon\delta,d_{x}) \leq KdV\log\frac{2}{\varepsilon\delta}.$$

We get

$$\log \mathcal{D}(\varphi_{\delta}(y\mathcal{F}_d), \varepsilon/2, d_{x,y}) \leq KdV \log \frac{2}{\varepsilon\delta}.$$

So, we can choose f_1, \ldots, f_D , $D = \mathcal{D}(\mathcal{F}_d, \varepsilon \delta, d_x)$ such that for any $f \in \mathcal{F}_d$ there exists $f_i, d_x(f, f_i) \leq \varepsilon \delta$. Hence,

$$d_{x,y}(\varphi_{\delta}(yf(x)),\varphi_{\delta}(yf_{i}(x))) \leq \varepsilon$$

and $\varphi_{\delta}(yf_1(x)), \ldots, \varphi_{\delta}(yf_D(x))$ is an ε -cover of $\varphi_{\delta}(y\mathcal{F}_d(x))$.

We continue to prove the lemma from Lecture 20:

Lemma 21.1. Let
$$\mathcal{F}_d = conv_d \mathcal{H} = \{\sum_{i=1}^d \lambda_i h_i, h_i \in \mathcal{H}\}$$
 and fix $\delta \in (0, 1]$. Then

$$\mathbb{P}\left(\forall f \in \mathcal{F}_d, \ \frac{\mathbb{E}\varphi_{\delta} - \bar{\varphi_{\delta}}}{\sqrt{\mathbb{E}\varphi_{\delta}}} \leq K\left(\sqrt{\frac{dV\log\frac{n}{\delta}}{n}} + \sqrt{\frac{t}{n}}\right)\right) \geq 1 - e^{-t}$$

Proof. We showed that

$$\log \mathcal{D}(\varphi_{\delta}(y\mathcal{F}_d), \varepsilon/2, d_{x,y}) \leq KdV \log \frac{2}{\varepsilon\delta}.$$

By the result of Lecture 16,

$$\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n}\sum_{i=1}^{n}\varphi_{\delta}\left(y_{i}f(x_{i})\right) \leq \frac{k}{\sqrt{n}}\int_{0}^{\sqrt{\mathbb{E}\varphi_{\delta}}}\log^{1/2}\mathcal{D}(\varphi_{\delta}\left(y\mathcal{F}_{d}(x)\right),\varepsilon)d\varepsilon + \sqrt{\frac{t\mathbb{E}\varphi_{\delta}}{n}}$$

with probability at least $1 - e^{-t}$. We have

$$\frac{k}{\sqrt{n}} \int_{0}^{\sqrt{\mathbb{E}\varphi_{\delta}}} \log^{1/2} \mathcal{D}(\varphi_{\delta}\left(y\mathcal{F}_{d}(x)\right), \varepsilon) d\varepsilon \leq \frac{k}{\sqrt{n}} \int_{0}^{\sqrt{\mathbb{E}\varphi_{\delta}}} \sqrt{dV \log \frac{2}{\varepsilon\delta}} d\varepsilon$$
$$= \frac{k}{\sqrt{n}} \frac{2}{\delta} \int_{0}^{\delta\sqrt{\mathbb{E}\varphi_{\delta}}/2} \sqrt{dV} \sqrt{\log \frac{1}{x}} dx$$
$$\leq \frac{k}{\sqrt{n}} \frac{2}{\delta} \sqrt{dV} 2\frac{\delta}{2} \sqrt{\mathbb{E}\varphi_{\delta}} \sqrt{\log \frac{2}{\delta\sqrt{\mathbb{E}\varphi_{\delta}}}}$$

where we have made a change of variables $\frac{2}{\varepsilon\delta} = x$, $\varepsilon = \frac{2x}{\delta}$. Without loss of generality, assume $\mathbb{E}\varphi_{\delta} \ge 1/n$. Otherwise, we're doing better than in Lemma: $\frac{\mathbb{E}}{\sqrt{\mathbb{E}}} \le \sqrt{\frac{\log n}{n}} \Rightarrow \mathbb{E} \le \frac{\log n}{n}$. Hence,

$$\frac{k}{\sqrt{n}} \int_{0}^{\sqrt{\mathbb{E}\varphi_{\delta}}} \log^{1/2} \mathcal{D}(\varphi_{\delta}\left(y\mathcal{F}_{d}(x)\right), \varepsilon) d\varepsilon \leq K \sqrt{\frac{dV\mathbb{E}\varphi_{\delta}}{n} \log \frac{2\sqrt{n}}{\delta}} \\ \leq K \sqrt{\frac{dV\mathbb{E}\varphi_{\delta}}{n} \log \frac{n}{\delta}}$$

So, with probability at least $1 - e^{-t}$,

$$\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n}\sum_{i=1}^{n}\varphi_{\delta}\left(y_{i}f(x_{i})\right) \leq K\sqrt{\frac{dV\mathbb{E}\varphi_{\delta}\left(yf(x)\right)}{n}\log\frac{n}{\delta}} + \sqrt{\frac{t\mathbb{E}\varphi_{\delta}\left(yf(x)\right)}{n}}$$

which concludes the proof.

The above lemma gives a result for a fixed $d \ge 1$ and $\delta \in (0, 1]$. To obtain a uniform result, it's enough to consider $\delta \in \Delta = \{2^{-k}, k \ge 1\}$ and $d \in \{1, 2, ...\}$. For a fixed δ and d, use the Lemma above with $t_{\delta,d}$ defined by $e^{-t_{\delta,d}} = e^{-t} \frac{6\delta}{d^2\pi^2}$. Then

$$\mathbb{P}\left(\forall f \in \mathcal{F}_d, \ \dots + \sqrt{\frac{t_{\delta,d}}{n}}\right) \ge 1 - e^{-t_{\delta,d}} = 1 - e^{-t} \frac{6\delta}{d^2 \pi^2}$$

and

$$\mathbb{P}\left(\bigcup_{d,\delta}\left\{\forall f\in\mathcal{F}_d,\ \ldots+\sqrt{\frac{t_{\delta,d}}{n}}\right\}\right)\geq 1-\sum_{\delta,d}e^{-t}\frac{6\delta}{d^2\pi^2}=1-e^{-t}.$$

5	3

Since $t_{\delta,d} = t + \log \frac{d^2 \pi^2}{6\delta}$,

$$\begin{aligned} \forall f \in \mathcal{F}_d, \ \frac{\mathbb{E}\varphi_{\delta} - \bar{\varphi_{\delta}}}{\sqrt{\mathbb{E}\varphi_{\delta}}} &\leq K \left(\sqrt{\frac{dV \log \frac{n}{\delta}}{n}} + \sqrt{\frac{t + \log \frac{d^2 \pi^2}{6\delta}}{n}} \right) \\ &\leq K \left(\sqrt{\frac{dV \log \frac{n}{\delta}}{n}} + \sqrt{\log \frac{d^2 \pi^2}{6\delta}} + \sqrt{\frac{t}{n}} \right) \\ &\leq K' \left(\sqrt{\frac{dV \log \frac{n}{\delta}}{n}} + \sqrt{\frac{t}{n}} \right) \end{aligned}$$

since $\log \frac{d^2 \pi^2}{6\delta}$, the penalty for union-bound, is much smaller than $\sqrt{\frac{dV \log \frac{n}{\delta}}{n}}$.

Recall the bound on the misclassification error

$$\mathbb{P}\left(yf(x) \le 0\right) \le \frac{1}{n} \sum_{i=1}^{n} I(y_i f(x_i) \le \delta) + \left(\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_i f(x_i)\right)\right).$$
$$\frac{\mathbb{E}\varphi_{\delta} - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}}{\sqrt{\mathbb{E}\varphi_{\delta}}} \le \varepsilon,$$

then

If

$$\mathbb{E}\varphi_{\delta} - \varepsilon \sqrt{\mathbb{E}\varphi_{\delta}} - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta} \le 0.$$

Hence,

$$\sqrt{\mathbb{E}\varphi_{\delta}} \leq \frac{\varepsilon}{2} + \sqrt{\left(\frac{\varepsilon}{2}\right)^{2} + \frac{1}{n}\sum_{i=1}^{n}\varphi_{\delta}}$$
$$\mathbb{E}\varphi_{\delta} \leq 2\left(\frac{\varepsilon}{2}\right)^{2} + 2\frac{1}{n}\sum_{i=1}^{n}\varphi_{\delta}.$$

The bound becomes

$$\mathbb{P}\left(yf(x) \le 0\right) \le K\left(\frac{1}{n}\sum_{i=1}^{n}I(y_{i}f(x_{i}) \le \delta) + \underbrace{\frac{dV}{n}\log\frac{n}{\delta}}_{(*)} + \frac{t}{n}\right)$$

where K is a rough constant.

(*) not satisfactory because in boosting the bound should get better when the number of functions grows. We prove a better bound in the next lecture. **Theorem 22.1.** With probability at least $1 - e^{-t}$, for any $T \ge 1$ and any $f = \sum_{i=1}^{T} \lambda_i h_i$,

$$\mathbb{P}\left(yf(x) \leq 0\right) \leq \inf_{\delta \in (0,1)} \left(\varepsilon + \sqrt{\mathbb{P}_n\left(yf(x) \leq \delta\right) + \varepsilon^2}\right)^2$$

where $\varepsilon = \varepsilon(\delta) = K\left(\sqrt{\frac{V\min(T, (\log n)/\delta^2)\log \frac{n}{\delta}}{n}} + \sqrt{\frac{t}{n}}\right).$

Here we used the notation $\mathbb{P}_n(C) = \frac{1}{n} \sum_{i=1}^n I(x_i \in C)$. Remark:

$$\mathbb{P}\left(yf(x) \le 0\right) \le \inf_{\delta \in (0,1)} K\left(\underbrace{\mathbb{P}_n\left(yf(x) \le \delta\right)}_{\text{inc. with } \delta} + \underbrace{\frac{V\min(T, (\log n)/\delta^2)\log \frac{n}{\delta}}_{\text{dec. with } \delta} + \frac{t}{n}\right).$$

Proof. Let $f = \sum_{i=1}^{T} \lambda_i h_i$, $g = \frac{1}{k} \sum_{j=1}^{k} Y_j$, where

$$\mathbb{P}(Y_j = h_i) = \lambda_i \text{ and } \mathbb{P}(Y_j = 0) = 1 - \sum_{i=1}^T \lambda_i$$

as in Lecture 17. Then $\mathbb{E}Y_j(x) = f(x)$.

$$\mathbb{P}\left(yf(x) \le 0\right) = \mathbb{P}\left(yf(x) \le 0, yg(x) \le \delta\right) + \mathbb{P}\left(yf(x) \le 0, yg(x) > \delta\right)$$
$$\le \mathbb{P}\left(yg(x) \le \delta\right) + \mathbb{P}\left(yg(x) > \delta \mid yf(x) \le 0\right)$$

$$\mathbb{P}\left(yg(x) > \delta \mid yf(x) \le 0\right) = \mathbb{E}_x \mathbb{P}_Y\left(y\frac{1}{k}\sum_{j=1}^k Y_j(x) > \delta \mid y\mathbb{E}_Y Y_j(x) \le 0\right)$$

Shift Y's to [0,1] by defining $Y'_j = \frac{yY_j+1}{2}$. Then

$$\mathbb{P}\left(yg(x) > \delta | yf(x) \le 0\right) = \mathbb{E}_x \mathbb{P}_Y\left(\frac{1}{k} \sum_{j=1}^k Y'_j \ge \frac{1}{2} + \frac{\delta}{2} \mid \mathbb{E}Y'_j \le \frac{1}{2}\right)$$
$$\le \mathbb{E}_x \mathbb{P}_Y\left(\frac{1}{k} \sum_{j=1}^k Y'_j \ge \mathbb{E}Y'_1 + \frac{\delta}{2} \mid \mathbb{E}Y'_j \le \frac{1}{2}\right)$$
$$\le (\text{by Hoeffding's ineq.}) \ \mathbb{E}_x e^{-kD\left(\mathbb{E}Y'_1 + \frac{\delta}{2}, \mathbb{E}Y'_1\right)}$$
$$\le \mathbb{E}_x e^{-k\delta^2/2} = e^{-k\delta^2/2}$$

because $D(p,q) \geq 2(p-q)^2$ (KL-divergence for binomial variables, Homework 1) and, hence,

$$D\left(\mathbb{E}Y_1' + \frac{\delta}{2}, \mathbb{E}Y_1'\right) \ge 2\left(\frac{\delta}{2}\right)^2 = \delta^2/2.$$

We therefore obtain

(22.1)
$$\mathbb{P}\left(yf(x) \le 0\right) \le \mathbb{P}\left(yg(x) \le \delta\right) + e^{-k\delta^2/2}$$

and the second term in the bound will be chosen to be equal to 1/n.

Similarly, we can show

$$\mathbb{P}_n\left(yg(x) \le 2\delta\right) \le \mathbb{P}_n\left(yf(x) \le 3\delta\right) + e^{-k\delta^2/2}.$$

Choose k such that $e^{-k\delta^2/2} = 1/n$, i.e. $k = \frac{2}{\delta^2} \log n$.

Now define φ_{δ} as follows:

Observe that

(22.2)
$$I(s \le \delta) \le \varphi_{\delta}(s) \le I(s \le 2\delta).$$

By the result of Lecture 21, with probability at least $1 - e^{-t}$, for all k, δ and any $g \in \mathcal{F}_k = \operatorname{conv}_k(\mathcal{H})$,

$$\Phi\left(\mathbb{E}\varphi_{\delta}, \frac{1}{n}\sum_{i=1}^{n}\varphi_{\delta}\right) = \frac{\mathbb{E}\varphi_{\delta}\left(yg(x)\right) - \frac{1}{n}\sum_{i=1}^{n}\varphi_{\delta}\left(y_{i}g(x_{i})\right)}{\sqrt{\mathbb{E}\varphi_{\delta}\left(yg(x)\right)}}$$
$$\leq K\left(\sqrt{\frac{Vk\log\frac{n}{\delta}}{n}} + \sqrt{\frac{t}{n}}\right)$$
$$= \varepsilon/2.$$

Note that $\Phi(x, y) = \frac{x-y}{\sqrt{x}}$ is increasing with x and decreasing with y. By inequalities (22.1) and (22.2),

$$\mathbb{E}\varphi_{\delta}\left(yg(x)\right) \ge \mathbb{P}\left(yg(x) \le \delta\right) \ge \mathbb{P}\left(yf(x) \le 0\right) - \frac{1}{n}$$

and

$$\frac{1}{n}\sum_{i=1}^{n}\varphi_{\delta}\left(y_{i}g(x_{i})\right) \leq \mathbb{P}_{n}\left(yg(x) \leq 2\delta\right) \leq \mathbb{P}_{n}\left(yf(x) \leq 3\delta\right) + \frac{1}{n}$$

By decreasing x and increasing y in $\Phi(x, y)$, we decrease $\Phi(x, y)$. Hence,

$$\Phi\left(\underbrace{\mathbb{P}\left(yf(x)\leq 0\right)-\frac{1}{n}}_{x},\underbrace{\mathbb{P}_{n}\left(yf(x)\leq 3\delta\right)+\frac{1}{n}}_{y}\right)\leq K\left(\sqrt{\frac{Vk\log\frac{n}{\delta}}{n}}+\sqrt{\frac{t}{n}}\right)$$

where $k = \frac{2}{\delta^2} \log n$.

If $\frac{x-y}{\sqrt{x}} \leq \varepsilon$, we have

So,

$$\begin{split} x &\leq \left(\frac{\varepsilon}{2} + \sqrt{\left(\frac{\varepsilon}{2}\right)^2 + y}\right)^2 \\ \mathbb{P}\left(yf(x) \leq 0\right) - \frac{1}{n} &\leq \left(\frac{\varepsilon}{2} + \sqrt{\left(\frac{\varepsilon}{2}\right)^2 + \mathbb{P}_n\left(yf(x) \leq 3\delta\right) + \frac{1}{n}}\right)^2. \end{split}$$

Let $f = \sum_{i=1}^{T} \lambda_i h_i$, where $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_T \ge 0$. Rewrite f as

$$f = \sum_{i=1}^{d} \lambda_i h_i + \sum_{i=d+1}^{T} \lambda_i h_i = \sum_{i=1}^{d} \lambda_i h_i + \gamma(d) \sum_{i=d+1}^{T} \lambda'_i h_i$$

where $\gamma(d) = \sum_{i=d+1}^{T} \lambda_i$ and $\lambda'_i = \lambda_i / \gamma(d)$.

Consider the following random approximation of f,

$$g = \sum_{i=1}^{d} \lambda_i h_i + \gamma(d) \frac{1}{k} \sum_{j=1}^{k} Y_j$$

where, as in the previous lectures,

$$\mathbb{P}(Y_j = h_i) = \lambda'_i, \quad i = d+1, \dots, T$$

for any j = 1, ..., k. Recall that $\mathbb{E}Y_j = \sum_{i=d+1}^T \lambda'_i h_i$. Then

$$\mathbb{P}\left(yf(x) \le 0\right) = \mathbb{P}\left(yf(x) \le 0, yg(x) \le \delta\right) + \mathbb{P}\left(yf(x) \le 0, yg(x) > \delta\right)$$
$$\le \mathbb{P}\left(yg(x) \le \delta\right) + \mathbb{E}\left[\mathbb{P}_Y\left(yf(x) \le 0, yg(x) \ge \delta \mid (x, y)\right)\right]$$

Furthermore,

$$\mathbb{P}_Y\left(yf(x) \le 0, yg(x) \ge \delta \mid (x, y)\right) \le \mathbb{P}_Y\left(yg(x) - yf(x) > \delta \mid (x, y)\right)$$
$$= \mathbb{P}_Y\left(\gamma(d)y\left(\frac{1}{k}\sum_{j=1}^k Y_j(x) - \mathbb{E}Y_1\right) \ge \delta \mid (x, y)\right).$$

By renaming $Y_j' = \frac{yY_j + 1}{2} \in [0, 1]$ and applying Hoeffding's inequality, we get

$$\mathbb{P}_Y\left(\gamma(d)y\left(\frac{1}{k}\sum_{j=1}^k Y_j(x) - \mathbb{E}Y\right) \ge \delta \mid (x,y)\right) = \mathbb{P}_Y\left(\frac{1}{k}\sum_{j=1}^k Y_j'(x) - \mathbb{E}Y_1' \ge \frac{\delta}{2\gamma(d)} \mid (x,y)\right)$$
$$\le e^{-\frac{k\delta^2}{2\gamma(d)^2}}.$$

Hence,

$$\mathbb{P}\left(yf(x) \le 0\right) \le \mathbb{P}\left(yg(x) \le \delta\right) + e^{-\frac{k\delta^2}{2\gamma^2(d)}}.$$

If we set $e^{-\frac{k\delta^2}{2\gamma(d)^2}} = \frac{1}{n}$, then $k = \frac{2\gamma^2(d)}{\delta^2} \log n$. We have

$$g = \sum_{i=1}^{d} \lambda_i h_i + \gamma(d) \frac{1}{k} \sum_{j=1}^{k} Y_j \in \operatorname{conv}_{d+k} \mathcal{H}$$

 $d + k = d + \frac{2\gamma^2(d)}{\delta^2} \log n.$

Define the effective dimension of f as

$$e(f, \delta) = \min_{0 \le d \le T} \left(d + \frac{2\gamma^2(d)}{\delta^2} \log n \right).$$

Recall from the previous lectures that

$$\mathbb{P}_n\left(yg(x) \le 2\delta\right) \le \mathbb{P}_n\left(yf(x) \le 3\delta\right) + \frac{1}{n}.$$

Hence, we have the following margin-sparsity bound

Theorem 23.1. For $\lambda_1 \geq \ldots \lambda_T \geq 0$, we define $\gamma(d, f) = \sum_{i=d+1}^T \lambda_i$. Then with probability at least $1 - e^{-t}$,

$$\mathbb{P}\left(yf(x) \le 0\right) \le \inf_{\delta \in (0,1)} \left(\varepsilon + \sqrt{\mathbb{P}_n\left(yf(x) \le \delta\right) + \varepsilon^2}\right)^2$$

where

$$\varepsilon = K\left(\sqrt{\frac{V \cdot e(f,\delta)}{n}\log{\frac{n}{\delta}}} + \sqrt{\frac{t}{n}}\right)$$

Example 23.1. Consider the zero-error case. Define

$$\delta^* = \sup\{\delta > 0, \mathbb{P}_n (yf(x) \le \delta) = 0\}.$$

Hence, $\mathbb{P}_n(yf(x) \leq \delta^*) = 0$ for confidence δ^* . Then

$$\mathbb{P}\left(yf(x) \le 0\right) \le 4\varepsilon^2 = K\left(\frac{V \cdot e(f, \delta^*)}{n}\log\frac{n}{\delta^*} + \frac{t}{n}\right)$$
$$\le K\left(\frac{V\log n}{(\delta^*)^2 n}\log\frac{n}{\delta^*} + \frac{t}{n}\right)$$

because $e(f, \delta) \leq \frac{2}{\delta^2} \log n$ always.

Consider the polynomial weight decay: $\lambda_i \leq K i^{-\alpha}$, for some $\alpha > 1$. Then

$$\gamma(d) = \sum_{i=d+1}^{T} \lambda_i \le K \sum_{i=d+1}^{T} i^{-\alpha} \le K \int_d^\infty x^{-\alpha} dx = K \frac{1}{(\alpha - 1)d^{\alpha - 1}} = \frac{K_{\alpha}}{d^{\alpha - 1}}$$

Then

$$e(f,\delta) = \min_{d} \left(d + \frac{2\gamma^2(d)}{\delta^2} \log n \right)$$
$$\leq \min_{d} \left(d + \frac{K'_{\alpha}}{\delta^2 d^{2(\alpha-1)}} \log n \right)$$

Taking derivative with respect to d and setting it to zero,

$$1 - \frac{K_\alpha \log n}{\delta^2 d^{2\alpha - 1}} = 0$$

we get

$$d = K_{\alpha} \cdot \frac{\log^{1/(2\alpha - 1)} n}{\delta^{2/(2\alpha - 1)}} \le K \frac{\log n}{\delta^{2/(2\alpha - 1)}}.$$

Hence,

$$e(f,\delta) \le K \frac{\log n}{\delta^{2/(2\alpha-1)}}$$

Plugging in,

$$\mathbb{P}\left(yf(x) \le 0\right) \le K\left(\frac{V\log n}{n(\delta^*)^{2/(2\alpha-1)}}\log\frac{n}{\delta^*} + \frac{t}{n}\right).$$

As $\alpha \to \infty$, the bound behaves like

$$\frac{V\log n}{n}\log\frac{n}{\delta^*}.$$

In this lecture, we give another example of margin-sparsity bound involved with mixture-of-experts type of models. Let \mathcal{H} be a set of functions $h_i : \mathcal{X} \to [-1, +1]$ with finite VC dimension. Let C_1, \dots, C_m be partitions of \mathcal{H} into m clusters $\mathcal{H} = \bigcup_{i=1}^m C_i$. The elements in the convex hull conv \mathcal{H} takes the form $f = \sum_{i=1}^T \lambda_i h_i = \sum_{c \in \{C_1, \dots, C_m\}} \alpha_c \sum_{h \in c} \lambda_h^c \cdot h$, where $T \gg m$, $\sum_i \lambda_i = 1$, $\alpha_c = \sum_{h \in c} \lambda_h$, and $\lambda_h^c = \lambda_h / \alpha_c$ for $h \in c$. We can approximate f by g as follows. For each cluster c, let $\{Y_k^c\}_{k=1,\dots,N}$ be random variables such that $\forall h \in c \subset \mathcal{H}$, we have $\mathbb{P}(Y_k^c = h) = \lambda_h^c$. Then $\mathbb{E}Y_k^c = \sum_{h \in c} \lambda_h^c \cdot h$. Let $Z_k = \sum_c \alpha_c Y_k^c$ and $g = \sum_c \alpha_c \frac{1}{N} \sum_{k=1}^N Y_k^c = \frac{1}{N} \sum_{k=1}^N Z_k$. Then $\mathbb{E}Z_k = \mathbb{E}g = f$. We define $\sigma_c^2 \stackrel{\bigtriangleup}{=} \operatorname{var}(Z_k) = \sum_c \alpha_c^2 \operatorname{var}(Y_k^c)$, where $\operatorname{var}(Y_k^c) = ||Y_k^c - \mathbb{E}Y_k^c||^2 = \sum_{h \in c} \lambda_h^c (h - \mathbb{E}Y_h^c)^2$. (If we define $\{Y_k\}_{k=1,\dots,N}$ be random variables such that $\forall h \in \mathcal{H}, \mathbb{P}(Y_k = h) = \lambda_h$, and define $g = \frac{1}{N} \sum_{k=1}^N Y_k$, we might get much larger $\operatorname{var}(Y_k)$).

Recall that a classifier takes the form y = sign(f(x)) and a classification error corresponds to yf(x) < 0. We can bound the error by

(24.1)
$$\mathbb{P}(yf(x) < 0) \le \mathbb{P}(yg \le \delta) + \mathbb{P}(\sigma_c^2 > r) + \mathbb{P}(yg > \delta|yf(x) \le 0, \sigma_c^2 < r).$$

The third term on the right side of inequality 24.1 can be bounded in the following way,

$$\begin{aligned}
\mathbb{P}(yg > \delta | yf(x) \le 0, \sigma_c^2 < r) &= \mathbb{P}\left(\frac{1}{N} \sum_{k=1}^N (yZ_k - \mathbb{E}yZ_k) > \delta - yf(x) | yf(x) \le 0, \sigma_c^2 < r\right) \\
&\le \mathbb{P}\left(\frac{1}{N} \sum_{k=1}^N (yZ_k - \mathbb{E}yZ_k) > \delta | yf(x) \le 0, \sigma_c^2 < r\right) \\
&\le \exp\left(-\frac{N^2\delta^2}{2N\sigma_c^2 + \frac{2}{3}N\delta \cdot 2}\right), \text{Bernstein's inequality} \\
&\le \exp\left(-\min\left(\frac{N^2\delta^2}{4N\sigma_c^2}, \frac{N^2\delta^2}{\frac{8}{3}N\delta}\right)\right) \\
&\le \exp\left(-\frac{N\delta^2}{4r}\right), \text{ for } r \text{ small enough} \\
&\le \frac{set}{\leq} \frac{1}{n}.
\end{aligned}$$
(24.2)

As a result, $\forall N \geq \frac{4 \cdot r}{\delta^2} \log n$, inequality 24.2 is satisfied.

To bound the first term on the right side of inequality 24.1, we note that $\mathbb{E}_{Y_1,\dots,Y_N} \mathbb{P}(yg \leq \delta) \leq \mathbb{E}_{Y_1,\dots,Y_N} \mathbb{E}\phi_{\delta}(yg)$ and $\mathbb{E}_n \phi_{\delta}(yg) \leq \mathbb{P}_n(yg \leq 2\delta)$ for some ϕ_{δ} :

Any realization of $g = \sum_{k=1}^{N_m} Z_k$, where N_m depends on the number of clusters (C_1, \dots, C_m) , is a linear combination of $h \in \mathcal{H}$, and $g \in \operatorname{conv}_{N_m} \mathcal{H}$. According to lemma 20.2,

$$\left(\mathbb{E}\phi_{\delta}(yg) - \mathbb{E}_{n}\phi_{\delta}(yg)\right) / \sqrt{\mathbb{E}\phi_{\delta}(yg)} \leq K\left(\sqrt{VN_{m}\log\frac{n}{\delta}/n} + \sqrt{u/n}\right)$$

with probability at least $1 - e^{-u}$. Using a technique developed earlier in this course, and taking the union bound over all m, δ , we get, with probability at least $1 - Ke^{-u}$,

$$\mathbb{P}(yg \le \delta) \le K \inf_{m,\delta} \left(\mathbb{P}_n(yg \le 2\delta) + \frac{V \cdot N_m}{n} \log \frac{n}{\delta} + \frac{u}{n} \right).$$

(Since $\mathbb{EP}_n(yg \leq 2\delta) \leq \mathbb{EP}_n(yf(x) \leq 3\delta) + \mathbb{EP}_n(\sigma_c^2 \geq r) + \frac{1}{n}$ with appropriate choice of N, based on the same reasoning as inequality 24.1, we can also control $\mathbb{P}_n(yg \leq 2\delta)$ by $\mathbb{P}_n(yf \leq 3\delta)$ and $\mathbb{P}_n(\sigma_c^2 \geq r)$ probabilistically).

To bound the second term on the right side of inequality 24.1, we approximate σ_c^2 by $\sigma_N^2 = \frac{1}{N} \sum_{k=1}^N \frac{1}{2} \left(Z_k^{(1)} - Z_k^{(2)} \right)^2$ where $Z_k^{(1)}$ and $Z_k^{(2)}$ are independent copies of Z_k . We have

$$\begin{split} \mathbb{E}_{Y_{1,\cdots,N}^{(1,2)}} \sigma_{N}^{2} &= \sigma_{c}^{2} \\ \operatorname{var}_{Y_{1,\cdots,N}^{(1,2)}} \frac{1}{2} \left(Z_{k}^{(1)} - Z_{k}^{(2)} \right)^{2} &= \frac{1}{4} \operatorname{var} \left(Z_{k}^{(1)} - Z_{k}^{(2)} \right)^{2} \\ &\leq \frac{1}{4} \mathbb{E} \left(Z_{k}^{(1)} - Z_{k}^{(2)} \right)^{4} \\ &\left(-1 \leq Z_{k}^{(1)}, Z_{k}^{(2)} \leq 1 \text{ ,and } \left(Z_{k}^{(1)} - Z_{k}^{(2)} \right)^{2} \leq 4 \right) \\ &\leq \mathbb{E} \left(Z_{k}^{(1)} - Z_{k}^{(2)} \right)^{2} \\ &= 2\sigma_{c}^{2} \\ \operatorname{var}_{Y_{1,\cdots,N}^{(1,2)}} \sigma_{N}^{2} &\leq 2 \cdot \sigma_{c}^{2}. \end{split}$$

We start with

$$\begin{split} \mathbb{P}_{Y_{1,\cdots,N}}(\sigma_{c}^{2} \geq 4r) &\leq \mathbb{P}_{Y_{1,\cdots,N}^{(1,2)}}(\sigma_{N}^{2} \geq 3r) + \mathbb{P}_{Y_{1,\cdots,N}^{(1,2)}}(\sigma_{c}^{2} \geq 4r | \sigma_{N}^{2} \leq 3r) \\ &\leq \mathbb{E}_{Y_{1,\cdots,N}^{(1,2)}}\phi_{r}\left(\sigma_{N}^{2} \geq 3r\right) + \frac{1}{n} \end{split}$$

with appropriate choice of N, following the same line of reasoning as in inequality 24.1. We note that $\mathbb{P}_{Y_1,\dots,Y_N}(\sigma_N^2 \ge 3r) \le \mathbb{E}_{Y_1,\dots,Y_N}\phi_r(\sigma_N^2)$, and $\mathbb{E}_n\phi_\delta(\sigma_N^2) \le \mathbb{P}_n(\sigma_N^2 \ge 2r)$ for some ϕ_δ .

Since

$$\sigma_N^2 \in \{\frac{1}{2N} \sum_{k=1}^N \left(\sum_c \alpha_c \left(h_{k,c}^{(1)} - h_{k,c}^{(2)} \right) \right)^2 : h_{k,c}^{(1)}, h_{k,c}^{(2)} \in \mathcal{H} \} \subset \operatorname{conv}_{N_m} \{ h_i \cdot h_j : h_i, h_j \in \mathcal{H} \},$$

and $\log D(\{h_i \cdot h_j : h_i, h_j \in \mathcal{H}\}, \epsilon) \leq KV \log \frac{2}{\epsilon}$ by the assumption of our problem, we have $\log D(\operatorname{conv}_{N_m}\{h_i \cdot h_j : h_i, h_j \in \mathcal{H}\}, \epsilon) \leq KV \cdot N_m \cdot \log \frac{2}{\epsilon}$ by the VC inequality, and

$$\left(\mathbb{E}\phi_r(\sigma_N^2) - \mathbb{E}_n\phi_r(\sigma_N^2)\right) / \sqrt{\mathbb{E}\phi_r(\sigma_N^2)} \le K\left(\sqrt{V \cdot N_m \log \frac{n}{r}/n} + \sqrt{u/n}\right)$$

with probability at least $1 - e^{-u}$. Using a technique developed earlier in this course, and taking the union bound over all m, δ , r, with probability at least $1 - Ke^{-u}$,

$$\mathbb{P}(\sigma_c^2 \ge 4r) \le K \inf_{m,\delta,r} \left(\mathbb{P}_n(\sigma_N^2 \ge 2r) + \frac{1}{n} + \frac{V \cdot N_m}{n} \log \frac{n}{\delta} + \frac{u}{n} \right).$$

As a result, with probability at least $1 - Ke^{-u}$, we have

$$\mathbb{P}(yf(x) \le 0) \le K \cdot \inf_{r,\delta,m} \left(\mathbb{P}_n(yg \le 2 \cdot \delta) + \mathbb{P}_n(\sigma_N^2 \ge r) + \frac{V \cdot \min(r_m/\delta^2, N_m)}{n} \log \frac{n}{\delta} \log n + \frac{u}{n} \right)$$

for all $f \in \operatorname{conv} \mathcal{H}$.

Let $Z(x_1, \ldots, x_n) : \mathcal{X}^n \mapsto \mathbb{R}$. We would like to bound $Z - \mathbb{E}Z$. We will be able to answer this question if for any $x_1, \ldots, x_n, x'_1, \ldots, x'_n$,

(25.1)
$$|Z(x_1,\ldots,x_n) - Z(x_1,\ldots,x_{i-1},x'_i,x_{i+1},\ldots,x_n)| \le c_i.$$

Decompose $Z - \mathbb{E}Z$ as follows

$$Z(x_1, \dots, x_n) - \mathbb{E}_{x'} Z(x'_1, \dots, x'_n) = (Z(x_1, \dots, x_n) - \mathbb{E}_{x'} Z(x'_1, x_2, \dots, x_n)) + (\mathbb{E}_{x'} Z(x'_1, x_2, \dots, x_n) - \mathbb{E}_{x'} Z(x'_1, x'_2, x_3, \dots, x_n)) \cdots + (\mathbb{E}_{x'} Z(x'_1, \dots, x'_{n-1}, x_n) - \mathbb{E}_{x'} Z(x'_1, \dots, x'_n)) = Z_1 + Z_2 + \dots + Z_n$$

where

$$Z_{i} = \mathbb{E}_{x'}Z(x'_{1}, \dots, x'_{i-1}, x_{i}, \dots, x_{n}) - \mathbb{E}_{x'}Z(x'_{1}, \dots, x'_{i}, x_{i+1}, \dots, x_{n}).$$

Assume

(1) $|Z_i| \le c_i$ (2) $\mathbb{E}_{X_i} Z_i = 0$ (3) $Z_i = Z_i(x_i, \dots, x_n)$

Lemma 25.1. For any $\lambda \in \mathbb{R}$,

$$\mathbb{E}_{x_i} e^{\lambda Z_i} \le e^{\lambda^2 c_i^2/2}.$$

Proof. Take any $-1 \leq s \leq 1$. With respect to λ , function $e^{\lambda s}$ is convex and

$$e^{\lambda s} = e^{\lambda \left(\frac{1+s}{2}\right) + \left(-\lambda\right) \left(\frac{1-s}{2}\right)}.$$

Then $0 \leq \frac{1+s}{2}, \frac{1-s}{2} \leq 1$ and $\frac{1+s}{2} + \frac{1-s}{2} = 1$ and therefore

$$e^{\lambda s} \le \frac{1+s}{2}e^{\lambda} + \frac{1-s}{2}e^{-\lambda} = \frac{e^{\lambda} + e^{-\lambda}}{2} + s\frac{e^{\lambda} - e^{-\lambda}}{2} \le e^{\lambda^2/2} + s \cdot \operatorname{sh}(x)$$

using Taylor expansion. Now use $\frac{Z_i}{c_i} = s$, where, by assumption, $-1 \leq \frac{Z_i}{c_i} \leq 1$. Then

$$e^{\lambda Z_i} = e^{\lambda c_i \cdot \frac{Z_i}{c_i}} \le e^{\lambda^2 c_i^2/2} + \frac{Z_i}{c_i} \operatorname{sh}(\lambda c_i).$$

Since $\mathbb{E}_{x_i} Z_i = 0$,

$$\mathbb{E}_{x_i} e^{\lambda Z_i} \le e^{\lambda^2 c_i^2/2}.$$

64

We now prove McDiarmid's inequality

Theorem 25.1. If condition (25.1) is satisfied,

$$\mathbb{P}\left(Z - \mathbb{E}Z > t\right) \le e^{-\frac{t^2}{2\sum_{i=1}^n c_i^2}}.$$

Proof. For any $\lambda > 0$

$$\mathbb{P}\left(Z - \mathbb{E}Z > t\right) = \mathbb{P}\left(e^{\lambda(Z - \mathbb{E}Z)} > e^{\lambda t}\right) \leq \frac{\mathbb{E}e^{\lambda(Z - \mathbb{E}Z)}}{e^{\lambda t}}.$$

Furthermore,

$$\mathbb{E}e^{\lambda(Z-\mathbb{E}Z)} = \mathbb{E}e^{\lambda(Z_1+\ldots+Z_n)}$$

$$= \mathbb{E}\mathbb{E}_{x_1}e^{\lambda(Z_1+\ldots+Z_n)}$$

$$= \mathbb{E}\left[e^{\lambda(Z_2+\ldots+Z_n)}\mathbb{E}_{x_1}e^{\lambda Z_1}\right]$$

$$\leq \mathbb{E}\left[e^{\lambda(Z_2+\ldots+Z_n)}e^{\lambda^2c_1^2/2}\right]$$

$$= e^{\lambda^2c_1^2/2}\mathbb{E}\mathbb{E}_{x_2}\left[e^{\lambda(Z_2+\ldots+Z_n)}\right]$$

$$= e^{\lambda^2c_1^2/2}\mathbb{E}\left[e^{\lambda(Z_3+\ldots+Z_n)}\mathbb{E}_{x_2}e^{\lambda Z_2}\right]$$

$$\leq e^{\lambda^2(c_1^2+c_2^2)/2}\mathbb{E}e^{\lambda(Z_3+\ldots+Z_n)}$$

$$\leq e^{\lambda^2\sum_{i=1}^n c_i^2/2}$$

Hence,

$$\mathbb{P}\left(Z - \mathbb{E}Z > t\right) \le e^{-\lambda t + \lambda^2 \sum_{i=1}^n c_i^2/2}$$

and we minimize over $\lambda > 0$ to get the result of the theorem.

Example 25.1. Let \mathcal{F} be a class of functions: $\mathcal{X} \mapsto [a, b]$. Define the empirical process

$$Z(x_1,\ldots,x_n) = \sup_{f\in\mathcal{F}} \left| \mathbb{E}f - \frac{1}{n} \sum_{i=1}^n f(x_i) \right|.$$

Then, for any i,

$$|Z(x_1, \dots, x'_i, \dots, x_n) - Z(x_1, \dots, x_i, \dots, x_n)|$$

= $\left| \sup_f \left| \mathbb{E}f - \frac{1}{n} \left(f(x_1) + \dots + f(x'_i) + \dots + f(x_n) \right) \right| \right|$
- $\sup_f \left| \mathbb{E}f - \frac{1}{n} \left(f(x_1) + \dots + f(x_i) + \dots + f(x_n) \right) \right|$
 $\leq \sup_{f \in \mathcal{F}} \frac{1}{n} |f(x_i) - f(x'_i)| \leq \frac{b-a}{n} = c_i$

because

$$\sup_t f(t) - \sup_t g(t) \le \sup_t (f(t) - g(t))$$

65

and

$$|c| - |d| \le |c - d|.$$

Thus, if $a \leq f(x) \leq b$ for all f and x, then, setting $c_i = \frac{b-a}{n}$ for all i,

$$\mathbb{P}(Z - \mathbb{E}Z > t) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^n \frac{(b-a)^2}{n^2}}\right) = e^{-\frac{nt^2}{2(b-a)^2}}.$$

By setting $t = \sqrt{\frac{2u}{n}}(b-a)$, we get

$$\mathbb{P}\left(Z - \mathbb{E}Z > \sqrt{\frac{2u}{n}}(b-a)\right) \le e^{-u}.$$

Let $\varepsilon_1, \ldots, \varepsilon_n$ be i.i.d. such that $\mathbb{P}(\varepsilon = \pm 1) = \frac{1}{2}$. Define

$$Z((\varepsilon_1, x_1), \dots, (\varepsilon_n, x_n)) = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \right|.$$

Then, for any i,

$$\left|Z((\varepsilon_1, x_1), \dots, (\varepsilon'_i, x'_i), \dots, (\varepsilon_n, x_n)) - Z((\varepsilon_1, x_1), \dots, (\varepsilon_i, x_i), \dots, (\varepsilon_n, x_n))\right|$$

$$\leq \sup_{f \in \mathcal{F}} \left|\frac{1}{n} (\varepsilon'_i f(x'_i) - \varepsilon_i f(x_i))\right| \leq \frac{2M}{n} = c_i$$

where $-M \leq f(x) \leq M$ for all f and x.

Hence,

$$\mathbb{P}(Z - \mathbb{E}Z > t) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^n \frac{(2M)^2}{n^2}}\right) = e^{-\frac{nt^2}{8M^2}}$$

By setting $t = \sqrt{\frac{8u}{n}}M$, we get

$$\mathbb{P}\left(Z - \mathbb{E}Z > \sqrt{\frac{8u}{n}}M\right) \le e^{-u}.$$
$$\mathbb{P}\left(\mathbb{E}Z - Z > \sqrt{\frac{8u}{n}}M\right) \le e^{-u}.$$

Similarly,

Define the following processes:

$$Z(x) = \sup_{f \in \mathcal{F}} \left(\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \right)$$

and

$$R(x) = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(x_i).$$

Assume $a \leq f(x) \leq b$ for all f, x. In the last lecture we proved Z is concentrated around its expectation: with probability at least $1 - e^{-t}$,

$$Z < \mathbb{E}Z + (b-a)\sqrt{\frac{2t}{n}}.$$

Furthermore,

$$\mathbb{E}Z(x) = \mathbb{E}\sup_{f\in\mathcal{F}} \left(\mathbb{E}f - \frac{1}{n}\sum_{i=1}^{n}f(x_i) \right)$$
$$= \mathbb{E}\sup_{f\in\mathcal{F}} \left(\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}f(x_i')\right] - \frac{1}{n}\sum_{i=1}^{n}f(x_i) \right)$$
$$\leq \mathbb{E}\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}(f(x_i') - f(x_i))$$
$$= \mathbb{E}\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_i(f(x_i') - f(x_i))$$
$$\leq \mathbb{E}\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_if(x_i') + \sup_{f\in\mathcal{F}} \left(-\frac{1}{n}\sum_{i=1}^{n}\varepsilon_if(x_i)\right)$$
$$\leq 2\mathbb{E}R(x).$$

Hence, with probability at least $1 - e^{-t}$,

$$Z < 2\mathbb{E}R + (b-a)\sqrt{\frac{2t}{n}}.$$

It can be shown that R is also concentrated around its expectation: if $-M \leq f(x) \leq M$ for all f, x, then with probability at least $1 - e^{-t}$,

$$\mathbb{E}R \le R + M\sqrt{\frac{2t}{n}}.$$

Hence, with high probability,

$$Z(x) \le 2R(x) + 4M\sqrt{\frac{2t}{n}}.$$

Theorem 26.1. If $-1 \leq f \leq 1$, then

$$\mathbb{P}\left(Z(x) \le 2\mathbb{E}R(x) + 2\sqrt{\frac{2t}{n}}\right) \ge 1 - e^{-t}.$$
67

If $0 \leq f \leq 1$, then

$$\mathbb{P}\left(Z(x) \le 2\mathbb{E}R(x) + \sqrt{\frac{2t}{n}}\right) \ge 1 - e^{-t}.$$

Consider $\mathbb{E}_{\varepsilon} R(x) = \mathbb{E}_{\varepsilon} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(x_i)$. Since x_i are fixed, $f(x_i)$ are just vectors. Let $F \subseteq \mathbb{R}^n$, $f \in F$, where $f = (f_1, \ldots, f_n)$.

Define contraction $\varphi_i : \mathbb{R} \to \mathbb{R}$ for i = 1, ..., n such that $\varphi_i(0) = 0$ and $|\varphi_i(s) - \varphi_i(t)| \le |s - t|$.

Let $G : \mathbb{R} \mapsto \mathbb{R}$ be convex and non-decreasing.

The following theorem is called *Comparison inequality for Rademacher process*.

Theorem 26.2.

$$\mathbb{E}_{\varepsilon}G\left(\sup_{f\in F}\sum \varepsilon_i\varphi_i(f_i)\right) \leq \mathbb{E}_{\varepsilon}G\left(\sup_{f\in F}\sum \varepsilon_i f_i\right).$$

Proof. It is enough to show that for $T \subseteq \mathbb{R}^2$, $t = (t_1, t_2) \in T$

$$\mathbb{E}_{\varepsilon}G\left(\sup_{t\in T}t_1+\varepsilon\varphi(t_2)\right)\leq\mathbb{E}_{\varepsilon}G\left(\sup_{t\in T}t_1+\varepsilon t_2\right),$$

i.e. enough to show that we can erase contraction for 1 coordinate while fixing all others. Since $\mathbb{P}(\varepsilon = \pm 1) = 1/2$, we need to prove

$$\frac{1}{2}G\left(\sup_{t\in T} t_1 + \varphi(t_2)\right) + \frac{1}{2}G\left(\sup_{t\in T} t_1 - \varphi(t_2)\right) \le \frac{1}{2}G\left(\sup_{t\in T} t_1 + t_2\right) + \frac{1}{2}G\left(\sup_{t\in T} t_1 - t_2\right).$$

Assume $\sup_{t \in T} t_1 + \varphi(t_2)$ is attained on (t_1, t_2) and $\sup_{t \in T} t_1 - \varphi(t_2)$ is attained on (s_1, s_2) . Then

$$t_1 + \varphi(t_2) \ge s_1 + \varphi(s_2)$$

and

$$s_1 - \varphi(s_2) \ge t_1 - \varphi(t_2).$$

Again, we want to show

$$\Sigma = G(t_1 + \varphi(t_2)) + G(s_1 - \varphi(s_2)) \le G(t_1 + t_2) + G(t_1 - t_2).$$

Case 1: $t_2 \le 0, s_2 \ge 0$

Since φ is a contraction, $\varphi(t_2) \leq |t_2| \leq -t_2, -\varphi(s_2) \leq s_2$.

$$\Sigma = G(t_1 + \varphi(t_2)) + G(s_1 - \varphi(s_2)) \le G(t_1 - t_2) + G(s_1 + s_2)$$
$$\le G\left(\sup_{t \in T} t_1 - t_2\right) + G\left(\sup_{t \in T} t_1 + t_2\right)$$

Case 2: $t_2 \ge 0, s_2 \le 0$

Then $\varphi(t_2) \leq t_2$ and $-\varphi(s_2) \leq -s_2$. Hence

$$\Sigma \le G(t_1 + t_2) + G(s_1 - s_2) \le G\left(\sup_{t \in T} t_1 + t_2\right) + G\left(\sup_{t \in T} t_1 - t_2\right).$$

69

Case 3: $t_2 \ge 0, s_2 \ge 0$

Case 3a: $s_2 \leq t_2$

It is enough to prove

 $G(t_1 + \varphi(t_2)) + G(s_1 - \varphi(s_2)) \le G(t_1 + t_2) + G(s_1 - s_2).$

Note that $s_2 - \varphi(s_2) \ge 0$ since $s_2 \ge 0$ and φ - contraction. Since $|\varphi(s)| \le |s|$,

 $s_1 - s_2 \le s_1 + \varphi(s_2) \le t_1 + \varphi(t_2),$

where we use the fact that t_1, t_2 attain maximum.

Furthermore,

$$G\Big(\underbrace{(s_1 - s_2)}_{u} + \underbrace{(s_2 - \varphi(s_2))}_{x}\Big) - G\Big(s_1 - s_2\Big) \le G\Big((t_1 + \varphi(t_2)) + (s_2 - \varphi(s_2))\Big) - G\Big(t_1 + \varphi(t_2)\Big)$$

Indeed, $\Psi(u) = G(u+x) - G(u)$ is non-decreasing for $x \ge 0$ since $\Psi'(u) = G'(u+x) - G'(u) > 0$ by convexity of G.

Now,

 $(t_1 + \varphi(t_2)) + (s_2 - \varphi(s_2)) \le t_1 + t_2$

since

$$\varphi(t_2) - \varphi(s_2) \le |t_2 - s_2| = t_2 - s_2.$$

Hence,

$$G(s_1 - \varphi(s_2)) - G(s_1 - s_2) = G((s_1 - s_2) + (s_2 - \varphi(s_2))) - G(s_1 - s_2)$$

$$\leq G(t_1 + t_2) - G(t_1 + \varphi(t_2)).$$

Case 3a: $t_2 \leq s_2$

$$\Sigma \le G(s_1 + s_2) + G(t_1 - t_2)$$

Again, it's enough to show

$$G(t_1 + \varphi(t_2)) - G(t_1 - t_2) \le G(s_1 + s_2) - G(s_1 - \varphi(s_2))$$

We have

$$t_1 - t_2 \le t_1 - \varphi(t_2) \le s_1 - \varphi(s_2)$$

since s_1, s_2 achieves maximum and since $t_2 + \varphi(t_2) \ge 0$ (φ is a contraction and $t_2 \ge 0$). Hence,

$$G\left(\underbrace{(t_1 - t_2)}_{u} + \underbrace{(t_2 + \varphi(t_2))}_{x}\right) - G\left(t_1 - t_2\right) \le G\left((s_1 - \varphi(s_2)) + (t_2 + \varphi(t_2))\right) - G\left(s_1 - \varphi(s_2)\right)$$

Since

$$\varphi(t_2) - \varphi(s_2) \le |t_2 - s_2| = s_2 - t_2,$$

we get

$$\varphi(t_2) - \varphi(s_2) \le s_2 - t_2.$$

Therefore,

$$s_1 - \varphi(s_2) + (t_2 + \varphi(t_2) \le s_1 + s_2)$$

and so

$$G(t_1 + \varphi(t_2)) - G(t_1 - t_2) \le G(s_1 + s_2) - G(s_1 - \varphi(s_2))$$

Case 4: $t_2 \le 0, s_2 \le 0$

Proved in the same way as Case 3.

We now apply the theorem with $G(s) = (s)^+$.

Lemma 26.1.

$$\mathbb{E}\sup_{t\in T} \left| \sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}(t_{i}) \right| \leq 2\mathbb{E}\sup_{t\in T} \left| \sum_{i=1}^{n} \varepsilon_{i} t_{i} \right|$$

Proof. Note that

$$|x| = (x)^{+} + (x)^{-} = (x)^{+} + (-x)^{+}.$$

We apply the Contraction Inequality for Rademacher processes with $G(s) = (s)^+$.

$$\begin{split} \mathbb{E}\sup_{t\in T} \left|\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}(t_{i})\right| &= \mathbb{E}\sup_{t\in T} \left(\left(\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}(t_{i})\right)^{+} + \left(\sum_{i=1}^{n} (-\varepsilon_{i}) \varphi_{i}(t_{i})\right)^{+} \right) \\ &\leq 2\mathbb{E}\sup_{t\in T} \left(\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}(t_{i})\right)^{+} \\ &\leq 2\mathbb{E}\sup_{t\in T} \left(\sum_{i=1}^{n} \varepsilon_{i} t_{i}\right)^{+} \leq 2\mathbb{E}\sup_{t\in T} \left|\sum_{i=1}^{n} \varepsilon_{i} t_{i}\right|. \end{split}$$
Let $\mathcal{F} \subset \{f \in [0,1]\}$ be a class of [0,1] valued functions, $Z = \sup_f \left(\mathbb{E}f - \frac{1}{n}\sum_{i=1}^n f(x_i)\right)$, and $R = \sup_f \sum_{f=1}^n \epsilon_i f(x_i)$ for any given x_i, \cdots, x_n where $\epsilon_1, \cdots \epsilon_n$ are Rademarcher random variables. For any $f \in \mathcal{F}$ unknown and to be estimated, the empirical error Z can be probabilistically bounded by R in the following way. Using the fact that $Z \leq 2R$ and by Martingale inequality, $\mathbb{P}\left(Z \leq \mathbb{E}Z + \sqrt{\frac{2u}{n}}\right) \geq 1 - e^{-u}$, and $\mathbb{P}\left(\mathbb{E}R \leq R + 2\sqrt{\frac{2u}{n}}\right) \geq 1 - e^{-u}$. Taking union bound, $\mathbb{P}\left(Z \leq R + 5\sqrt{\frac{2u}{n}}\right) \geq 1 - 2e^{-u}$. Taking union bound again over all $(n_k)_{k>1}$ and let $\epsilon = 5\sqrt{\frac{2u}{n}}$, $\mathbb{P}\left(\forall n \in (n_k)_{k\geq 1} \forall f \in \mathcal{F}, Z \leq 2R + \epsilon\right) \geq 1 - \exp\left(-\sum_k \frac{n_k \epsilon^2}{50}\right) \stackrel{\text{set}}{\geq} 1 - \delta$. Using big O notation, $n_k = \mathcal{O}\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta^2}\right)$.

For voting algorithms, the candidate function to be estimated is a symmetric convex combination of some base functions $\mathcal{F} = \operatorname{conv}\mathcal{H}$, where $\mathcal{H} \subset \{h \in [0,1]\}$. The trained classifier is $\operatorname{sign}(f(x))$ where $f \in \mathcal{F}$ is our estimation, and the training error is $\mathbb{P}(yf(x))$. The training error can be bounded as the following,

$$\begin{split} \mathbb{P}(yf(x) < 0) &\leq \mathbb{E}\phi_{\delta}(yf(x)) \\ &\leq \mathbb{E}_{n}\phi_{\delta}(yf(x)) + \sup_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F} \\ \text{with probability } 1 - e^{-u}}} \mathbb{E}_{n}\phi_{\delta}(yf(x)) + 2 \cdot \mathbb{E}\sup_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F} \\ \text{min} \\ \text{min} \\ \text{min} \\ \text{min} \\ \text{min} \\ &\leq \mathbb{E}_{n}\phi_{\delta}(yf(x)) + \frac{2}{\delta}\mathbb{E}\sup_{f \in \mathcal{F} \\ \text{min} \\$$

To bound the second term $(\mathbb{E}\sup_{h\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}h(x_{i}))$ above, we will use the following fact.

Fact 27.1. If $\mathbb{P}(\xi \ge a + b \cdot t) \le \exp(-t^2)$, then $\mathbb{E}\xi \le K \cdot (a + b)$ for some constant K.

If \mathcal{H} is a VC-subgraph class and V is its VC dimension, $D(\mathcal{H}, \epsilon, d_x) \leq K\left(\frac{1}{\epsilon}\right)^{2 \cdot V}$ by D. Haussler. By Kolmogorov's chaining method (Lecture 14),

$$= \mathbb{P}\left(\sup_{h} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} h(x_{i}) \leq K\left(\frac{1}{n} \int_{0}^{1} \log^{1/2} D(\mathcal{H}, \epsilon, d_{x}) d\epsilon + \sqrt{\frac{u}{n}}\right)\right)$$
$$= \mathbb{P}\left(\sup_{h} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} h(x_{i}) \leq K\left(\frac{1}{n} \int_{0}^{1} \sqrt{V \log \frac{1}{\epsilon}} d\epsilon + \sqrt{\frac{u}{n}}\right)\right)$$
$$\geq 1 - e^{-u}.$$

Thus
$$\mathbb{E} \sup \frac{1}{n} \sum \epsilon_i h(x_i) \le K \left(\sqrt{\frac{V}{n}} + \sqrt{\frac{1}{n}} \right) \le K \sqrt{\frac{V}{n}}$$
, and
 $\mathbb{P} \left(\mathbb{P}(yf(x) < 0) \le \mathbb{P}_n(yf(x) < 0) + K \frac{1}{\delta} \sqrt{\frac{V}{n}} + \sqrt{\frac{2u}{n}} \right) \ge 1 - e^{-u}.$

Recall our set up for Martingale inequalities. Let $Z = Z(x_1, \dots, x_n)$ where x_1, \dots, x_n are independent random variables. We need to bound $Z - \mathbb{E}Z$. Since Z is not a sum of independent random variables, certain classical concentration inequalities is not applicable. But we can try to bound $Z - \mathbb{E}Z$ with certain form of Martingale inequalities.

$$Z - \mathbb{E}Z = \underbrace{Z - \mathbb{E}_{x_1}(Z|x_2, \cdots, x_n)}_{d_1(x_1, \cdots, x_n)} + \underbrace{\mathbb{E}_{x_1}(Z|x_2, \cdots, x_n) - \mathbb{E}_{x_1, x_2}(Z|x_3, \cdots, x_n)}_{d_2(x_2, \cdots, x_n)} + \underbrace{\mathbb{E}_{x_1, \cdots, x_{n-1}}(Z|x_n) - \mathbb{E}_{x_1, \cdots, x_n}(Z)}_{d_n(x_n)}$$

with the assumptions that $\mathbb{E}_{x_i} d_i = 0$, and $||d_i||_{\infty} \leq c_i$.

We will give a generalized martingale inequality below. $\sum_{i=1}^{n} d_i = Z - \mathbb{E}Z$ where $d_i = d_i(x_i, \dots, x_n)$, $\max_i ||d_i||_{\infty} \leq C, \ \sigma_i^2 = \sigma_i^2(x_{i+1}, \dots, x_n) = \operatorname{var}(d_i)$, and $\mathbb{E}d_i = 0$. Take $\epsilon > 0$,

$$\mathbb{P}(\sum_{i=1}^{n} d_{i} - \epsilon \sum_{i=1}^{n} \sigma_{i}^{2} \ge t)$$

$$\leq e^{-\lambda t} \mathbb{E} \exp(\sum_{i=1}^{n} \lambda (d_{i} - \epsilon \sigma_{i}^{2}))$$

$$= e^{-\lambda t} \mathbb{E} \exp(\sum_{i=1}^{n-1} \lambda (d_{i} - \epsilon \sigma_{i}^{2}) \cdot \mathbb{E} \exp(\lambda d_{n}) \cdot \exp(\lambda \epsilon \sigma_{n}^{2}))$$

The term $\exp(\lambda d_n)$ can be bounded in the following way.

$$\mathbb{E} \exp(\lambda d_n)$$

$$\stackrel{}{\underset{\text{Taylor expansion}}{=}} \mathbb{E} \left(1 + \lambda d_n + \frac{\lambda^2}{2!} d_n^2 + \frac{\lambda^3}{3!} d_n^3 + \cdots \right)$$

$$\leq 1 + \frac{\lambda^2}{2} \sigma_n^2 \cdot \left(1 + \frac{\lambda C}{3} + \frac{\lambda^2 C^2}{3 \cdot 4} + \cdots \right)$$

$$\leq \exp\left(\frac{\lambda^2 \cdot \sigma_n^2}{2} \cdot \frac{1}{(1 - \lambda C)} \right).$$

Choose λ such that $\frac{\lambda^2}{2 \cdot (1-\lambda C)} \leq \lambda \epsilon$, we get $\lambda \leq \frac{2\epsilon}{1+2\epsilon C}$, and $\mathbb{E}_{d_n} \exp(\lambda d_n) \cdot \exp(\lambda \epsilon \sigma_n^2) \leq 1$. Iterate over $i = n, \dots, 1$, we get

$$\mathbb{P}\left(\sum_{i=1}^{n} d_{i} - \epsilon \sum_{i=1}^{n} \sigma_{i}^{2} \ge t\right) \le \exp\left(-\lambda \cdot t\right)$$
72

. Take $t=u/\lambda,$ we get

$$\mathbb{P}\left(\sum_{i=1}^{n} d_i \ge \epsilon \sum_{i=1}^{n} \sigma_i^2 + \frac{u}{2\epsilon} (1 + 2\epsilon C)\right) \le \exp\left(-u\right)$$

To minimize the sum $\epsilon \sum_{i=1}^{n} \sigma_i^2 + \frac{u}{2\epsilon} (1 + 2\epsilon C)$, we set its derivative to 0, and get $\epsilon = \sqrt{\frac{u}{2\sum \sigma_i^2}}$. Thus

$$\mathbb{P}\left(\sum d_i \ge 3\sqrt{u\sum_i \sigma_i^2/2} + Cu\right) \le e^{-u}$$

. This inequality takes the form of the Bernstein's inequality.

18.465

74

Let \mathcal{H} be a class of "simple" functions (VC-subgraph, perceptrons). Define recursively

$$\mathcal{H}_{i+1} = \left\{ \sigma \left(\sum \alpha_j h_j \right) : h_j \in \mathcal{H}_i, \ \alpha_j \in \mathbb{R} \right\}$$

where σ is sigmoid function such that $\sigma(0) = 0$ and $|\sigma(s) - \sigma(t)| \le L|s - t|, -1 \le \sigma \le 1$. Example:

$$\sigma(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Assume we have data $(x_1, y_1), \ldots, (x_n, y_n), -1 \le y_i \le 1$. We can minimize

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - h(x_i))^2$$

over \mathcal{H}_k , where k is the number of layers.

Define $\mathcal{L}(y, h(x)) = (y - h(x))^2$, $0 \leq \mathcal{L}(y, h(x)) \leq 4$. We want to bound $\mathbb{E}\mathcal{L}(y, h(x))$. From the previous lectures,

$$\sup \left| \mathbb{E}\mathcal{L}(y,h(x)) - \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i,h(x_i)) \right| \le 2\mathbb{E} \sup \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \mathcal{L}(y_i,h(x_i)) \right| + 4\sqrt{\frac{2t}{n}}$$

with probability at least $1 - e^{-t}$.

Define

$$\mathcal{H}_{i+1}(A_1,\ldots,A_{i+1}) = \left\{ \sigma\left(\sum \alpha_j h_j\right) : \sum |\alpha_j| \le A_{i+1}, h_j \in \mathcal{H}_i \right\}.$$

For now, assume bounds A_i on sum of weights (although this is not true in practice, so we will take union bound later).

Theorem 28.1.

$$\mathbb{E}\sup_{h\in\mathcal{H}_k(A_1,\ldots,A_k)} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \mathcal{L}(y_i,h(x_i)) \right| \le 8 \prod_{j=1}^k (2L \cdot A_j) \cdot \mathbb{E}\sup_{h\in\mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i h(x_i) \right| + \frac{8}{\sqrt{n}}.$$

Proof. Since $-2 \le y - h(x) \le 2$, $\frac{(y-h(x))^2}{4} : [-2,2] \mapsto \mathbb{R}$ is a contraction because largest derivative of s^2 on [-2,2] is 4. Hence,

$$\mathbb{E} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}(y_{i} - h(x_{i}))^{2} \right| = \mathbb{E} \mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}(y_{i} - h(x_{i}))^{2} \right|$$
$$= 4\mathbb{E} \mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \frac{(y_{i} - h(x_{i}))^{2}}{4} \right|$$
$$\leq 8\mathbb{E} \mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}(y_{i} - h(x_{i})) \right|$$
$$\leq 8\mathbb{E} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}y_{i} \right| + 8\mathbb{E} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}h(x_{i}) \right|$$

Furthermore,

$$\mathbb{E} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} y_{i} \right| \leq \left(\mathbb{E} \left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} y_{i} \right)^{2} \right)^{1/2}$$
$$= \left(\mathbb{E} \sum_{i=1}^{n} \frac{1}{n^{2}} \varepsilon_{i}^{2} y_{i}^{2} \right)^{1/2}$$
$$= \left(\frac{1}{n} \mathbb{E} y_{1}^{2} \right)^{1/2} \leq \sqrt{\frac{1}{n}}$$

Using the fact that σ/L is a contraction,

$$\begin{aligned} \mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \sigma \left(\sum \alpha_{j} h_{j}(x_{i}) \right) \right| &= L \mathbb{E}_{\varepsilon} \sup_{h} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \frac{\sigma}{L} \left(\sum \alpha_{j} h_{j}(x_{i}) \right) \right| \\ &\leq 2L \mathbb{E}_{\varepsilon} \sup_{h} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left(\sum \alpha_{j} h_{j}(x_{i}) \right) \right| \\ &= 2L \mathbb{E}_{\varepsilon} \sup_{h} \left| \frac{1}{n} \sum_{j} \alpha_{j} \left(\sum_{i=1}^{n} \varepsilon_{i} h_{j}(x_{i}) \right) \right| \\ &= 2L \mathbb{E}_{\varepsilon} \sup_{h} \left| \frac{\sum |\alpha_{j}|}{n} \sum_{j} \alpha_{j}' \left(\sum_{i=1}^{n} \varepsilon_{i} h_{j}(x_{i}) \right) \right| \end{aligned}$$

where $\alpha'_j = \frac{\alpha_j}{\sum_j |\alpha_j|}$. Since $\sum_j |\alpha_j| \le A_k$ for the layer k,

$$2L\mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{\sum |\alpha_{j}|}{n} \sum_{j} \alpha_{j}' \left(\sum_{i=1}^{n} \varepsilon_{i} h_{j}(x_{i}) \right) \right|$$
$$\leq 2LA_{k}\mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}_{k}(A_{1},...,A_{k})} \left| \frac{1}{n} \sum_{j} \alpha_{j}' \left(\sum_{i=1}^{n} \varepsilon_{i} h_{j}(x_{i}) \right) \right|$$
$$= 2LA_{k}\mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}_{k-1}(A_{1},...,A_{k-1})} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} h_{j}(x_{i}) \right|$$

The last equality holds because $\sup |\sum \lambda_j s_j| = \max_j |s_j|$, i.e. max is attained at one of the vertices. By induction,

$$\mathbb{E}\sup_{h\in\mathcal{H}_k(A_1,\ldots,A_k)} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i (y_i - h(x_i))^2 \right| \le 8 \prod_{j=1}^k (2LA_j) \cdot \mathbb{E}\sup_{h\in\mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i h(x_i) \right| + \frac{8}{\sqrt{n}},$$

where \mathcal{H} is the class of simple classifiers.

75

$$\left|\mathbb{E}\sup_{h\in\mathcal{H}_k(A_1,\dots,A_k)}\left|\frac{1}{n}\sum_{i=1}^n\varepsilon_i(y_i-h(x_i))^2\right|\le 8\prod_{j=1}^k(2LA_j)\cdot\mathbb{E}\sup_{h\in\mathcal{H}}\left|\frac{1}{n}\sum_{i=1}^n\varepsilon_ih(x_i)\right|+\frac{8}{\sqrt{n}}$$

Hence,

$$Z\left(\mathcal{H}_{k}(A_{1},\ldots,A_{k})\right) := \sup_{h\in\mathcal{H}_{k}(A_{1},\ldots,A_{k})} \left| \mathbb{E}\mathcal{L}(y,h(x)) - \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_{i},h(x_{i})) \right|$$
$$\leq 8 \prod_{j=1}^{k} (2LA_{j}) \cdot \mathbb{E} \sup_{h\in\mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}h(x_{i}) \right| + \frac{8}{\sqrt{n}} + 8\sqrt{\frac{t}{n}}$$

with probability at least $1 - e^{-t}$.

Assume \mathcal{H} is a VC-subgraph class, $-1 \leq h \leq 1$.

We had the following result:

$$\mathbb{P}_{\varepsilon}\left(\forall h \in \mathcal{H}, \ \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} h(x_{i}) \leq \frac{K}{\sqrt{n}} \int_{0}^{\sqrt{\frac{1}{n} \sum_{i=1}^{n} h^{2}(x_{i})}} \log^{1/2} \mathcal{D}(\mathcal{H}, \varepsilon, d_{x}) d\varepsilon + K \sqrt{\frac{t}{n} \left(\frac{1}{n} \sum_{i=1}^{n} h^{2}(x_{i})\right)}\right) \geq 1 - e^{-t},$$

where

$$d_x(f,g) = \left(\frac{1}{n} \sum_{i=1}^n (f(x_i) - g(x_i))^2\right)^{1/2}$$

Furthermore,

$$\mathbb{P}_{\varepsilon}\left(\forall h \in \mathcal{H}, \ \left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}h(x_{i})\right| \leq \frac{K}{\sqrt{n}}\int_{0}^{\sqrt{\frac{1}{n}\sum_{i=1}^{n}h^{2}(x_{i})}}\log^{1/2}\mathcal{D}(\mathcal{H},\varepsilon,d_{x})d\varepsilon + K\sqrt{\frac{t}{n}\left(\frac{1}{n}\sum_{i=1}^{n}h^{2}(x_{i})\right)}\right)\right).$$
$$\geq 1 - 2e^{-t},$$

Since $-1 \leq h \leq 1$ for all $h \in \mathcal{H}$,

$$\mathbb{P}_{\varepsilon}\left(\sup_{h\in\mathcal{H}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}h(x_{i})\right|\leq\frac{K}{\sqrt{n}}\int_{0}^{1}\log^{1/2}\mathcal{D}(\mathcal{H},\varepsilon,d_{x})d\varepsilon+K\sqrt{\frac{t}{n}}\right)\geq1-2e^{-t},$$

Since \mathcal{H} is a VC-subgraph class with $VC(\mathcal{H}) = V$,

$$\log \mathcal{D}(\mathcal{H}, \varepsilon, d_x) \leq KV \log rac{2}{arepsilon}.$$

77

Hence,

$$\int_{0}^{1} \log^{1/2} \mathcal{D}(\mathcal{H},\varepsilon,d_{x}) d\varepsilon \leq \int_{0}^{1} \sqrt{KV \log \frac{2}{\varepsilon}} d\varepsilon$$
$$\leq K\sqrt{V} \int_{0}^{1} \sqrt{\log \frac{2}{\varepsilon}} d\varepsilon \leq K\sqrt{V}$$

Let $\xi \ge 0$ be a random variable. Then

$$\mathbb{E}\xi = \int_0^\infty \mathbb{P}\left(\xi \ge t\right) dt = \int_0^a \mathbb{P}\left(\xi \ge t\right) dt + \int_a^\infty \mathbb{P}\left(\xi \ge t\right) dt$$
$$\le a + \int_a^\infty \mathbb{P}\left(\xi \ge t\right) dt = a + \int_0^\infty \mathbb{P}\left(\xi \ge a + u\right) du$$

Let $K\sqrt{\frac{V}{n}} = a$ and $K\sqrt{\frac{t}{n}} = u$. Then $e^{-t} = e^{-\frac{nu^2}{K^2}}$. Hence, we have

$$\mathbb{E}_{\varepsilon} \sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i h(x_i) \right| \leq K \sqrt{\frac{V}{n}} + \int_0^\infty 2e^{-\frac{nu^2}{K^2}} du$$
$$= K \sqrt{\frac{V}{n}} + \int_0^\infty \frac{K}{\sqrt{n}} e^{-x^2} dx$$
$$\leq K \sqrt{\frac{V}{n}} + \frac{K}{\sqrt{n}} \leq K \sqrt{\frac{V}{n}}$$

for $V \ge 2$. We made a change of variable so that $x^2 = \frac{nu^2}{K^2}$. Constants K change their values from line to line.

We obtain,

$$Z\left(\mathcal{H}_k(A_1,\ldots,A_k)\right) \le K \prod_{j=1}^k (2LA_j) \cdot \sqrt{\frac{V}{n}} + \frac{8}{\sqrt{n}} + 8\sqrt{\frac{t}{n}}$$

with probability at least $1 - e^{-t}$.

Assume that for any $j, A_j \in (2^{-\ell_j-1}, 2^{-\ell_j}]$. This defines ℓ_j . Let

$$\mathcal{H}_k(\ell_1, \dots, \ell_k) = \bigcup \left\{ \mathcal{H}_k(A_1, \dots, A_k) : A_j \in (2^{-\ell_j - 1}, 2^{-\ell_j}] \right\}.$$

Then the empirical process

$$Z\left(\mathcal{H}_k(\ell_1,\ldots,\ell_k)\right) \le K \prod_{j=1}^k (2L \cdot 2^{-\ell_j}) \cdot \sqrt{\frac{V}{n}} + \frac{8}{\sqrt{n}} + 8\sqrt{\frac{t}{n}}$$

with probability at least $1 - e^{-t}$.

For a given sequence (ℓ_1, \ldots, ℓ_k) , redefine t as $t + 2\sum_{j=1}^k \log |w_j|$ where $w_j = \ell_j$ if $\ell_j \neq 0$ and $w_j = 1$ if $\ell_j = 0$.

With this t,

$$Z(\mathcal{H}_{k}(\ell_{1},\ldots,\ell_{k})) \leq K \prod_{j=1}^{k} (2L \cdot 2^{-\ell_{j}}) \cdot \sqrt{\frac{V}{n}} + \frac{8}{\sqrt{n}} + 8\sqrt{\frac{t+2\sum_{j=1}^{k} \log|w_{j}|}{n}}$$

with probability at least

$$1 - e^{-t - 2\sum_{j=1}^{k} \log |w_j|} = 1 - \prod_{j=1}^{k} \frac{1}{|w_j|^2} e^{-t}.$$

By union bound, the above holds for all $\ell_1, \ldots, \ell_k \in \mathcal{Z}$ with probability at least

$$1 - \sum_{\ell_1, \dots, \ell_k \in \mathcal{Z}} \prod_{j=1}^k \frac{1}{|w_j|^2} e^{-t} = 1 - \left(\sum_{\ell_1 \in \mathcal{Z}} \frac{1}{|w_1|^2}\right)^k e^{-t}$$
$$= 1 - \left(1 + 2\frac{\pi^2}{6}\right)^k e^{-t} \ge 1 - 5^k e^{-t} = 1 - e^{-u}$$

for $t = u + k \log 5$.

Hence, with probability at least $1 - e^{-u}$,

$$\forall (\ell_1, \dots, \ell_k), \ Z\left(\mathcal{H}_k(\ell_1, \dots, \ell_k)\right) \le K \prod_{j=1}^k (2L \cdot 2^{-\ell_j}) \cdot \sqrt{\frac{V}{n}} + \frac{8}{\sqrt{n}} + 8\sqrt{\frac{2\sum_{j=1}^k \log|w_j| + k\log 5 + u}{n}}.$$

If $A_j \in (2^{-\ell_j-1}, 2^{-\ell_j}]$, then $-\ell_j - 1 \leq \log A_j \leq \ell_j$ and $|\ell_j| \leq |\log A_j| + 1$. Hence, $|w_j| \leq |\log A_j| + 1$. Therefore, with probability at least $1 - e^{-u}$,

$$\forall (\mathcal{A}_1, \dots, \mathcal{A}_k), \ Z\left(\mathcal{H}_k(A_1, \dots, A_k)\right) \le K \prod_{j=1}^k (4L \cdot A_j) \cdot \sqrt{\frac{V}{n}} + \frac{8}{\sqrt{n}} + 8\sqrt{\frac{2\sum_{j=1}^k \log\left(|\log A_j| + 1\right) + k\log 5 + u}{n}}.$$

Notice that $\log(|\log A_j| + 1)$ is large when A_j is very large or very small. This is penalty and we want the product term to be dominating. But $\log \log A_j \le 5$ for most practical applications.

Let $\mathcal{X} \subset \mathbb{R}^d$ be a compact subset. Assume x_1, \ldots, x_n are i.i.d. and $y_1, \ldots, y_n = \pm 1$ for classification and [-1,1] for regression. Assume we have a kernel $K(x,y) = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y), \lambda_i > 0$. Consider a map

$$x \in \mathcal{X} \mapsto \phi(x) = (\sqrt{\lambda_1}\phi_1(x), \dots, \sqrt{\lambda_k}\phi_k(x), \dots) = (\sqrt{\lambda_k}\phi_k(x))_{k \ge 1} \in \mathcal{H}$$

where \mathcal{H} is a Hilbert space.

Consider the scalar product in \mathcal{H} : $(u, v)_{\mathcal{H}} = \sum_{i=1}^{\infty} u_i v_i$ and $||u||_{\mathcal{H}} = \sqrt{(u, v)_{\mathcal{H}}}$. For $x, y \in \mathcal{X}$,

$$(\phi(x),\phi(y))_{\mathcal{H}} = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y) = K(x,y).$$

Function ϕ is called *feature map*.

Family of classifiers:

$$\mathcal{F}_{\mathcal{H}} = \{(w, z)_{\mathcal{H}} : \|w\|_{\mathcal{H}} \le 1\}.$$
$$\mathcal{F} = \{(w, \phi(x))_{\mathcal{H}} : \|w\|_{\mathcal{H}} \le 1\} \ni f : \mathcal{X} \mapsto \mathbb{R}.$$

Algorithms:

(1) **SVMs**

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x) = (\underbrace{\sum_{i=1}^{n} \alpha_i \phi(x_i)}_{r_i}, \phi(x))_{\mathcal{H}}$$

Here, instead of taking any w, we only take w as a linear combination of images of data points. We have a choice of Loss function \mathcal{L} :

- $\mathcal{L}(y, f(x)) = I(yf(x) \le 0)$ classification
- $\mathcal{L}(y, f(x)) = (y f(x))^2$ regression

(2) Square-loss regularization

Assume an algorithm outputs a classifier from \mathcal{F} (or $\mathcal{F}_{\mathcal{H}}$), $f(x) = (w, \phi(x))_{\mathcal{H}}$. Then, as in Lecture 20,

$$\mathbb{P}\left(yf(x) \le 0\right) \le \mathbb{E}\varphi_{\delta}\left(yf(x)\right) = \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right) + \left(\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right)\right)$$
$$\le \frac{1}{n} \sum_{i=1}^{n} I(y_{i}f(x_{i}) \le \delta) + \sup_{f \in \mathcal{F}} \left(\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right)\right)$$

By McDiarmid's inequality, with probability at least $1 - e^{-t}$

$$\sup_{f \in \mathcal{F}} \left(\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right) \right) \leq \mathbb{E} \sup_{f \in \mathcal{F}} \left(\mathbb{E}\varphi_{\delta}\left(yf(x)\right) - \frac{1}{n} \sum_{i=1}^{n} \varphi_{\delta}\left(y_{i}f(x_{i})\right) \right) + \sqrt{\frac{2t}{n}}$$

Using the symmetrization technique,

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left(\mathbb{E}(\varphi_{\delta}\left(yf(x)\right)-1\right)-\frac{1}{n}\sum_{i=1}^{n}(\varphi_{\delta}\left(y_{i}f(x_{i})\right)-1\right)\right) \leq 2\mathbb{E}\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\left(\varphi_{\delta}\left(y_{i}f(x_{i})\right)-1\right)\right|$$

Since $\delta \cdot (\varphi_{\delta} - 1)$ is a contraction,

$$2\mathbb{E}\sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} (\varphi_{\delta} (y_{i}f(x_{i})) - 1) \right| \leq \frac{2}{\delta} 2\mathbb{E}\sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}y_{i}f(x_{i}) \right|$$
$$= \frac{4}{\delta} \mathbb{E}\sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}f(x_{i}) \right| = \frac{4}{\delta} \mathbb{E}\sup_{\|w\| \leq 1} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}(w, \phi(x_{i}))_{\mathcal{H}} \right|$$
$$= \frac{4}{\delta n} \mathbb{E}\sup_{\|w\| \leq 1} \left| (w, \sum_{i=1}^{n} \varepsilon_{i}\phi(x_{i}))_{\mathcal{H}} \right| = \frac{4}{\delta n} \mathbb{E}\sup_{\|w\| \leq 1} \left\| \sum_{i=1}^{n} \varepsilon_{i}\phi(x_{i}) \right\|_{\mathcal{H}}$$
$$= \frac{4}{\delta n} \mathbb{E} \sqrt{\left(\sum_{i=1}^{n} \varepsilon_{i}\phi(x_{i}), \sum_{i=1}^{n} \varepsilon_{i}\phi(x_{i}) \right)_{\mathcal{H}}} = \frac{4}{\delta n} \mathbb{E} \sqrt{\sum_{i,j} \varepsilon_{i}\varepsilon_{j}(\phi(x_{i}), \phi(x_{i}))_{\mathcal{H}}}$$
$$= \frac{4}{\delta n} \mathbb{E} \sqrt{\sum_{i,j} \varepsilon_{i}\varepsilon_{j}K(x_{i}, x_{j})} \leq \frac{4}{\delta n} \sqrt{\mathbb{E} \sum_{i,j} \varepsilon_{i}\varepsilon_{j}K(x_{i}, x_{j})}$$
$$= \frac{4}{\delta n} \sqrt{\sum_{i=1}^{n} \mathbb{E} K(x_{i}, x_{i})} = \frac{4}{\delta} \sqrt{\frac{\mathbb{E} K(x_{1}, x_{1})}{n}}$$

Putting everything together, with probability at least $1 - e^{-t}$,

$$\mathbb{P}\left(yf(x) \leq 0\right) \leq \frac{1}{n} \sum_{i=1}^{n} I(y_i f(x_i) \leq \delta) + \frac{4}{\delta} \sqrt{\frac{\mathbb{E}K(x_1, x_1)}{n}} + \sqrt{\frac{2t}{n}}.$$

Before the contraction step, we could have used Martingale method again to have \mathbb{E}_{ε} only. Then $\mathbb{E}K(x_1, x_1)$ in the above bound will become $\frac{1}{n} \sum_{i=1}^{n} K(x_i, x_i)$.

As in the previous lecture, let $\mathcal{F} = \{(w, \phi(x))_{\mathcal{H}}, \|w\| \leq 1\}$, where $\phi(x) = (\sqrt{\lambda_i}\phi_i(x))_{i\geq 1}, \mathcal{X} \subset \mathbb{R}^d$. Define $d(f,g) = \|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)|$. The following theorem appears in Cucker & Smale:

Theorem 31.1. $\forall h \geq d$,

$$\log \mathcal{N}(\mathcal{F},\varepsilon,d) \leq \left(\frac{C_h}{\varepsilon}\right)^{\frac{2d}{h}}$$

where C_h is a constant.

Note that for any x_1, \ldots, x_n ,

$$d_x(f,g) = \left(\frac{1}{n}\sum_{i=1}^n (f(x_i) - g(x_i))^2\right)^{1/2} \le d(f,g) = \sup_x |f(x) - g(x)| \le \varepsilon.$$

Hence,

$$\mathcal{N}(\mathcal{F},\varepsilon,d_x) \leq \mathcal{N}(\mathcal{F},\varepsilon,d).$$

Assume the loss function $\mathcal{L}(y, f(x)) = (y - f(x))^2$. The loss class is defined as

$$\mathcal{L}(y,F) = \{(y - f(x))^2, f \in \mathcal{F}\}.$$

Suppose $|y - f(x)| \le M$. Then

$$|(y - f(x))^2 - (y - g(x))^2| \le 2M|f(x) - g(x)| \le \varepsilon.$$

So,

$$\mathcal{N}(\mathcal{L}(y,\mathcal{F}),\varepsilon,d_x) \leq \mathcal{N}\left(\mathcal{F},\frac{\varepsilon}{2M},d_x\right)$$

and

$$\log \mathcal{N}(\mathcal{L}(y,\mathcal{F}),\varepsilon,d_x) \le \left(\frac{2MC_h}{\varepsilon}\right)^{\frac{2d}{h}} = \left(\frac{2MC_h}{\varepsilon}\right)^{\alpha}$$

 $\alpha = \frac{2d}{h} < 2$ (see Homework 2, problem 4).

Now, we would like to use specific form of solution for SVM: $f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$, i.e. f belongs to a random subclass. We now prove a VC inequality for random collection of sets.

Let's consider $\mathcal{C}(x_1, \ldots, x_n) = \{C : C \subseteq \mathcal{X}\}$ - random collection of sets. Assume that $\mathcal{C}(x_1, \ldots, x_n)$ satisfies:

(1)
$$C(x_1,\ldots,x_n) \subseteq C(x_1,\ldots,x_n,x_{n+1})$$

(2) $C(\pi(x_1,\ldots,x_n)) = C(x_1,\ldots,x_n)$ for any permutation π .

Let

$$\triangle_{\mathcal{C}}(x_1,\ldots,x_n) = \text{card } \{C \cap \{x_1,\ldots,x_n\}; C \in \mathcal{C}\}$$

and

$$G(n) = \mathbb{E} \triangle_{\mathcal{C}(x_1, \dots, x_n)}(x_1, \dots, x_n).$$

Theorem 31.2.

$$\mathbb{P}\left(\sup_{C\in\mathcal{C}(x_1,\dots,x_n)}\frac{\mathbb{P}(C)-\frac{1}{n}\sum_{i=1}^n I(x_i\in C)}{\sqrt{\mathbb{P}(C)}} \ge t\right) \le 4G(2n)e^{-\frac{nt^2}{4}}$$

Consider event

$$A_x = \left\{ x = (x_1, \dots, x_n) : \sup_{C \in \mathcal{C}(x_1, \dots, x_n)} \frac{\mathbb{P}(C) - \frac{1}{n} \sum_{i=1}^n I(x_i \in C)}{\sqrt{\mathbb{P}(C)}} \ge t \right\}$$

So, there exists $C_x \in \mathcal{C}(x_1, \ldots, x_n)$ such that

$$\frac{\mathbb{P}(C_x) - \frac{1}{n} \sum_{i=1}^{n} I(x_i \in C_x)}{\sqrt{\mathbb{P}(C_x)}} \ge t$$

For x'_1, \ldots, x'_n , an independent copy of x,

$$\mathbb{P}_{x'}\left(\mathbb{P}\left(C_x\right) \le \frac{1}{n}\sum_{i=1}^n I(x'_i \in C_x)\right) \ge \frac{1}{4}$$

if $\mathbb{P}(C_x) \geq \frac{1}{n}$ (which we can assume without loss of generality). Together,

$$\mathbb{P}(C_x) \le \frac{1}{n} \sum_{i=1}^n I(x'_i \in C_x)$$

and

$$\frac{\mathbb{P}(C_x) - \frac{1}{n} \sum_{i=1}^n I(x_i \in C_x)}{\sqrt{\mathbb{P}(C_x)}} \ge t$$

imply

$$\frac{\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})-\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})}{\sqrt{\frac{1}{2n}\sum_{i=1}^{n}(I(x_{i}'\in C_{x})+I(x_{i}\in C_{x}))}} \ge t.$$

Indeed,

$$0 < t \le \frac{\mathbb{P}(C_x) - \frac{1}{n} \sum_{i=1}^{n} I(x_i \in C_x)}{\sqrt{\mathbb{P}(C_x)}} \\ \le \frac{\mathbb{P}(C_x) - \frac{1}{n} \sum_{i=1}^{n} I(x_i \in C_x)}{\sqrt{\frac{1}{2} \left(\mathbb{P}(C_x) + \frac{1}{n} \sum_{i=1}^{n} I(x_i \in C_x)\right)}} \\ \le \frac{\frac{1}{n} \sum_{i=1}^{n} I(x'_i \in C_x) - \frac{1}{n} \sum_{i=1}^{n} I(x_i \in C_x)}{\sqrt{\frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} I(x'_i \in C_x) + \frac{1}{n} \sum_{i=1}^{n} I(x_i \in C_x)\right)}}$$

Hence, multiplying by an indicator,

$$\frac{1}{4} \cdot I(x \in A_x) \leq \mathbb{P}_{x'} \left(\mathbb{P}(C_x) \leq \frac{1}{n} \sum_{i=1}^n I(x'_i \in C_x) \right) \cdot I(x \in A_x) \\
\leq \mathbb{P}_{x'} \left(\frac{\frac{1}{n} \sum_{i=1}^n I(x'_i \in C_x) - \frac{1}{n} \sum_{i=1}^n I(x_i \in C_x)}{\sqrt{\frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^n I(x'_i \in C_x) + \frac{1}{n} \sum_{i=1}^n I(x_i \in C_x)\right)}} \geq t \right) \\
\leq \mathbb{P}_{x'} \left(\sup_{C \in \mathcal{C}(x_1, \dots, x_n)} \frac{\frac{1}{n} \sum_{i=1}^n I(x'_i \in C_x) - \frac{1}{n} \sum_{i=1}^n I(x_i \in C_x)}{\sqrt{\frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^n I(x'_i \in C_x) + \frac{1}{n} \sum_{i=1}^n I(x_i \in C_x)\right)}} \geq t \right)$$

Taking expectation with respect to x on both sides,

$$\begin{split} & \mathbb{P}\left(\sup_{C\in\mathcal{C}(x_{1},...,x_{n})}\frac{\mathbb{P}\left(C\right)-\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C)}{\sqrt{\mathbb{P}\left(C\right)}}\geq t\right) \\ & \leq 4\mathbb{P}\left(\sup_{C\in\mathcal{C}(x_{1},...,x_{n})}\frac{\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})-\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})}{\sqrt{\frac{1}{2}\left(\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})+\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})\right)}}\geq t\right) \\ & \leq 4\mathbb{P}\left(\sup_{C\in\mathcal{C}(x_{1},...,x_{n},x_{1}',...,x_{n}')}\frac{\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})-\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})}{\sqrt{\frac{1}{2}\left(\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})+\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})\right)}}\geq t\right) \\ & = 4\mathbb{P}\left(\sup_{C\in\mathcal{C}(x_{1},...,x_{n},x_{1}',...,x_{n}')}\frac{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}(I(x_{i}'\in C_{x})-I(x_{i}\in C_{x}))}{\sqrt{\frac{1}{2}\left(\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})+\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})\right)}}\geq t\right) \\ & = 4\mathbb{E}\mathbb{P}_{\varepsilon}\left(\sup_{C\in\mathcal{C}(x_{1},...,x_{n},x_{1}',...,x_{n}')}\frac{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}(I(x_{i}'\in C_{x})-I(x_{i}\in C_{x}))}{\sqrt{\frac{1}{2}\left(\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})+\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})\right)}}\geq t\right) \end{split}$$

By Hoeffding,

$$\begin{split} &4\mathbb{E}\mathbb{P}_{\varepsilon}\left(\sup_{C\in\mathcal{C}(x_{1},...,x_{n},x_{1}',...,x_{n}')}\frac{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}(I(x_{i}'\in C_{x})-I(x_{i}\in C_{x}))}{\sqrt{\frac{1}{2}\left(\frac{1}{n}\sum_{i=1}^{n}I(x_{i}'\in C_{x})+\frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C_{x})\right)}}\right)\geq t\right)\\ &\leq 4\mathbb{E}\triangle_{\mathcal{C}(x_{1},...,x_{n},x_{1}',...,x_{n}')}(x_{1},\ldots,x_{n},x_{1}',\ldots,x_{n}')\cdot\exp\left(-\frac{t^{2}}{2\sum\left(\frac{1}{\sqrt{\frac{1}{2n}\sum_{i=1}^{n}(I(x_{i}'\in C_{x})-I(x_{i}\in C_{x})))}{\sqrt{\frac{1}{2n}\sum_{i=1}^{n}(I(x_{i}'\in C_{x})+I(x_{i}\in C_{x}))}\right)}^{2}\right)\\ &\leq 4\mathbb{E}\triangle_{\mathcal{C}(x_{1},...,x_{n},x_{1}',\ldots,x_{n}')}(x_{1},\ldots,x_{n},x_{1}',\ldots,x_{n}')\cdot e^{-\frac{nt^{2}}{4}}\\ &= 4G(2n)e^{-\frac{nt^{2}}{4}} \end{split}$$

Recall that the solution of SVM is $f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$, where $(x_1, y_1), \ldots, (x_n, y_n)$ – data, with $y_i \in \{-1, 1\}$. The label is predicted by sign(f(x)) and $\mathbb{P}(yf(x) \leq 0)$ is misclassification error. Let $\mathcal{H} = \mathcal{H}((x_1, y_1), \ldots, (x_n, y_n))$ be random collection of functions, with card $\mathcal{H} \leq \mathcal{N}(n)$. Also, assume that

for any $h \in \mathcal{H}$, $-h \in \mathcal{H}$ so that α can be positive. Define

$$\mathcal{F} = \left\{ \sum_{i=1}^{T} \lambda_i h_i, \ T \ge 1, \ \lambda_i \ge 0, \ \sum_{i=1}^{T} \lambda_i = 1, \ h_i \in \mathcal{H} \right\}.$$

For SVM, $\mathcal{H} = \{\pm K(x_i, x) : i = 1, \dots, n\}$ and card $\mathcal{H} \leq 2n$.

Recall margin-sparsity bound (voting classifiers): algorithm outputs $f = \sum_{i=1}^{T} \lambda_i h_i$. Take random approximation $g(x) = \frac{1}{k} \sum_{j=1}^{k} Y_j(x)$, where Y_1, \ldots, Y_k i.i.d with $\mathbb{P}(Y_j = h_i) = \lambda_i$, $\mathbb{E}Y_j(x) = f(x)$. Fix $\delta > 0$.

$$\begin{split} \mathbb{P}\left(yf(x) \leq 0\right) &= \mathbb{P}\left(yf(x) \leq 0, yg(x) \leq \delta\right) + \mathbb{P}\left(yf(x) \leq 0, yg(x) > \delta\right) \\ &\leq \mathbb{P}\left(yg(x) \leq \delta\right) + \mathbb{E}_{x,y}\mathbb{P}_{Y}\left(y\frac{1}{k}\sum_{j=1}^{k}Y_{j}(x) > \delta, \ y\mathbb{E}_{Y}Y_{1}(x) \leq 0\right) \\ &\leq \mathbb{P}\left(yg(x) \leq \delta\right) + \mathbb{E}_{x,y}\mathbb{P}_{Y}\left(\frac{1}{k}\sum_{j=1}^{k}(yY_{j}(x) - \mathbb{E}(yY_{j}(x))) \geq \delta\right) \\ &\leq (\text{by Hoeffding}) \ \mathbb{P}\left(yg(x) \leq \delta\right) + \mathbb{E}_{x,y}e^{-k\delta^{2}/2} \\ &= \mathbb{P}\left(yg(x) \leq \delta\right) + e^{-k\delta^{2}/2} \\ &= \mathbb{E}_{Y}\mathbb{P}_{x,y}\left(yg(x) \leq \delta\right) + e^{-k\delta^{2}/2} \end{split}$$

Similarly to what we did before, on the data

$$\mathbb{E}_{Y}\left[\frac{1}{n}\sum_{i=1}^{n}I(y_{i}g(x_{i})\leq\delta)\right]\leq\frac{1}{n}\sum_{i=1}^{n}I(y_{i}f(x_{i})\leq2\delta)+e^{-k\delta^{2}/2}$$

Can we bound

$$\mathbb{P}_{x,y}\left(yg(x) \le \delta\right) - \frac{1}{n}\sum_{i=1}^{n}I(y_ig(x_i) \le \delta)$$

for any g?

Define

$$\mathcal{C} = \{ \{ yg(x) \le \delta \}, \ g \in \mathcal{F}_k, \ \delta \in [-1, 1] \}$$

where

$$\mathcal{F}_k = \left\{ \frac{1}{k} \sum_{j=1}^k h_j(x) : h_j \in \mathcal{H} \right\}$$

Note that $\mathcal{H}(x_1,\ldots,x_n) \subseteq \mathcal{H}(x_1,\ldots,x_n,x_{n+1})$ and $\mathcal{H}(\pi(x_1,\ldots,x_n)) = \mathcal{H}(x_1,\ldots,x_n)$.

In the last lecture, we proved

$$\mathbb{P}_{x,y}\left(\sup_{C\in\mathcal{C}}\frac{\mathbb{P}(C)-\frac{1}{n}\sum_{i=1}^{n}I(x_i\in C)}{\sqrt{\mathbb{P}(C)}}\geq t\right)\leq 4G(2n)e^{-\frac{nt^2}{2}}$$

where

$$G(n) = \mathbb{E} \triangle_{\mathcal{C}(x_1,\ldots,x_n)}(x_1,\ldots,x_n).$$

How many different g's are there? At most card $\mathcal{F}_k \leq \mathcal{N}(n)^k$. For a fixed g,

card
$$\{\{yg(x) \le \delta\} \cap \{x_1, \dots, x_n\}, \ \delta \in [-1, 1]\} \le (n+1)$$

Indeed, we can order $y_1g(x_1), \ldots, y_ng(x_n) \to y_{i_1}g(x_{i_1}) \leq \ldots \leq y_{i_n}g(x_{i_n})$ and level δ can be anywhere along this chain.

Hence,

$$\Delta_{\mathcal{C}(x_1,\dots,x_n)}(x_1,\dots,x_n) \leq \mathcal{N}(n)^k (n+1).$$

$$\mathbb{P}_{x,y}\left(\sup_{C\in\mathcal{C}} \frac{\mathbb{P}(C) - \frac{1}{n} \sum_{i=1}^n I(x_i \in C)}{\sqrt{\mathbb{P}(C)}} \geq t\right) \leq 4G(2n)e^{-\frac{nt^2}{2}}$$

$$\leq 4\mathcal{N}(2n)^k (2n+1)e^{-\frac{nt^2}{2}}$$

Setting the above bound to e^{-u} and solving for t, we get

$$t = \sqrt{\frac{2}{n}(u+k\log\mathcal{N}(2n) + \log(8n+4))}$$

So, with probability at least $1 - e^{-u}$, for all C

$$\frac{\left(\mathbb{P}\left(C\right) - \frac{1}{n}\sum_{i=1}^{n}I(x_{i}\in C)\right)^{2}}{\mathbb{P}\left(C\right)} \leq \frac{2}{n}\left(u + k\log\mathcal{N}(2n) + \log(8n+4)\right).$$

In particular,

$$\frac{\left(\mathbb{P}\left(yg(x) \le \delta\right) - \frac{1}{n} \sum_{i=1}^{n} I(y_i g(x_i) \le \delta)\right)^2}{\mathbb{P}\left(yg(x) \le \delta\right)} \le \frac{2}{n} \left(u + k \log \mathcal{N}(2n) + \log(8n+4)\right).$$

Since $\frac{(x-y)^2}{x}$ is convex with respect to (x, y),

(32.1)
$$\frac{\left(\mathbb{E}_{Y}\mathbb{P}_{x,y}\left(yg(x)\leq\delta\right)-\mathbb{E}_{Y}\frac{1}{n}\sum_{i=1}^{n}I(y_{i}g(x_{i})\leq\delta)\right)^{2}}{\mathbb{E}_{Y}\mathbb{P}_{x,y}\left(yg(x)\leq\delta\right)}$$
$$\leq \mathbb{E}_{Y}\frac{\left(\mathbb{P}\left(yg(x)\leq\delta\right)-\frac{1}{n}\sum_{i=1}^{n}I(y_{i}g(x_{i})\leq\delta)\right)^{2}}{\mathbb{P}\left(yg(x)\leq\delta\right)}$$
$$\leq \frac{2}{n}\left(u+k\log\mathcal{N}(2n)+\log(8n+4)\right).$$

Recall that

(32.2)
$$\mathbb{P}\left(yf(x) \le 0\right) \le \mathbb{E}_Y \mathbb{P}\left(yg(x) \le \delta\right) + e^{-k\delta^2/2}$$

and

(32.3)
$$\mathbb{E}_Y \frac{1}{n} \sum_{i=1}^n I(y_i g(x_i) \le \delta) \le \frac{1}{n} \sum_{i=1}^n I(y_i f(x_i) \le 2\delta) + e^{-k\delta^2/2}.$$

Choose k such that $e^{-k\delta^2/2} = \frac{1}{n}$, i.e. $k = \frac{2\log n}{\delta^2}$. Plug (32.2) and (32.3) into (32.1) (look at $\frac{(a-b)^2}{a}$). Hence,

$$\frac{\left(\mathbb{P}\left(yf(x) \le 0\right) - \frac{2}{n} - \frac{1}{n}\sum_{i=1}^{n}I(y_if(x_i) \le 2\delta)\right)^2}{\mathbb{P}\left(yf(x) \le 0\right) - \frac{2}{n}} \le \frac{2}{n}\left(u + \frac{2\log n}{\delta^2}\log\mathcal{N}(2n) + \log(8n+4)\right)$$

with probability at least $1 - e^{-u}$.

Recall that for SVM, $\mathcal{N}(n) = \text{card } \{\pm K(x_i, x)\} \le 2n.$

Lemma 33.1. For $0 \le r \le 1$,

$$\inf_{0 \le \lambda \le 1} e^{\frac{1}{4}(1-\lambda)^2} r^{-\lambda} \le 2 - r.$$

Proof. Taking *log*, we need to show

$$\inf_{0 \le \lambda \le 1} \left(\frac{1}{4} (1-\lambda)^2 - \lambda \log r - \log(2-r) \right) \le 0.$$

Taking derivative with respect to λ ,

$$-\frac{1}{2}(1-\lambda) - \log r = 0$$
$$\lambda = 1 + 2\log r \le 1$$
$$0 \le \lambda = 1 + 2\log r$$

Hence,

$$e^{-1/2} \le r$$

Take

$$\lambda = \begin{cases} 1 + 2\log r & e^{-1/2} \le r \\ 0 & e^{-1/2} \ge r \end{cases}$$

$$\begin{split} \mathbf{Case \ a):} \ r &\leq e^{-1/2}, \ \lambda = 0 \\ \frac{1}{4} - \log(2-r) &\leq 0 \ \Leftrightarrow \ r \leq 2 - e^{\frac{1}{4}}. \quad e^{-1/2} \leq 2 - e^{\frac{1}{4}}. \\ \mathbf{Case \ a):} \ r &\geq e^{-1/2}, \ \lambda = 1 + 2\log r \end{split}$$

$$(\log r)^2 - \log r - 2(\log r)^2 - \log(2 - r) \le 0$$

Let

$$f(r) = \log(2 - r) + \log r + (\log r)^2.$$

Is $f(r) \ge 0$? Enough to prove $f'(r) \le 0$. Is

$$f'(r) = -\frac{1}{2-r} + \frac{1}{r} + 2\log r \cdot \frac{1}{r} \le 0.$$
$$rf'(r) = -\frac{r}{2-r} + 1 + 2\log r \le 0.$$

Enough to show $(rf'(r))' \ge 0$:

$$(rf'(r))' = \frac{2}{r} - \frac{2-r+r}{(2-r)^2} = \frac{2}{r} - \frac{2}{(2-r)^2}.$$

□ 87 Let \mathcal{X} be a set (space of examples) and P a probability measure on \mathcal{X} . Let x_1, \ldots, x_n be i.i.d., $(x_1, \ldots, x_n) \in \mathcal{X}^n$, $P^n = P \times \ldots \times P$.

Consider a subset $A \in \mathcal{X}^n$. How can we define a distance from $x \in \mathcal{X}^n$ to A? Example: hamming distance between two points $d(x, y) = \sum I(x_i \neq y_1)$.

We now define *convex hull distance*.

Definition 33.1. Define V(A, x), U(A, x), and d(A, x) as follows:

(1)
$$V(A, x) = \{(s_1, \dots, s_n) : s_i \in \{0, 1\}, \exists y \in A \text{ s.t. if } s_i = 0 \text{ then } x_i = y_i\}$$

$$\begin{aligned} x &= (x_1, x_2, \dots, x_n) \\ &= \neq \dots = \\ y &= (y_1, y_2, \dots, y_n) \\ s &= (0, 1, \dots, 0) \end{aligned}$$

Note that it can happen that $x_i = y_i$ but $s_i \neq 0$.

(2)
$$U(A, x) = conv V(A, x) = \left\{ \sum \lambda_i u^i, \ u^i = (u_1^i, \dots, u_n^i) \in V(A, x), \ \lambda_i \ge 0, \ \sum \lambda_i = 1 \right\}$$

(3) $d(A, x) = \min_{u \in U(A, x)} |u|^2 = \min_{u \in U(A, x)} \sum u_i^2$

Theorem 33.1.

$$\mathbb{E}e^{\frac{1}{4}d(A,x)} = \int e^{\frac{1}{4}d(A,x)}dP^n(x) \leq \frac{1}{P^n(A)}$$

and

$$P^n(d(A,x) \geq t) \leq \frac{1}{P^n(A)}e^{-t/4}.$$

Proof. Proof is by induction on n.

 $\mathbf{n} = \mathbf{1}$:

$$d(A, x) = \begin{cases} 0, & x \in A \\ 1, & x \notin A \end{cases}$$

Hence,

$$\int e^{\frac{1}{4}d(A,x)} dP^n(x) = P(A) \cdot 1 + (1 - P(A))e^{\frac{1}{4}} \le \frac{1}{P(A)}$$

because

$$e^{\frac{1}{4}} \le \frac{1 + P(A)}{P(A)}$$

 $\mathbf{n} \rightarrow \mathbf{n+1}:$

Let $x = (x_1, \dots, x_n, x_{n+1}) = (z, x_{n+1})$. Define

$$A(x_{n+1}) = \{(y_1, \dots, y_n) : (y_1, \dots, y_n, x_{n+1}) \in A\}$$

and

$$B = \{(y_1, \dots, y_n) : \exists y_{n+1}, (y_1, \dots, y_n, y_{n+1}) \in A\}$$

One can verify that

$$s \in U(A(x_{n+1}, z)) \Rightarrow (s, 0) \in U(A, (z, x_{n+1}))$$

and

$$t \in U(B, z) \Rightarrow (t, 1) \in U(A, (z, x_{n+1})).$$

Take $0 \le \lambda \le 1$. Then

$$\lambda(s,0) + (1-\lambda)(t,1) \in U(A,(z,x_{n+1}))$$

since $U(A, (z, x_{n+1}))$ is convex. Hence,

$$d(A, (z, x_{n+1})) = d(A, x) \le |\lambda(s, 0) + (1 - \lambda)(t, 1)|^2$$

= $\sum_{i=1}^n (\lambda s_i + (1 - \lambda)t_i)^2 + (1 - \lambda)^2$
 $\le \lambda \sum s_i^2 + (1 - \lambda) \sum t_i^2 + (1 - \lambda)^2$

So,

$$d(A, x) \le \lambda d(A(x_{n+1}), z) + (1 - \lambda)d(B, z) + (1 - \lambda)^2.$$

Now we can use induction:

$$\int e^{\frac{1}{4}d(A,x)} dP^{n+1}(x) = \int_{\mathcal{X}} \int_{\mathcal{X}^n} e^{\frac{1}{4}d(A,(z,x_{n+1}))} dP^n(z) dP(x_{n+1}).$$

Then inner integral is

$$\int_{\mathcal{X}^n} e^{\frac{1}{4}d(A,(z,x_{n+1}))} dP^n(z) \le \int_{\mathcal{X}^n} e^{\frac{1}{4}\left(\lambda d(A(x_{n+1}),z) + (1-\lambda)d(B,z) + (1-\lambda)^2\right)} dP^n(z)$$
$$= e^{\frac{1}{4}(1-\lambda)^2} \int e^{\left(\frac{1}{4}d(A(x_{n+1}),z)\right)\lambda + \left(\frac{1}{4}d(B,z)\right)(1-\lambda)} dP^n(z)$$

We now use *Hölder*'s inequality:

$$\begin{split} &\int fgdP \leq \left(\int f^{p}dP\right)^{1/p} \left(\int g^{q}dP\right)^{1/q} \text{ where } \frac{1}{p} + \frac{1}{q} = 1\\ &e^{\frac{1}{4}(1-\lambda)^{2}} \int e^{\left(\frac{1}{4}d(A(x_{n+1}),z)\right)\lambda + \left(\frac{1}{4}d(B,z)\right)(1-\lambda)}dP^{n}(z)\\ &\leq e^{\frac{1}{4}(1-\lambda)^{2}} \left(\int e^{\frac{1}{4}d(A(x_{n+1}),z)}dP^{n}(z)\right)^{\lambda} \left(e^{\frac{1}{4}d(B,z)}dP^{n}(z)\right)^{1-\lambda}\\ &\leq (\text{by ind. hypoth.}) \quad e^{\frac{1}{4}(1-\lambda)^{2}} \left(\frac{1}{P^{n}(A(x_{n+1}))}\right)^{\lambda} \left(\frac{1}{P^{n}(B)}\right)^{1-\lambda}\\ &= \frac{1}{P^{n}(B)}e^{\frac{1}{4}(1-\lambda)^{2}} \left(\frac{P^{n}(A(x_{n+1}))}{P^{n}(B)}\right)^{-\lambda} \end{split}$$

Optimizing over $\lambda \in [0, 1]$, we use the Lemma proved in the beginning of the lecture with

$$0 \le r = \frac{P^n(A(x_{n+1}))}{P^n(B)} \le 1.$$

Thus,

$$\frac{1}{P^n(B)}e^{\frac{1}{4}(1-\lambda)^2} \left(\frac{P^n(A(x_{n+1}))}{P^n(B)}\right)^{-\lambda} \le \frac{1}{P^n(B)} \left(2 - \frac{P^n(A(x_{n+1}))}{P^n(B)}\right).$$

$\mathbf{\Omega}$	n
У	U
v	\mathbf{v}

Now, integrate over the last coordinate. When averaging over x_{n+1} , we get measure of A.

$$\int e^{\frac{1}{4}d(A,x)} dP^{n+1}(x) = \int_{\mathcal{X}} \int_{\mathcal{X}^n} e^{\frac{1}{4}d(A,(z,x_{n+1}))} dP^n(z) dP(x_{n+1})$$

$$\leq \int_{\mathcal{X}} \frac{1}{P^n(B)} \left(2 - \frac{P^n(A(x_{n+1}))}{P^n(B)}\right) dP(x_{n+1})$$

$$= \frac{1}{P^n(B)} \left(2 - \frac{P^{n+1}(A)}{P^n(B)}\right)$$

$$= \frac{1}{P^{n+1}(A)} \frac{P^{n+1}(A)}{P^n(B)} \left(2 - \frac{P^{n+1}(A)}{P^n(B)}\right)$$

$$\leq \frac{1}{P^{n+1}(A)}$$

because $x(2-x) \le 1$ for $0 \le x \le 1$.

г	_	-	ĩ
			I

Let $\mathcal{X} = \{0, 1\}, (x_1, \dots, x_n) \in \{0, 1\}^n, \mathbb{P}(x_i = 1) = p$, and $\mathbb{P}(x_i = 0) = 1 - p$. Suppose $A \subseteq \{0, 1\}^n$. What is d(A, x) in this case?

For a given x, take all $y \in A$ and compute s:

$$x = (x_1, x_2, \dots, x_n)$$

= $\neq \dots =$
 $y = (y_1, y_2, \dots, y_n)$
 $s = (0, 1, \dots, 0)$

Build convV(A,x)=U(A,x). Finally, $d(A,x)=\min\{|x-u|^2; u\in {\rm conv}\; A\}$

Theorem 34.1. Consider a convex and Lipschitz $f : \mathbb{R}^n \mapsto \mathbb{R}, |f(x) - f(y)| \le L|x - y|, \forall x, y \in \mathbb{R}^n$. Then

$$\mathbb{P}\left(f(x_1,\ldots,x_n) \ge M + L\sqrt{t}\right) \le 2e^{-t/4}$$

and

$$\mathbb{P}\left(f(x_1,\ldots,x_n)\leq M-L\sqrt{t}\right)\leq 2e^{-t/4}$$

where M is median of $f \colon \mathbb{P}(f \ge M) \ge 1/2$ and $\mathbb{P}(f \le M) \ge 1/2$.

Proof. Fix $a \in \mathbb{R}$ and consider $A = \{(x_1, \dots, x_n) \in \{0, 1\}^n, f(x_1, \dots, x_n) \leq a\}$. We proved that

$$\mathbb{P}\left(\underbrace{d(A,x) \ge t}_{\text{event } E}\right) \le \frac{1}{\mathbb{P}(A)}e^{-t/4} = \frac{1}{\mathbb{P}(f \le a)}e^{-t/4}$$
$$d(A,x) = \min\{|x-u|^2; u \in \text{conv } A\} = |x-u_0|^2$$

for some $u_0 \in \text{conv } A$. Note that $|f(x) - f(u_0)| \le L|x - u_0|$.

Now, assume that x is such that $d(A, x) \leq t$, i.e. complement of event E. Then $|x - u_0| = \sqrt{d(A, x)} \leq \sqrt{t}$. Hence,

$$|f(x) - f(u_0)| \le L|x - u_0| \le L\sqrt{t}.$$
92

So, $f(x) \leq f(u_0) + L\sqrt{t}$. What is $f(u_0)$? We know that $u_0 \in \text{conv } A$, so $u_0 = \sum \lambda_i a_i$, $a_i \in A$, and $\lambda_i \geq 0$, $\sum \lambda_i = 1$. Since f is convex,

$$f(u_0) = f\left(\sum \lambda_i a_i\right) \le \sum \lambda_i f(a_i) \le \sum \lambda_i a = a.$$

This implies $f(x) \leq a + L\sqrt{t}$. We proved

$$\{d(A, x) \le t\} \subseteq \{f(x) \le a + L\sqrt{t}\}.$$

Hence,

$$1 - \frac{1}{\mathbb{P}(f \ge a)} e^{-t/4} \le \mathbb{P}(d(A, x) \le t) \le \mathbb{P}\left(f(x) \le a + L\sqrt{t}\right).$$

Therefore,

$$\mathbb{P}\left(f(x) \ge a + L\sqrt{t}\right) \le \frac{1}{\mathbb{P}\left(f \ge a\right)}e^{-t/4}.$$

To prove the first inequality take a = M. Since $\mathbb{P}(f \le M) \ge 1/2$,

$$\mathbb{P}\left(f(x) \ge M + L\sqrt{t}\right) \le 2e^{-t/4}.$$

To prove the second inequality, take $a = M - L\sqrt{t}$. Then

$$\mathbb{P}(f \ge M) \le \frac{1}{\mathbb{P}\left(f \le M - L\sqrt{t}\right)} e^{-t/4},$$

which means

$$\mathbb{P}\left(f(x) \le M - L\sqrt{t}\right) \le 2e^{-t/4}.$$

Example 34.1. Let $H \subseteq \mathbb{R}^n$ be a bounded set. Let

$$f(x_1,\ldots,x_n) = \sup_{h\in\mathcal{H}} \left| \sum_{i=1}^n h_i x_i \right|.$$

.

Let's check:

(1) convexity:

$$f(\lambda x + (1 - \lambda)y) = \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i (\lambda x_i + (1 - \lambda)y_i) \right|$$
$$= \sup_{h \in \mathcal{H}} \left| \lambda \sum_{i=1}^{n} h_i x_i + (1 - \lambda) \sum_{i=1}^{n} h_i y_i \right|$$
$$\leq \lambda \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i x_i \right| + (1 - \lambda) \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i y_i \right|$$
$$= \lambda f(x) + (1 - \lambda) f(y)$$

18.465

n	0
Э	•••
~	~

$$\begin{aligned} |f(x) - f(y)| &= \left| \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i x_i \right| - \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i y_i \right| \\ &\leq \sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{n} h_i (x_i - y_i) \right| \\ &\leq (\text{by Cauchy-Schwartz}) \quad \sup_{h \in \mathcal{H}} \sqrt{\sum h_i^2} \sqrt{\sum (x_i - y_i)^2} \\ &= |x - y| \underbrace{\sup_{h \in \mathcal{H}} \sqrt{\sum h_i^2}}_{L = \text{Lipschitz constant}} \end{aligned}$$

We proved the following

Theorem 34.2. If M is the median of $f(x_1, \ldots, x_n)$, and x_1, \ldots, x_n are i.i.d with $\mathbb{P}(x_i = 1) = p$ and $\mathbb{P}(x_i = 0) = 1 - p$, then

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|\sum_{i=1}^{n}h_{i}x_{i}\right|\geq M+\sup_{h\in\mathcal{H}}\sqrt{\sum h_{i}^{2}}\cdot\sqrt{t}\right)\leq 2e^{-t/4}$$
$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|\sum_{i=1}^{n}h_{i}x_{i}\right|\leq M-\sup_{h\in\mathcal{H}}\sqrt{\sum h_{i}^{2}}\cdot\sqrt{t}\right)\leq 2e^{-t/4}$$

and

Assume we have space \mathcal{X} and a class of functions $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$, not necessarily bounded. Define

$$Z(x) = Z(x_1, \dots, x_n) = \sup_{f \in \mathcal{F}} \sum f(x_i)$$

(or $\sup_{f \in \mathcal{F}} |\sum f(x_i)|$).

Example 35.1. $f \to \frac{1}{n}(f - \mathbb{E}f)$. $Z(x) = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f$.

Consider $x' = (x'_1, \dots, x'_n)$, an independent copy of x. Let

$$V(x) = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2$$

be "random uniform variance" (unofficial name)

Theorem 35.1.

$$\mathbb{P}\left(Z(x) \ge \mathbb{E}Z(x) + 2\sqrt{V(x)t}\right) \le 4e \cdot e^{-t/4}$$
$$\mathbb{P}\left(Z(x) \le \mathbb{E}Z(x) - 2\sqrt{V(x)t}\right) \le 4e \cdot e^{-t/4}$$

Recall the Symmetrization lemma:

Lemma 35.1. $\xi_1, \xi_2, \xi_3(x, x') : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}, \ \xi'_i = \mathbb{E}_{x'} \xi_i$. If

$$\mathbb{P}\left(\xi_1 \ge \xi_2 + \sqrt{\xi_3 t}\right) \le \Gamma e^{-\gamma t},$$

then

$$\mathbb{P}\left(\xi_1' \ge \xi_2' + \sqrt{\xi_3't}\right) \le \Gamma e \cdot e^{-\gamma t}.$$

We have

$$\mathbb{E}Z(x) = \mathbb{E}_{x'}Z(x') = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f(x'_i)$$

and

$$V(x) = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2.$$

Use the Symmetrization Lemma with $\xi_1 = Z(x), \xi_2 = Z(x')$, and

$$\xi_3 = \sup_{f \in \mathcal{F}} \sum_{i=1}^n (f(x_i) - f(x'_i))^2.$$

It is enough to prove that

$$\mathbb{P}\left(Z(x) \ge Z(x') + 2\sqrt{t \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2}\right) \le 4e^{-t/4},$$

i.e.

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}f(x_{i})\geq\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}f(x_{i}')+2\sqrt{t\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_{i})-f(x_{i}'))^{2}}\right)\leq4e^{-t/4}.$$

If we switch $x_i \leftrightarrow x'_i$, nothing changes, so we can switch randomly. Implement the permutation $x_i \leftrightarrow x'_i$:

$$I = f(x'_i) + \varepsilon_i (f(x_i) - f(x'_i))$$
$$II = f(x_i) - \varepsilon_i (f(x_i) - f(x'_i))$$

where $\varepsilon_i = 0, 1$. Hence,

- (1) If $\varepsilon_i = 1$, then $I = f(x_i)$ and $II = f(x'_i)$.
- (2) If $\varepsilon_i = 0$, then $I = f(x'_i)$ and $II = f(x_i)$.

Take $\varepsilon_1 \dots \varepsilon_n$ i.i.d. with $\mathbb{P}(\varepsilon_i = 0) = \mathbb{P}(\varepsilon_i = 1) = 1/2$.

$$\mathbb{P}_{x,x'}\left(\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}f(x_i)\geq \sup_{f\in\mathcal{F}}\sum_{i=1}^{n}f(x'_i)+2\sqrt{t\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_i)-f(x'_i))^2}\right)$$
$$=\mathbb{P}_{x,x',\varepsilon}\left(\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x'_i)+\varepsilon_i(f(x_i)-f(x'_i)))\geq \sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_i)-\varepsilon_i(f(x_i)-f(x'_i)))\right)$$
$$+2\sqrt{t\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_i)-f(x'_i))^2}\right)$$
$$=\mathbb{E}_{x,x'}\mathbb{P}_{\varepsilon}\left(\sup_{f\in\mathcal{F}}\ldots\geq \sup_{f\in\mathcal{F}}\ldots+2\sqrt{\ldots}\text{ for fixed } x, x'\right)$$

Define

$$\Phi_1(\varepsilon) = \sup_{f \in \mathcal{F}} \sum_{i=1}^n (f(x'_i) + \varepsilon_i (f(x_i) - f(x'_i)))$$

and

$$\Phi_2(\varepsilon) = \sup_{f \in \mathcal{F}} \sum_{i=1}^n (f(x_i) - \varepsilon_i (f(x_i) - f(x'_i))).$$

 $\Phi_1(\varepsilon), \Phi_2(\varepsilon)$ are convex and Lipschitz with $L = \sup_{f \in \mathcal{F}} \sqrt{\sum_{i=1}^n (f(x_i) - f(x'_i))^2}$. Moreover, $Median(\Phi_1) = Median(\Phi_2)$ and $\Phi_1(\varepsilon_1, \dots, \varepsilon_n) = \Phi_2(1 - \varepsilon_1, \dots, 1 - \varepsilon_n)$. Hence,

$$\mathbb{P}_{\varepsilon}\left(\Phi_{1} \leq M(\Phi_{1}) + L\sqrt{t}\right) \geq 1 - 2e^{-t/4}$$

and

$$\mathbb{P}_{\varepsilon}\left(\Phi_{2} \leq M(\Phi_{2}) - L\sqrt{t}\right) \geq 1 - 2e^{-t/4}$$

With probability at least $1 - 4e^{-t/4}$ both above inequalities hold:

$$\Phi_1 \le M(\Phi_1) + L\sqrt{t} = M(\Phi_2) + L\sqrt{t} \le \Phi_2 + 2L\sqrt{t}.$$

Thus,

$$\mathbb{P}_{\varepsilon}\left(\Phi_1 \ge \Phi_2 + 2L\sqrt{t}\right) \le 4e^{-t/4}$$

and

$$\mathbb{P}_{x,x',\varepsilon}\left(\Phi_1 \ge \Phi_2 + 2L\sqrt{t}\right) \le 4e^{-t/4}.$$

$$V(x) = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2.$$

For example, if $\mathcal{F} = \{f\}$, then

$$\frac{1}{n}V(x) = \frac{1}{n}\mathbb{E}_{x'}\sum_{i=1}^{n}(f(x_i) - f(x'_i))^2$$
$$\frac{1}{n}\sum_{i=1}^{n}\left(f(x_i)^2 - 2f(x_i)\mathbb{E}f + \mathbb{E}f^2\right)$$
$$= \bar{f^2} - 2\bar{f}\mathbb{E}f + \mathbb{E}f^2$$
$$= \underbrace{\bar{f^2} - (\bar{f})^2}_{\text{sample variance}} + \underbrace{(\bar{f})^2 - 2\bar{f}\mathbb{E}f + (\mathbb{E}f)^2}_{(\bar{f} - \mathbb{E}f)^2} + \underbrace{\mathbb{E}f^2 - (\mathbb{E}f)^2}_{\text{variance}}$$

Let $x \in \mathcal{X}^n$. Suppose $A_1, A_2 \subseteq \mathcal{X}^n$. We want to define $d(A_1, A_2, x)$.

Definition 36.1.

$$d(A_1, A_2, x) = \inf\{ card \ \{ i \le n : x_i \ne y_i^1 \ and \ x_i \ne y_i^2 \}, y^1 \in A_1, y^2 \in A_2 \}$$

Theorem 36.1.

$$\mathbb{E}2^{d(A_1,A_2,x)} = \int 2^{d(A_1,A_2,x)} dP^n(x) \le \frac{1}{P^n(A_1)P^n(A_2)}$$

and

$$\mathbb{P}(d(A_1, A_2, x) \ge t) \le \frac{1}{P^n(A_1)P^n(A_2)} \cdot 2^{-t}$$

We first prove the following lemma:

Lemma 36.1. Let $0 \le g_1, g_2 \le 1, g_i : \mathcal{X} \mapsto [0, 1]$. Then

$$\int \min\left(2, \frac{1}{g_1(x)}, \frac{1}{g_2(x)}\right) dP(x) \cdot \int g_1(x) dP(x) \cdot \int g_2(x) dP(x) \le 1$$

Proof. Notice that $\log x \leq x - 1$.

So enough to show

$$\int \min\left(2, \frac{1}{g_1}, \frac{1}{g_2}\right) dP + \int g_1 dP + \int g_2 dP \le 3$$

which is the same as

$$\int \left[\min\left(2, \frac{1}{g_1}, \frac{1}{g_2}\right) + g_1 + g_2 \right] dP \le 3$$

It's enough to show

$$\min\left(2, \frac{1}{g_1}, \frac{1}{g_2}\right) + g_1 + g_2 \le 3$$

If min is equal to 2, then $g_1, g_2 \leq \frac{1}{2}$ and the sum is less than 3. If min is equal to $\frac{1}{g_1}$, then $g_1 \geq \frac{1}{2}$ and $g_1 \geq g_2$, so $\min + g_1 + g_2 \leq \frac{1}{g_1} + 2g_1 \leq 3$.

We now prove the Theorem:

Proof. Proof by induction on n.

 $\mathbf{n} = \mathbf{1}$:

$$d(A_1, A_2, x) = 0$$
 if $x \in A_1 \cup A_2$ and $d(A_1, A_2, x) = 1$ otherwise

$$\int 2^{d(A_1,A_2,x)} dP(x) = \int \min\left(2, \frac{1}{I(x \in A_1)}, \frac{1}{I(x \in A_2)}\right) dP(x)$$

$$\leq \frac{1}{\int I(x \in A_1) dP(x) \cdot \int I(x \in A_2) dP(x)}$$

$$= \frac{1}{P(A_1)P(A_2)}$$

98

$\mathbf{n} \to \mathbf{n} + \mathbf{1}$: Let $x \in \mathcal{X}^{n+1}$, $A_1, A_2 \subseteq \mathcal{X}^{n+1}$. Denote $x = (x_1, \dots, x_n, x_{n+1}) = (z, x_{n+1})$. Define $A_1(x_{n+1}) = (x_1 \in \mathcal{X}^n \cup (x_1, \dots, x_n) \in A_n)$

$$A_1(x_{n+1}) = \{ z \in \mathcal{X}^n : (z, x_{n+1}) \in A_1 \}$$
$$A_2(x_{n+1}) = \{ z \in \mathcal{X}^n : (z, x_{n+1}) \in A_2 \}$$

and

$$B_1 = \bigcup_{x_{n+1}} A_1(x_{n+1}), \quad B_2 = \bigcup_{x_{n+1}} A_2(x_{n+1})$$

Then

$$d(A_1, A_2, x) = d(A_1, A_2, (z, x_{n+1})) \le 1 + d(B_1, B_2, z),$$
$$d(A_1, A_2, (z, x_{n+1})) \le d(A_1(x_{n+1}), B_2, z),$$

and

$$d(A_1, A_2, (z, x_{n+1})) \le d(B_1, A_2(x_{n+1}), z).$$

Now,

$$\int 2^{d(A_1,A_2,x)} dP^{n+1}(z,x_{n+1}) = \int \underbrace{\int 2^{d(A_1,A_2,(z,x_{n+1}))} dP^n(z)}_{I(x_{n+1})} dP(x_{n+1})$$

The inner integral can bounded by induction as follows

$$I(x_{n+1}) \leq \int 2^{1+d(B_1,B_2,z)} dP^n(z)$$

= $2 \int 2^{d(B_1,B_2,z)} dP^n(z)$
 $\leq 2 \cdot \frac{1}{P^n(B_1)P^n(B_2)}$

Moreover, by induction,

$$I(x_{n+1}) \le \int 2^{d(A_1(x_{n+1}), B_2, z)} dP^n(z) \le \frac{1}{P^n(A_1(x_{n+1}))P^n(B_2)}$$

and

$$I(x_{n+1}) \le \int 2^{d(B_1, A_2(x_{n+1}), z)} dP^n(z) \le \frac{1}{P^n(B_1)P^n(A_2(x_{n+1}))}$$

Hence,

$$I(x_{n+1}) \le \min\left(\frac{2}{P^n(B_1)P^n(B_2)}, \frac{1}{P^n(A_1(x_{n+1}))P^n(B_2)}, \frac{1}{P^n(B_1)P^n(A_2(x_{n+1}))}\right)$$
$$= \frac{1}{P^n(B_1)P^n(B_2)} \min\left(2, \underbrace{\frac{1}{\frac{P^n(A_1(x_{n+1})/P^n(B_1))}{1/g_1(x_{n+1})}}, \underbrace{\frac{1}{\frac{P^n(A_2(x_{n+1})/P^n(B_2))}{1/g_2(x_{n+1})}}\right)$$

So,

$$\int I(x_{n+1})dP(x_{n+1}) \leq \frac{1}{P^n(B_1)P^n(B_2)} \int \min\left(2, \frac{1}{g_1}, \frac{1}{g_2}\right) dP$$
$$\leq \frac{1}{P^n(B_1)P^n(B_2)} \cdot \frac{1}{\int g_1 dP \cdot \int g_2 dP}$$
$$= \frac{1}{P^n(B_1)P^n(B_2)} \cdot \frac{1}{P^{n+1}(A_1)/P^n(B_1) \cdot P^{n+1}(A_2)/P^n(B_2)}$$
$$= \frac{1}{P^{n+1}(A_1)P^{n+1}(A_2)}$$

because $\int P^n(A_1(x_{n+1}))dP(x_{n+1}) = P^{n+1}(A_1).$

Lemma 37.1. Let

$$V(x) = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2$$

and $a \leq f \leq b$ for all $f \in \mathcal{F}$. Then

$$\mathbb{P}\left(V \le 4\mathbb{E}V + (b-a)^2 t\right) \ge 1 - 4 \cdot 2^{-t}.$$

Proof. Consider M-median of V, i.e. $\mathbb{P}(V \ge M) \ge 1/2$, $\mathbb{P}(V \le M) \ge 1/2$. Let $A = \{y \in \mathcal{X}^n, V(y) \le M\} \subseteq \mathcal{X}^n$. Hence, A consists of points with typical behavior. We will use control by 2 points to show that any other point is close to these two points.

By control by 2 points,

$$\mathbb{P}\left(d(A, A, x) \ge t\right) \le \frac{1}{\mathbb{P}\left(A\right)\mathbb{P}\left(A\right)} \cdot 2^{-t} \le 4 \cdot 2^{-t}$$

Take any $x \in \mathcal{X}^n$. With probability at least $1 - 4 \cdot 2^{-t}$, $d(A, A, x) \leq t$. Hence, we can find $y^1 \in A, y^2 \in A$ such that card $\{i \leq n, x_i \neq y_i^1, x_i \neq y_i^2\} \leq t$.

Let

$$I_1 = \{i \le n : x_i = y_i^1\}, \ I_2 = \{i \le n : x_i \ne y_i^1, x_i = y_i^2\},$$

and

$$I_3 = \{ i \le n : x_i \ne y_i^1, x_i \ne y_i^2 \}$$

Then we can decompose V as follows

$$\begin{split} V(x) &= \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_{i}) - f(x'_{i}))^{2} \\ &= \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \left[\sum_{i \in I_{1}} (f(x_{i}) - f(x'_{i}))^{2} + \sum_{i \in I_{2}} (f(x_{i}) - f(x'_{i}))^{2} + \sum_{i \in I_{3}} (f(x_{i}) - f(x'_{i}))^{2} \right] \\ &\leq \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i \in I_{1}} (f(x_{i}) - f(x'_{i}))^{2} + \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i \in I_{2}} (f(x_{i}) - f(x'_{i}))^{2} + \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i \in I_{3}} (f(x_{i}) - f(x'_{i}))^{2} \\ &\leq \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(y_{i}^{1}) - f(x'_{i}))^{2} + \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(y_{i}^{2}) - f(x'_{i}))^{2} + (b - a)^{2}t \\ &= V(y^{1}) + V(y^{2}) + (b - a)^{2}t \\ &\leq M + M + (b - a)^{2}t \end{split}$$

because $y^1, y^2 \in A$. Hence,

$$\mathbb{P}\left(V(x) \le 2M + (b-a)^2 t\right) \ge 1 - 4 \cdot 2^{-t}.$$

Finally, $M \leq 2\mathbb{E}V$ because

$$\mathbb{P}\left(V \ge 2\mathbb{E}V\right) \le \frac{\mathbb{E}V}{2\mathbb{E}V} = \frac{1}{2} \qquad \text{while} \qquad \mathbb{P}\left(V \ge M\right) \ge \frac{1}{2}.$$

□ 101 Now, let $Z(x) = \sup_{f \in \mathcal{F}} |\sum_{i=1}^n f(x_i)|$. Then

$$Z(x) \underbrace{\leq}_{\text{with prob. } \geq 1-(4e)e^{-t/4}} \mathbb{E}Z + 2\sqrt{V(x)t} \underbrace{\leq}_{\text{with prob. } \geq 1-4\cdot 2^{-t}} \mathbb{E}Z + 2\sqrt{(4\mathbb{E}V + (b-a)^2t)t}.$$

Using inequality $\sqrt{c+d} \leq \sqrt{c} + \sqrt{d}$,

$$Z(x) \le \mathbb{E}Z + 4\sqrt{\mathbb{E}Vt} + 2(b-a)t$$

with high probability.

We proved Talagrand's concentration inequality for empirical processes:

Theorem 37.1. Assume $a \leq f \leq b$ for all $f \in \mathcal{F}$. Let $Z = \sup_{f \in \mathcal{F}} |\sum_{i=1}^{n} f(x_i)|$ and $V = \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2$. Then

$$\mathbb{P}\left(Z \le \mathbb{E}Z + 4\sqrt{\mathbb{E}Vt} + 2(b-a)t\right) \ge 1 - (4e)e^{-t/4} - 4 \cdot 2^{-t}.$$

This is an analog of Bernstein's inequality:

$$4\sqrt{\mathbb{E}Vt} \longrightarrow$$
 Gaussian behavior

 $2(b-a)t \longrightarrow$ Poisson behavior

Now, consider the following lower bound on V.

$$V = \mathbb{E} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2$$

>
$$\sup_{f \in \mathcal{F}} \mathbb{E} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2$$

=
$$\sup_{f \in \mathcal{F}} n \mathbb{E} (f(x_1) - f(x'_1))^2$$

=
$$\sup_{f \in \mathcal{F}} 2n \operatorname{Var}(f) = 2n \sup_{f \in \mathcal{F}} \operatorname{Var}(f) = 2n\sigma^2$$

As for the upper bound,

$$\mathbb{E} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2 = \mathbb{E} \sup_{f \in \mathcal{F}} \left(\sum_{i=1}^{n} (f(x_i) - f(x'_i))^2 - 2n \operatorname{Var}(f) + 2n \operatorname{Var}(f) \right)$$

$$\leq \mathbb{E} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \left[(f(x_i) - f(x'_i))^2 - \mathbb{E} (f(x_i) - f(x'_i))^2 \right] + 2n \sup_{f \in \mathcal{F}} \operatorname{Var}(f)$$

(by symmetrization)

$$\leq 2\mathbb{E} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \varepsilon_i (f(x_i) - f(x'_i))^2 + 2n\sigma^2$$

$$\leq 2\mathbb{E} \left(\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \varepsilon_i (f(x_i) - f(x'_i))^2 \right)_+ + 2n\sigma^2$$

18.465

1	n	0
Т	U	4

Note that the square function $[-(b-a), (b-a)] \mapsto \mathbb{R}$ is a contraction. Its largest derivative on [-(b-a), (b-a)] is at most 2(b-a). Note that $|f(x_i) - f(x'_i)| \le b - a$. Hence,

$$2\mathbb{E}\left(\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}\varepsilon_{i}(f(x_{i})-f(x_{i}'))^{2}\right)_{+}+2n\sigma^{2}\leq 2\cdot 2(b-a)\mathbb{E}\left(\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}\varepsilon_{i}(f(x_{i})-f(x_{i}'))\right)_{+}+2n\sigma^{2}$$
$$\leq 4(b-a)\mathbb{E}\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}\varepsilon_{i}|f(x_{i})-f(x_{i}')|+2n\sigma^{2}$$
$$\leq 4(b-a)\cdot 2\mathbb{E}\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}\varepsilon_{i}|f(x_{i})|+2n\sigma^{2}$$
$$= 8(b-a)\mathbb{E}Z+2n\sigma^{2}$$

We have proved the following

Lemma 37.2.

$$\mathbb{E}V \le 8(b-a)\mathbb{E}Z + 2n\sigma^2,$$

where $\sigma^2 = \sup_{f \in \mathcal{F}} \operatorname{Var}(f)$.

Corollary 37.1. Assume $a \leq f \leq b$ for all $f \in \mathcal{F}$. Let $Z = \sup_{f \in \mathcal{F}} |\sum_{i=1}^{n} f(x_i)|$ and $\sigma^2 = \sup_{f \in \mathcal{F}} \operatorname{Var}(f)$. Then

$$\mathbb{P}\left(Z \le \mathbb{E}Z + 4\sqrt{(8(b-a)\mathbb{E}Z + 2n\sigma^2)t} + 2(b-a)t\right) \ge 1 - (4e)e^{-t/4} - 4 \cdot 2^{-t}.$$

Using other approaches, one can get better constants:

$$\mathbb{P}\left(Z \le \mathbb{E}Z + \sqrt{(4(b-a)\mathbb{E}Z + 2n\sigma^2)t} + (b-a)\frac{t}{3}\right) \ge 1 - e^{-t}$$

If we substitute $f - \mathbb{E}f$ instead of f, the result of Lecture 37 becomes:

$$\sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} (f(x_i) - \mathbb{E}f) \right| \le \mathbb{E} \sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} (f(x_i) - \mathbb{E}f) \right| + \sqrt{\left(4(b-a)\mathbb{E} \sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} (f(x_i) - \mathbb{E}f) \right| + 2n\sigma^2 \right) t} + (b-a)\frac{t}{3}$$

with probability at least $\geq 1 - e^{-t}$. Here, $a \leq f \leq b$ for all $f \in \mathcal{F}$ and $\sigma^2 = \sup_{f \in \mathcal{F}} \operatorname{Var}(f)$. Now divide by n to get

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f \right| \le \mathbb{E} \sup_{f \in \mathcal{F}} |\ldots| + \sqrt{\left(4(b-a)\mathbb{E} \sup_{f \in \mathcal{F}} |\ldots| + 2\sigma^2 \right) \frac{t}{n} + (b-a)\frac{t}{3n}}$$

Compare this result to the Martingale-difference method (McDiarmid):

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f \right| \le \mathbb{E} \sup_{f \in \mathcal{F}} |\ldots| + \sqrt{\frac{2(b-a)^2 t}{n}}$$

The term $2(b-a)^2$ is worse than $4(b-a)\mathbb{E}\sup_{f\in\mathcal{F}}|\ldots|+2\sigma^2$.

An algorithm outputs $f_0 \in \mathcal{F}$, f_0 depends on data x_1, \ldots, x_n . What is $\mathbb{E}f_0$? Assume $0 \leq f \leq 1$ (loss function). Then

$$\left|\mathbb{E}f_0 - \frac{1}{n}\sum_{i=1}^n f_0(x_i)\right| \le \sup_{f \in \mathcal{F}} \left|\mathbb{E}f - \frac{1}{n}\sum_{i=1}^n f(x_i)\right| \le \text{ use Talagrand's inequality}$$

What if we knew that $\mathbb{E}f_0 \leq \varepsilon$ and the family $\mathcal{F}_{\varepsilon} = \{f \in \mathcal{F}, \mathbb{E}f \leq \varepsilon\}$ is much smaller than \mathcal{F} . Then looking at $\sup_{f \in \mathcal{F}} |\mathbb{E}f - \frac{1}{n} \sum_{i=1}^{n} f(x_i)|$ is too conservative.

Pin down location of f_0 . Pretend we know $\mathbb{E}f_0 \leq \varepsilon$, $f_0 \in \mathcal{F}_{\varepsilon}$. Then with probability at least $1 - e^{-t}$,

$$\left| \mathbb{E}f_0 - \frac{1}{n} \sum_{i=1}^n f_0(x_i) \right| \le \sup_{f \in \mathcal{F}_{\varepsilon}} \left| \mathbb{E}f - \frac{1}{n} \sum_{i=1}^n f(x_i) \right|$$
$$\le \mathbb{E}\sup_{f \in \mathcal{F}_{\varepsilon}} \left| \mathbb{E}f - \frac{1}{n} \sum_{i=1}^n f(x_i) \right| + \sqrt{\left(4\mathbb{E}\sup_{f \in \mathcal{F}_{\varepsilon}} |\dots| + 2\sigma_{\varepsilon}^2 \right) \frac{t}{n}} + \frac{t}{3n}$$

where $\sigma_{\varepsilon}^2 = \sup_{f \in \mathcal{F}_{\varepsilon}} \operatorname{Var}(f)$. Note that for $f \in \mathcal{F}_{\varepsilon}$

$$\operatorname{Var}(f) = \mathbb{E}f^2 - (\mathbb{E}f)^2 \le \mathbb{E}f^2 \le \mathbb{E}f \le \varepsilon$$

since $0 \le f \le 1$.

Denote $\varphi(\varepsilon) = \mathbb{E} \sup_{f \in \mathcal{F}_{\varepsilon}} \left| \mathbb{E} f - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \right|$. Then

$$\left|\mathbb{E}f_0 - \frac{1}{n}\sum_{i=1}^n f_0(x_i)\right| \le \varphi(\varepsilon) + \sqrt{\left(4\varphi(\varepsilon) + 2\varepsilon\right)\frac{t}{n}} + \frac{t}{3n}$$

with probability at least $1 - e^{-t}$.

Take $\varepsilon = 2^{-k}$, $k = 0, 1, 2, \dots$ Change $t \to t + 2\log(k+2)$. Then, for a fixed k, with probability at least $1 - e^{-t} \frac{1}{(k+2)^2}$,

$$\left|\mathbb{E}f_0 - \frac{1}{n}\sum_{i=1}^n f_0(x_i)\right| \le \varphi(\varepsilon) + \sqrt{\left(4\varphi(\varepsilon) + 2\varepsilon\right)\frac{t + 2\log(k+2)}{n}} + \frac{t + 2\log(k+2)}{3n}\right|$$

For all $k \ge 0$, the statement holds with probability at least

$$1 - \underbrace{\sum_{k=1}^{\infty} \frac{1}{(k+2)^2}}_{\frac{\pi^2}{6} - 1} e^{-t} \ge 1 - e^{-t}$$

For f_0 , find k such that $2^{-k-1} \leq \mathbb{E}f_0 < 2^{-k}$ (hence, $2^{-k} \leq 2\mathbb{E}f_0$). Use the statement for $\varepsilon_k = 2^{-k}$, $k \leq \log_2 \frac{1}{\mathbb{E}f_0}$.

$$\left| \mathbb{E}f_0 - \frac{1}{n} \sum_{i=1}^n f_0(x_i) \right| \le \varphi(\varepsilon_k) + \sqrt{\left(4\varphi(\varepsilon_k) + 2\varepsilon_k\right) \frac{t + 2\log(k+2)}{n}} + \frac{t + 2\log(k+2)}{3n} \\ \le \varphi(2\mathbb{E}f_0) + \sqrt{\left(4\varphi(2\mathbb{E}f_0) + 4\mathbb{E}f_0\right) \frac{t + 2\log(\log_2\frac{1}{\mathbb{E}f_0} + 2)}{n}} + \frac{t + 2\log(\log_2\frac{1}{\mathbb{E}f_0} + 2)}{3n} \\ = \Phi(\mathbb{E}f_0)$$

Hence, $\mathbb{E}f_0 \leq \frac{1}{n} \sum_{i=1}^n f_0(x_i) + \Phi(\mathbb{E}f_0)$. Denote $x = \mathbb{E}f_0$. Then $x \leq \overline{f} + \Phi(x)$.

Theorem 38.1. Let $0 \leq f \leq 1$ for all $f \in \mathcal{F}$. Define $\mathcal{F}_{\varepsilon} = \{f \in \mathcal{F}, \mathbb{E}f \leq \varepsilon\}$ and $\varphi(\varepsilon) = \mathbb{E}\sup_{f \in \mathcal{F}_{\varepsilon}} |\mathbb{E}f - \frac{1}{n}\sum_{i=1}^{n} f(x_i)|$. Then, with probability at least $1 - e^{-t}$, for any $f_0 \in \mathcal{F}$, $\mathbb{E}f_0 \leq x^*$, where x^* is the largest solution of

$$x^* = \frac{1}{n} \sum_{i=1}^n f_0(x_i) + \Phi(x^*).$$

Main work is to find $\varphi(\varepsilon)$. Consider the following example.

Example 38.1. If

$$\sup_{x_1,\dots,x_n} \log \mathcal{D}(\mathcal{F}, u, d_x) \le \mathcal{D}(\mathcal{F}, u),$$

then

$$\mathbb{E}\sup_{f\in\mathcal{F}_{\varepsilon}}\left|\mathbb{E}f-\frac{1}{n}\sum_{i=1}^{n}f(x_{i})\right|\leq\frac{k}{\sqrt{n}}\int_{0}^{\sqrt{\varepsilon}}\log^{1/2}\mathcal{D}(\mathcal{F},\varepsilon)d\varepsilon.$$

Let $x \in \mathcal{X}^n$, $x = (x_1, \ldots, x_n)$. Suppose $A \subseteq \mathcal{X}^n$. Define

$$V(A, x) = \{ (I(x_1 \neq y_1), \dots, I(x_n \neq y_n)) : y = (y_1, \dots, y_n) \in A \},\$$
$$U(A, x) = \text{conv } V(A, x)$$

and

$$d(A,x) = \min\{|s|^2 = \sum_{i=1}^n s_i^2, \ s \in U(A,x)\}$$

In the previous lectures, we proved

Theorem 39.1.

$$\mathbb{P}\left(d(A,x) \ge t\right) \le \frac{1}{\mathbb{P}\left(A\right)}e^{-t/4}.$$

Today, we prove

Theorem 39.2. The following are equivalent:

(1) $d(A, x) \leq t$ (2) $\forall \alpha = (\alpha_1, \dots, \alpha_n), \exists y \in A, s.t. \sum_{i=1}^n \alpha_i I(x_i \neq y_i) \leq \sqrt{\sum_{i=1}^n \alpha_i^2 \cdot t}$

Proof. (1) \Rightarrow (2):

Choose any $\alpha = (\alpha_1, \ldots, \alpha_n).$

(39.1)
$$\min_{y \in A} \sum_{i=1}^{n} \alpha_{i} I(x_{i} \neq y_{i}) = \min_{s \in U(A,x)} \sum_{i=1}^{n} \alpha_{i} s_{i} \le \sum_{i=1}^{n} \alpha_{i} s_{i}^{0}$$
$$\leq \sqrt{\sum_{i=1}^{n} \alpha_{i}^{2}} \sqrt{\sum_{i=1}^{n} (s_{i}^{0})^{2}} \le \sqrt{\sum_{i=1}^{n} \alpha_{i}^{2} \cdot t}$$

where in the last inequality we used assumption (1). In the above, min is achieved at s^0 . (2) \Rightarrow (1):

Let $\alpha = (s_1^0, \dots, s_n^0)$. There exists $y \in A$ such that

$$\sum_{i=1}^{n} \alpha_i I(x_i \neq y_i) \le \sqrt{\sum_{i=1}^{n} \alpha_i^2 \cdot t}$$

Note that $\sum \alpha_i s_i^0$ is constant on L because s^0 is perpendicular to the face.

$$\sum \alpha_i s_i^0 \leq \sum \alpha_i I(x_i \neq y_i) \leq \sqrt{\sum \alpha_i^2 t}$$

Hence, $\sum (s_i^0)^2 \leq \sqrt{\sum (s_i^0)^2 t}$ and $\sqrt{\sum (s_i^0)^2} \leq \sqrt{t}$. Therefore, $d(A, x) \leq \sum (s_i^0)^2 \leq t$.

We now turn to an application of the above results: Bin Packing.

Example 39.1. Assume we have x_1, \ldots, x_n , $0 \le x_i \le 1$, and let $B(x_1, \ldots, x_n)$ be the smallest number of bins of size 1 needed to pack all (x_1, \ldots, x_n) . Let $S_1, \ldots, S_B \subseteq \{1, \ldots, n\}$ such that all x_i with $i \in S_k$ are packed into one bin, $\bigcup S_k = \{1, \ldots, n\}, \sum_{i \in S_k} x_i \le 1$.

Lemma 39.1. $B(x_1, \ldots, x_n) \le 2 \sum x_i + 1.$

Proof. For all but one $k, \frac{1}{2} \leq \sum_{i \in S_k} x_i$. Otherwise we can combine two bins into one. Hence, $B - 1 \leq 2\sum_k \sum_{i \in S_k} x_i = 2\sum_k x_i$

Theorem 39.3.

$$\mathbb{P}\left(B(x_1,\ldots,x_n) \le M + 2\sqrt{\sum x_i^2 \cdot t} + 1\right) \ge 1 - 2e^{-t/4}.$$

Proof. Let $A = \{y : B(y_1, \ldots, y_n) \le M\}$, where $\mathbb{P}(B \ge M) \ge 1/2$, $\mathbb{P}(B \le M) \ge 1/2$. We proved that

$$\mathbb{P}\left(d(A,x) \ge t\right) \le \frac{1}{\mathbb{P}\left(A\right)}e^{-t/4}$$

Take x such that $d(A, x) \leq t$. Take $\alpha = (x_1, \ldots, x_n)$. Since $d(A, x) \leq t$, there exists $y \in A$ such that $\sum x_i I(x_i \neq y_i) \leq \sqrt{\sum x_i^2 \cdot t}$.

To pack the set $\{i : x_i = y_i\}$ we need $\leq B(y_1, \dots, y_n) \leq M$ bins. To pack $\{i : x_i \neq y_i\}$:

$$B(x_1I(x_1 \neq y_1), \dots, x_nI(x_n \neq y_n)) \le 2\sum x_iI(x_i \neq y_i) + 1$$
$$\le 2\sqrt{\sum x_i^2 \cdot t} + 1$$

by Lemma.

Hence,

$$B(x_1,\ldots,x_n) \le M + 2\sqrt{\sum x_i^2 \cdot t} + 1$$

with probability at least $1 - 2e^{-t/4}$.

$$\mathbb{P}\left(\sum x_i^2 \le n\mathbb{E}x_1^2 + \sqrt{n\mathbb{E}x_1^2 \cdot t} + \frac{2}{3}t\right) \ge 1 - e^{-t}.$$

Hence,

$$B(x_1,\ldots,x_n) \lesssim M + 2\sqrt{n\mathbb{E}x_1^2 \cdot t}$$

	_	_	-

In this lecture, we expose the technique of deriving concentration inequalities with the entropy tensorization inequality. The entropy tensorization inequality enables us to bound the entropy of a function of n variables by the sum of the n entropies of this function in terms of the individual variables. The second step of this technique uses the variational formulation of the n entropies to form a differential inequality that gives an upper bound of the log-Laplace transform of the function. We can subsequently use Markov inequality to get a deviation inequality involving this function.

Let $(\mathcal{X}, \mathcal{F}, \mathbb{P})$ be a measurable space, and $u : \mathcal{X} \to \mathbb{R}^+$ a measurable function. The **entropy** of u with regard to \mathbb{P} is defined as $\operatorname{Ent}_{\mathbb{P}}(u) \stackrel{\text{def.}}{=} \int u \log u d\mathbb{P} - \int u \cdot \left(\log\left(\int u d\mathbb{P}\right)\right) d\mathbb{P}$. If \mathbb{Q} is another probability measure and $u = \frac{d\mathbb{Q}}{d\mathbb{P}}$, then $\operatorname{Ent}_{\mathbb{P}}(u) = \int \left(\log \frac{d\mathbb{Q}}{d\mathbb{P}}\right) d\mathbb{Q}$ is the **KL-divergence** between two probability measures \mathbb{Q} and \mathbb{P} . The following lemma gives variational formulations for the entropy.

Lemma 40.1.

$$Ent_{\mathbb{P}}(u) = \inf \left\{ \int \left(u \cdot (\log u - \log x) - (u - x) \right) d\mathbb{P} : x \in \mathbb{R}^+ \right\}$$
$$= \sup \left\{ \int \left(u \cdot g \right) d\mathbb{P} : \int \exp(g) d\mathbb{P} \le 1 \right\}.$$

Proof. For the first formulation, we define x pointsizely by $\frac{\partial}{\partial x} \int (u \cdot (\log u - \log x) - (u - x)) d\mathbb{P} = 0$, and get $x = \int u d\mathbb{P} > 0$.

For the second formulation, the Laplacian corresponding to $\sup \left\{ \int (u \cdot g) d\mathbb{P} : \int \exp(g) d\mathbb{P} \leq 1 \right\}$ is $\mathcal{L}(g, \lambda) = \int (ug) d\mathbb{P} - \lambda \left(\int \exp(g) d\mathbb{P} - 1 \right)$. It is linear in λ and concave in g, thus $\sup_g \inf_{\lambda \geq 0} \mathcal{L} = \inf_{\lambda \geq 0} \sup_g \mathcal{L}$. Define g pointwisely by $\frac{\partial}{\partial g} \mathcal{L} = u - \lambda \exp(g) = 0$. Thus $g = \log \frac{u}{\lambda}$, and $\sup_g \mathcal{L} = \int (u \log \frac{u}{\lambda}) d\mathbb{P} - \int u d\mathbb{P} + \lambda$. We set $\frac{\partial}{\partial \lambda} \sup_g \mathcal{L} = -\frac{\int u d\mathbb{P}}{\lambda} + 1 = 0$, and get $\lambda = \int u d\mathbb{P}$. As a result, $\inf_\lambda \sup_g \mathcal{L} = \operatorname{Ent}_{\mathbb{P}}(u)$.

Entropy $\operatorname{Ent}_{\mathbb{P}}(u)$ is a convex function of u for any probability measure \mathbb{P} , since

$$\operatorname{Ent}_{\mathbb{P}}(\sum \lambda_{i} u_{i}) = \sup \left\{ \int \left(\sum \lambda_{i} u_{i} \cdot g \right) d\mathbb{P} : \int \exp(g) d\mathbb{P} \leq 1 \right\}$$
$$\leq \sum \lambda_{i} \sup \left\{ \int \left(u_{i} \cdot g_{i} \right) d\mathbb{P} : \int \exp(g_{i}) d\mathbb{P} \leq 1 \right\}$$
$$= \sum \lambda_{i} \operatorname{Ent}_{\mathbb{P}}(u_{i}).$$

Lemma 40.2. [Tensorization of entropy] $\mathcal{X} = (\mathcal{X}_1, \dots, \mathcal{X}_n), \mathbb{P}^n = \mathbb{P}_1 \times \dots \times \mathbb{P}_n, u = u(x_1, \dots, x_n),$ $Ent_{\mathbb{P}^n}(u) \leq \int (\sum_{i=1}^n Ent_{\mathbb{P}_i}(u)) d\mathbb{P}^n.$

Proof. Proof by induction. When n = 1, the above inequality is trivially true. Suppose

$$\int u \log u d\mathbb{P}^n \leq \int u d\mathbb{P}^n \log \int u d\mathbb{P}^n + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^n.$$
109

Integrate with regard to \mathbb{P}_{n+1} ,

$$\begin{split} &\int u \log u d\mathbb{P}^{n+1} \\ &\leq \int \left(\overbrace{\int u d\mathbb{P}^n}^v \log \overbrace{\int u d\mathbb{P}^n}^v \right) d\mathbb{P}_{n+1} + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\underset{\text{definition of entropy}}{=} \int \underbrace{\int u d\mathbb{P}^n} d\mathbb{P}_{n+1} \cdot \left(\log \int \overbrace{\int u d\mathbb{P}^n}^v d\mathbb{P}_{n+1} \right) + \operatorname{Ent}_{\mathbb{P}_{n+1}} \left(\underbrace{\int u d\mathbb{P}^n}_v \right) + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\underset{\text{foubini's theorem}}{=} \int u d\mathbb{P}^{n+1} \cdot \left(\log \int u d\mathbb{P}^{n+1} \right) + \operatorname{Ent}_{\mathbb{P}_{n+1}}(u) d\mathbb{P}^n + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\underset{\text{convexity of entropy}}{=} \int u d\mathbb{P}^{n+1} \cdot \left(\log \int u d\mathbb{P}^{n+1} \right) + \int \operatorname{Ent}_{\mathbb{P}_{n+1}}(u) d\mathbb{P}^{n+1} + \int \sum_{i=1}^n \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1} \\ &\leq \int u d\mathbb{P}^{n+1} \cdot \left(\log \int u d\mathbb{P}^{n+1} \right) + \int \sum_{i=1}^{n+1} \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1}. \end{split}$$

By definition of entropy, $\operatorname{Ent}_{\mathbb{P}^{n+1}}(u) \leq \int \sum_{i=1}^{n+1} \operatorname{Ent}_{\mathbb{P}_i}(u) d\mathbb{P}^{n+1}$.

The tensorization of entropy lemma can be trivially applied to get the following tensorization of Laplace transform.

Theorem 40.3. [Tensorization of Laplace transform] Let x_1, \dots, x_n be independent random variables and x'_1, \dots, x'_n their indepent copies, $Z = Z(x_1, \dots, x_n)$, $Z^i = Z(x_1, \dots, x_{i-1}, x'_i, x_{i+1}, \dots, x_n)$, $\phi(x) = e^x - x - 1$, and $\psi(x) = \phi(x) + e^x \phi(-x) = x \cdot (e^x - 1)$, and I be the indicator function. Then

$$\mathbb{E}\left(e^{\lambda Z} \cdot \lambda Z\right) - \mathbb{E}e^{\lambda Z} \cdot \log \mathbb{E}e^{\lambda Z} \leq \mathbb{E}_{x_1, \cdots, x_n, x_1', \cdots, x_n'} e^{\lambda Z} \sum_{i=1}^n \phi\left(-\lambda(Z - Z^i)\right) \\
\mathbb{E}\left(e^{\lambda Z} \cdot \lambda Z\right) - \mathbb{E}e^{\lambda Z} \cdot \log \mathbb{E}e^{\lambda Z} \leq \mathbb{E}_{x_1, \cdots, x_n, x_1', \cdots, x_n'} e^{\lambda Z} \sum_{i=1}^n \psi\left(-\lambda(Z - Z^i)\right) \cdot I(Z \geq Z^i).$$
110

Proof. Let $u = \exp(\lambda Z)$ where $\lambda \in \mathbb{R}$, and apply the tensorization of entropy lemma,

$$\underbrace{\mathbb{E}\left(e^{\lambda Z} \cdot \lambda Z\right) - \mathbb{E}e^{\lambda Z} \cdot \log \mathbb{E}e^{\lambda Z}}_{\text{Ent}_{\mathbb{P}^{n}} \log u} \\
\leq \qquad \mathbb{E}\sum_{i=1}^{n} \text{Ent}_{\mathbb{P}_{i}}e^{\lambda Z} \\
\stackrel{=}{=} \qquad \mathbb{E}\sum_{i=1}^{n} \inf\left\{\int \left(e^{\lambda Z}(\lambda Z - \lambda x) - (e^{\lambda Z} - e^{\lambda x})\right)d\mathbb{P}_{i} : x \in \mathbb{R}^{+}\right\} \\
\leq \qquad \mathbb{E}\sum_{i=1}^{n} \mathbb{E}_{x_{i}x_{i}'}\left(e^{\lambda Z}(\lambda Z - \lambda Z^{i}) - (e^{\lambda Z} - e^{\lambda Z^{i}})\right) \\
= \qquad \mathbb{E}\sum_{i=1}^{n} \mathbb{E}_{x_{i}x_{i}'}e^{\lambda Z}\left(e^{-\lambda(Z - Z^{i})} - (-\lambda \cdot (Z - Z^{i})) - 1\right) \\
= \qquad \mathbb{E}_{x_{1}, \cdots, x_{n}, x_{1}', \cdots, x_{n}'}e^{\lambda Z}\sum_{i=1}^{n}\phi\left(-\lambda \cdot (Z - Z^{i})\right).$$

$$\begin{split} & \mathbb{E}e^{\lambda Z}\sum_{i=1}^{n}\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right) \\ & = \mathbb{E}\sum_{i=1}^{n}e^{\lambda Z}\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right)\cdot\left(\underbrace{I\left(Z\geq Z^{i}\right)}_{\mathbf{I}}+\underbrace{I\left(Z^{i}\geq Z\right)}_{\mathbf{I}}\right) \\ & = \mathbb{E}\sum_{i=1}^{n}\left(\underbrace{e^{\lambda Z^{i}}\phi\left(-\lambda\cdot\left(Z^{i}-Z\right)\right)\cdot I\left(Z\geq Z^{i}\right)}_{\text{switch } Z \text{ and } Z^{i} \text{ in II}}+\underbrace{e^{\lambda Z}\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right)\cdot I\left(Z\geq Z^{i}\right)}_{\mathbf{I}}\right) \\ & = \mathbb{E}\sum_{i=1}^{n}e^{\lambda Z}\cdot I\left(Z\geq Z^{i}\right)\cdot\left(\underbrace{e^{\lambda\left(Z^{i}-Z\right)}\cdot\phi\left(-\lambda\cdot\left(Z^{i}-Z\right)\right)}_{\mathbf{II}}+\underbrace{\phi\left(-\lambda\cdot\left(Z-Z^{i}\right)\right)}_{\mathbf{I}}\right) \\ & = \mathbb{E}\sum_{i=1}^{n}e^{\lambda Z}\cdot I\left(Z\geq Z^{i}\right)\cdot\psi\left(-\lambda\cdot\left(Z^{i}-Z\right)\right). \end{split}$$

Recall the tensorization of entropy lemma we proved previously. Let x_1, \dots, x_n be independent random variables, x'_1, \dots, x'_n be their independent copies, $Z = Z(x_1, \dots, x_n)$, $Z^i = (x_1, \dots, x_{i-1}, x'_i, x_{i+1}, \dots, x_n)$, and $\phi(x) = e^x - x - 1$. We have $\mathbb{E}e^{\lambda Z} - \mathbb{E}e^{\lambda Z} \log \mathbb{E}e^{\lambda Z} \leq \mathbb{E}e^{\lambda Z} \sum_{i=1}^n \phi(-\lambda(Z - Z^i))$. We will use the tensorization of entropy technique to prove the following Hoeffding-type inequality. This theorem is Theorem 9 of Pascal Massart. About the constants in Talagrand's concentration inequalities for empirical processes. The Annals of Probability, 2000, Vol 28, No. 2, 863-884.

Theorem 41.1. Let \mathcal{F} be a finite set of functions $|\mathcal{F}| < \infty$. For any $f = (f_1, \dots, f_n) \in \mathcal{F}$, $a_i \leq f_i \leq b_i$, $L = \sup_f \sum_{i=1}^n (b_i - a_i)^2$, and $Z = \sup_f \sum_{i=1}^n f_i$. Then $\mathbb{P}(Z \geq \mathbb{E}Z + \sqrt{2Lt}) \leq e^{-t}$.

Proof. Let

$$Z^{i} = \sup_{f \in \mathcal{F}} \left(a_{i} + \sum_{j \neq i} f_{j} \right)$$
$$Z = \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f_{i} \stackrel{\text{def.}}{=} \sum_{i=1}^{n} f_{i}^{\circ}.$$

It follows that

$$0 \le Z - Z^{i} \le \sum_{i} f_{i}^{\circ} - \sum_{j \ne i} f_{j}^{\circ} - a_{i} = f_{i}^{\circ} - a_{i} \le b_{i}(f^{\circ}) - a_{i}(f^{\circ}).$$

Since $\frac{\phi(x)}{x^2} = \frac{e^x - x - 1}{x^2}$ is increasing in \mathbb{R} and $\lim_{x \to 0} \frac{\phi(x)}{x^2} \to \frac{1}{2}$, it follows that $\forall x < 0, \ \phi(x) \le \frac{1}{2}x^2$, and

$$\begin{split} \mathbb{E}e^{\lambda Z}\lambda Z - \mathbb{E}e^{\lambda Z}\log \mathbb{E}e^{\lambda Z} &\leq \mathbb{E}e^{\lambda Z}\sum_{i}\phi\left(-\lambda(Z-Z^{i})\right) \\ &\leq \frac{1}{2}\mathbb{E}e^{\lambda Z}\sum_{i}\lambda^{2}(Z-Z^{i})^{2} \\ &\leq \frac{1}{2}L\lambda^{2}\mathbb{E}e^{\lambda Z}. \end{split}$$

Center Z, and we get

$$\mathbb{E}e^{\lambda(Z-\mathbb{E}Z)}\lambda(Z-\mathbb{E}Z) - \log \mathbb{E}e^{\lambda(Z-\mathbb{E}Z)} \leq \frac{1}{2}L\lambda^2\mathbb{E}e^{\lambda(Z-\mathbb{E}Z)}.$$
112

Let $F(\lambda) = \mathbb{E}e^{\lambda(Z - \mathbb{E}Z)}$. It follows that $F'_{\lambda}(\lambda) = \mathbb{E}e^{\lambda(Z - \mathbb{E}Z)}(Z - \mathbb{E}Z)$ and

$$\begin{split} \lambda F_{\lambda}'(\lambda) &- F(\lambda) \log F(\lambda) &\leq \frac{1}{2} L \lambda^2 F(\lambda) \\ \frac{1}{\lambda} \frac{F_{\lambda}'(\lambda)}{F(\lambda)} &- \frac{1}{\lambda^2} \log F(\lambda) &\leq \frac{1}{2} L \\ & \left(\frac{1}{\lambda} \log F(\lambda)\right)_{\lambda}' &\leq \frac{1}{2} L \\ & \frac{1}{\lambda} \log F(\lambda) &= \frac{1}{t} \log F(t) \big|_{t \to 0} + \int_0^\lambda \left(\frac{1}{t} \log F(t)\right)_t' dt \\ &\leq \frac{1}{2} L \lambda \\ & F(\lambda) &\leq \exp(\frac{1}{2} L \lambda^2). \end{split}$$

By Chebychev inequality, and minimize over λ , we get

$$\begin{split} \mathbb{P}(Z \geq \mathbb{E}Z + t) &\leq e^{-\lambda t} \mathbb{E}e^{\lambda (Z - \mathbb{E}Z)} \\ &\leq e^{-\lambda t}e^{\frac{1}{2}L\lambda^2} \\ \mathbb{P}(Z \geq \mathbb{E}Z + t) &\leq e^{-t^2/(2L)} \end{split}$$

Let f_i above be Rademacher random variables and apply Hoeffding's inequality, we get $\mathbb{P}(Z \ge \mathbb{E}Z + \sqrt{Lt/2}) \le e^{-t}$. As a result, The above inequality improves the constant of Hoeffding's inequality.

The following Bennett type concentration inequality is Theorem 10 of

Pascal Massart. About the constants in Talagrand's concentration inequalities for empirical processes. The Annals of Probability, 2000, Vol 28, No. 2, 863-884.

Theorem 41.2. Let \mathcal{F} be a finite set of functions $|\mathcal{F}| < \infty$. $\forall f = (f_1, \dots, f_n) \in \mathcal{F}, \ 0 \le f_i \le 1, \ Z = \sup_f \sum_{i=1}^n f_i$, and define h as $h(u) = (1+u)\log(1+u) - u$ where $u \ge 0$. Then $\mathbb{P}(Z \ge \mathbb{E}Z + x) \le e^{-\mathbb{E}Z \cdot h(x/\mathbb{E}Z)}$.

Proof. Let

$$Z = \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f_{i} \stackrel{\text{def.}}{=} \sum_{i=1}^{n} f_{i}^{\circ}$$
$$Z^{i} = \sup_{f \in \mathcal{F}} \sum_{j \neq i} f_{j}.$$

It follows that $0 \leq Z - Z^i \leq f_i^{\circ} \leq 1$. Since $\phi = e^x - x - 1$ is a convex function of x,

$$\phi(-\lambda(Z - Z^{i})) = \phi(-\lambda \cdot (Z - Z^{i}) + 0 \cdot (1 - (Z - Z^{i}))) \le (Z - Z^{i})\phi(-\lambda)$$
113

and

$$\begin{split} \mathbb{E}\left(\lambda Z e^{\lambda Z}\right) - \mathbb{E} e^{\lambda Z} \log \mathbb{E} e^{\lambda Z} &\leq \mathbb{E}\left(e^{\lambda Z} \sum_{i=1}^{n} \phi\left(-\lambda(Z-Z^{i})\right)\right) \\ &\leq \mathbb{E}\left(e^{\lambda Z} \phi(-\lambda) \sum_{i} \left(Z-Z^{i}\right)\right) \\ &\leq \phi(-\lambda) \mathbb{E}\left(e^{\lambda Z} \cdot \sum_{i} f_{i}^{\circ}\right) \\ &= \phi(-\lambda) \mathbb{E}\left(Z \cdot e^{\lambda Z}\right). \end{split}$$

Set $\tilde{Z} = Z - \mathbb{E}Z$ (i.e., center Z), and we get

$$\begin{split} \mathbb{E}\left(\lambda \tilde{Z}e^{\lambda \tilde{Z}}\right) - \mathbb{E}e^{\lambda \tilde{Z}}\log \mathbb{E}e^{\lambda \tilde{Z}} &\leq \phi(-\lambda)\mathbb{E}\left(\tilde{Z}\cdot e^{\lambda \tilde{Z}}\right) \leq \phi(-\lambda)\mathbb{E}\left(\left(\tilde{Z} + \mathbb{E}Z\right)\cdot e^{\lambda \tilde{Z}}\right) \\ (\lambda - \phi(-\lambda))\,\mathbb{E}\left(\tilde{Z}e^{\lambda \tilde{Z}}\right) - \mathbb{E}e^{\lambda \tilde{Z}}\log \mathbb{E}e^{\lambda \tilde{Z}} &\leq \phi(-\lambda)\cdot\mathbb{E}Z\cdot\mathbb{E}e^{\lambda \tilde{Z}}. \end{split}$$

Let $v = \mathbb{E}Z$, $F(\lambda) = \mathbb{E}e^{\lambda \tilde{Z}}$, $\Psi = \log F$, and we get

(41.1)
$$(\lambda - \phi(-\lambda)) \frac{F'_{\lambda}(\lambda)}{F(\lambda)} - \log F(\lambda) \leq v\phi(-\lambda)$$
$$(\lambda - \phi(-\lambda)) (\log F(\lambda))'_{\lambda} - \log F(\lambda) \leq v\phi(-\lambda).$$

Solving the differential equation

(41.2)
$$(\lambda - \phi(-\lambda)) \left(\underbrace{\log F(\lambda)}_{\Psi_0} \right)'_{\lambda} - \underbrace{\log F(\lambda)}_{\Psi_0} = v\phi(-\lambda),$$

yields $\Psi_0 = v \cdot \phi(\lambda)$. We will proceed to show that Ψ satisfying 41.1 has the property $\Psi \leq \Psi_0$:

Substract 41.2 from 41.1, and let
$$\Psi_1 = \Psi - \Psi_0$$

 $(1 - e^{-\lambda})\Psi'_1 - \Psi_1 \leq 0$
 $(e^{\lambda} - 1)(1 - e^{-\lambda})\frac{1}{e^{\lambda} - 1} = 1 - e^{-\lambda}$, and $(e^{\lambda} - 1)(1 - e^{-\lambda})\frac{e^{\lambda}}{(e^{\lambda} - 1)^2} = 1$
 $(e^{\lambda} - 1)(1 - e^{-\lambda})\underbrace{\left(\frac{1}{e^{\lambda} - 1}\Psi'_1 - \frac{e^{\lambda}}{(e^{\lambda} - 1)^2}\Psi_1\right)}_{\left(\frac{\Psi_1}{e^{\lambda} - 1}\right)'_{\lambda}} \leq 0$
 $\frac{\Psi_1(\lambda)}{e^{\lambda} - 1} \leq \lim_{\lambda \to 0} \frac{\Psi_1(\lambda)}{e^{\lambda} - 1} = 0.$

It follows that $\Psi \leq v\phi(\lambda)$, and $F = \mathbb{E}e^{\lambda Z} \leq e^{v\phi(\lambda)}$. By Chebychev's inequality, $\mathbb{P}\left(Z \geq \mathbb{E}Z + t\right) \leq e^{-\lambda t + v\phi(\lambda)}$. Minimizing over all $\lambda > 0$, we get $\mathbb{P}\left(Z \geq \mathbb{E}Z + t\right) \leq e^{-v \cdot h(t/v)}$ where $h(x) = (1+x) \cdot \log(1+x) - x$. \Box

The following sub-additive increments bound can be found as Theorem 2.5 in Olivier Bousquet. Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.

Theorem 41.3. Let $Z = \sup_{f \in \mathcal{F}} \sum f_i$, $\mathbb{E}f_i = 0$, $\sup_{f \in \mathcal{F}} var(f) = \sup_{f \in \mathcal{F}} \sum_{i=1}^n f_i^2 \stackrel{\text{def.}}{=} \sigma^2$, $\forall i \in \{1, \cdots, n\}, f_i \leq u \leq 1$. Then $\mathbb{P}\left(Z \geq \mathbb{E}Z + \sqrt{(1+u)\mathbb{E}Z + n\sigma^2 x} + \frac{x}{3}\right) \leq e^{-x}$.

Proof. Let

$$Z = \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f_{i} \stackrel{\text{def.}}{=} \sum_{i=1}^{n} f_{i}^{\circ}$$
$$Z_{k} = \sup_{f \in \mathcal{F}} \sum_{i \neq k} f_{i}$$
$$Z'_{k} = f_{k} \text{ such that } Z_{k} = \sup_{f \in \mathcal{F}} \sum_{i \neq k} f_{i}$$

It follows that $Z'_k \leq Z - Z_k \leq u$. Let $\psi(x) = e^{-x} + x - 1$. Then

$$e^{\lambda Z}\psi(\lambda(Z-Z_k)) = e^{\lambda Z_k} - e^{\lambda Z} + \lambda(Z-Z_k)e^{\lambda Z}$$

= $f(\lambda) (Z-Z_k) e^{\lambda Z} + (\lambda - f(\lambda)) (Z-Z_k) e^{\lambda Z} + e^{\lambda Z_k} - e^{\lambda Z}$
= $f(\lambda) (Z-Z_k) e^{\lambda Z} + g(Z-Z_k)e^{\lambda Z_k}.$

In the above, $g(x) = 1 - e^{\lambda x} + (\lambda - f(\lambda)) x e^{\lambda x}$, and we define $f(\lambda) = (1 - e^{\lambda} + \lambda e^{\lambda}) / (e^{\lambda} + \alpha - 1)$ where $\alpha = 1/(1+u)$. We will need the following lemma to make use of the bound on the variance.

Lemma 41.4. For all $x \le 1$, $\lambda \ge 0$ and $\alpha \ge \frac{1}{2}$, $g(x) \le f(x) (\alpha x^2 - x)$.

Continuing the proof, we have

$$e^{\lambda Z}\psi(\lambda(Z-Z_{k})) = f(\lambda) (Z-Z_{k}) e^{\lambda Z} + g(Z-Z_{k}) e^{\lambda Z_{k}}$$

$$\leq f(\lambda) (Z-Z_{k}) e^{\lambda Z} + e^{\lambda Z_{k}} f(\lambda) \left(\alpha (Z-Z_{k})^{2} - (Z-Z_{k})\right)$$

$$\leq f(\lambda) (Z-Z_{k}) e^{\lambda Z} + e^{\lambda Z_{k}} f(\lambda) \left(\alpha (Z_{k}')^{2} - Z_{k}'\right).$$

Sum over all $k = 1, \dots, n$, and take expectation, we get

$$e^{\lambda Z} \sum_{k} \psi(\lambda(Z - Z_{k})) \leq f(\lambda) Z e^{\lambda Z} + f(\lambda) \sum_{k} e^{\lambda Z_{k}} \left(\alpha \left(Z_{k}^{\prime} \right)^{2} - Z_{k}^{\prime} \right)$$
$$\mathbb{E}e^{\lambda Z} \sum_{k} \psi(\lambda(Z - Z_{k})) \leq f(\lambda) \mathbb{E}Z e^{\lambda Z} + f(\lambda) \sum_{k} \mathbb{E}e^{\lambda Z_{k}} \left(\alpha \left(Z_{k}^{\prime} \right)^{2} - Z_{k}^{\prime} \right).$$
115

Since $\mathbb{E}Z'_{k} = 0$, $\mathbb{E}_{X_{k}} (Z'_{k})^{2} = \mathbb{E}f_{k}^{2} = \operatorname{var}(f_{k}) \leq \sup_{f \in \mathcal{F}} \operatorname{var}(f) \leq \sigma^{2}$, it follows that $\mathbb{E}e^{\lambda Z_{k}} \left(\alpha (Z'_{k})^{2} - Z'_{k} \right) = \mathbb{E}e^{\lambda Z_{k}} \left(\alpha \mathbb{E}_{f_{k}} (Z'_{k})^{2} - \mathbb{E}_{f_{k}} Z'_{k} \right)$ $\leq \alpha \sigma^{2} \mathbb{E}e^{\lambda Z_{k}}$

$$\leq \alpha \sigma^2 \mathbb{E} e^{\lambda Z_k + \lambda \mathbb{E} Z'_k}$$
Jensen's inequality
$$\leq \alpha \sigma^2 \mathbb{E} e^{\lambda Z_k + \lambda Z'_k}$$

$$\leq \alpha \sigma^2 \mathbb{E} e^{\lambda Z}.$$

Thus

$$\mathbb{E} \left(\lambda Z e^{\lambda Z} \right) - \mathbb{E} e^{\lambda Z} \log \mathbb{E} e^{\lambda Z} \leq \mathbb{E} e^{\lambda Z} \sum_{k} \psi(\lambda(Z - Z_k))$$

$$\leq f(\lambda) \mathbb{E} Z e^{\lambda Z} + f(\lambda) \alpha n \sigma^2 \mathbb{E} e^{\lambda Z}.$$

Let $Z_0 = Z - \mathbb{E}$, and center Z, we get

$$\mathbb{E}\left(\lambda Z_0 e^{\lambda Z_0}\right) - \mathbb{E}e^{\lambda Z_0} \log \mathbb{E}e^{\lambda Z_0} \leq f(\lambda)\mathbb{E}Z_0 e^{\lambda Z_0} + f(\lambda)\left(\alpha n\sigma^2 + \mathbb{E}Z\right)\mathbb{E}e^{\lambda Z_0}.$$

Let $F(\lambda) = \mathbb{E}e^{\lambda Z_0}$, and $\Psi(\lambda) = \log F(\lambda)$, we get

$$(\lambda - f(\lambda)) F'(\lambda) - F(\lambda) \log F(\lambda) \leq f(\lambda) (\alpha n \sigma^2 + \mathbb{E}Z) F(\lambda)$$
$$(\lambda - f(\lambda)) \underbrace{\frac{F'(\lambda)}{F(\lambda)}}_{\Psi'(\lambda)} - \underbrace{\log F(\lambda)}_{\Psi(\lambda)} \leq f(\lambda) (\alpha n \sigma^2 + \mathbb{E}Z) .$$

Solve this inequality, we get $F(\lambda) \leq e^{v\psi(-\lambda)}$ where $v = n\sigma^2 + (1+u)\mathbb{E}Z$.

This lecture reviews the method for proving concentration inequalities developed by Sourav Chatterjee based on Stein's method of exchangeable pairs. The lecture is based on

Sourav Chatterjee. Stein's method for concentration inequalities. Probab. Theory Relat. Fields (2007) 138:305-321. DOI 10.1007/s00440-006-0029-y.

Theorem 42.1. Let (X, X') be an exchangeable pair on \mathcal{X} (i.e., $d\mathbb{P}(X, X') = d\mathbb{P}(X', X)$). Let F(x, x') = -F(x, x') be antisymmetric, $f(x) = \mathbb{E}(F(x, x')|x)$. Then $\mathbb{E}f(x) = 0$. If further

$$\Delta(x) = \frac{1}{2} \mathbb{E}\left(\left| (f(x) - f(x')) F(x, x') \right| \, \left| x \right| \le B f(x) + C, \right.$$

then $\mathbb{P}(f(x) \ge t) \le \exp\left(-\frac{t^2}{2(C+Bt)}\right)$. Proof.

$$\mathbb{E}(h(X)f(X)) = \mathbb{E}(h(X) \cdot \mathbb{E}(F(X, X')|X)) = \mathbb{E}(h(X) \cdot F(X, X'))$$

$$= \mathbb{E}(h(X') \cdot F(X', X))$$

$$= \mathbb{E}(h(X') \cdot F(X', X))$$

$$= -\mathbb{E}(h(X') \cdot F(X, X'))$$

$$= \frac{1}{2}\mathbb{E}((h(X) - h(X')) \cdot F(X, X')).$$

Take h(X)=1, we get $\mathbb{E}f(x) = 0$. Take h(X) = f(X), we get $\mathbb{E}f^2 = \frac{1}{2}\mathbb{E}\left((f(X) - f(X')) \cdot F(X, X')\right)$. We proceed to bound the moment generating function $m(\lambda) = \mathbb{E}\exp(\lambda f(X))$, and use Chebychev's inequality to complete the proof. The derivative of $m(\lambda)$ satisfies,

$$\begin{split} |m_{\lambda}'(\lambda)| &= \left| \mathbb{E}\left(\underbrace{e^{\lambda f(X)}}_{h(X)} \cdot f(X)\right) \right| \\ &= \left| \frac{1}{2} \mathbb{E}\left(\left(e^{\lambda f(X)} - e^{\lambda f(X')} \right) \cdot F(X, X') \right) \right| \\ &\leq \mathbb{E}\left| \frac{1}{2} \left(\left(e^{\lambda f(X)} - e^{\lambda f(X')} \right) \cdot F(X, X') \right) \right| \\ &\leq \mathbb{E}\left| \frac{1}{2} \left(\left(e^{\lambda f(X)} - e^{\lambda f(X')} \right) \cdot F(X, X') \right) \right| \\ &\leq |\lambda| \cdot \mathbb{E}\left(\frac{1}{2} \left(e^{\lambda f(X)} + e^{\lambda f(X')} \right) \cdot \left| \frac{1}{2} \left(f(X) - f(X') \right) \cdot F(X, X') \right| \right) \\ &= |\lambda| \cdot \mathbb{E}\left(e^{\lambda f(X)} \cdot \left| \frac{1}{2} \left(f(X) - f(X') \right) \cdot F(X, X') \right| \right) \\ &= |\lambda| \cdot \mathbb{E}\left(e^{\lambda f(X)} \cdot \mathbb{E}\left(\left| \frac{1}{2} \left(f(X) - f(X') \right) \cdot F(X, X') \right| \right| X \right) \right) \\ &\leq |\lambda| \cdot \mathbb{E}\left(e^{\lambda f(X)} \cdot \left(\mathbb{E} \cdot f(X) + C \right) \right) = |\lambda| \cdot \left(\mathbb{E} \cdot m_{\lambda}'(\lambda) + C \cdot m(\lambda) \right) \end{split}$$

$$\begin{split} m'(\lambda) &\leq \lambda \cdot (B \cdot m'(\lambda) + C \cdot m(\lambda)) \\ (\log m(\lambda))'_{\lambda} &\leq \frac{\lambda \cdot C}{(1 - \lambda B)} \\ \log m(\lambda) &\leq \int_{0}^{\lambda} \frac{s \cdot C}{1 - s \cdot B} ds \leq \frac{C}{1 - \lambda \cdot B} \int_{0}^{\lambda} s ds = \frac{1}{2} \cdot \frac{C \cdot \lambda^{2}}{1 - \lambda \cdot B}. \end{split}$$

By Chebyshev's inequality $\mathbb{P}(f(x) \ge t) \le \exp\left(-\lambda t + \frac{1}{2} \cdot \frac{C \cdot \lambda^2}{1 - \lambda \cdot B}\right)$. Minimize the inequality over $0 \le \lambda < \frac{1}{B}$, we get $\lambda = \frac{t}{C+Bt}$, and $\mathbb{P}(f(x) \ge t) \le \exp\left(-\frac{t^2}{2 \cdot (C+Bt)}\right)$.

We will use the following three examples to illustrate how to use the above theorem to prove concentration inequalities.

Example 42.2. Let X_1, \dots, X_n be i.i.d random variables with $\mathbb{E}x_i = \mu_i$, $\operatorname{var}(x_i) = \sigma_i^2$, and $|x_i - \mu_i| \le c_i$. Let $X = \sum_{i=1}^n X_i$, our goal is to bound $|X - \mathbb{E}X|$ probabilistically. To apply the above theorem, take X'_i be an independent copy of X_i for $i = 1, \dots, n, I \sim \operatorname{unif}\{1, \dots, n\}$ be a random variable uniformly distributed over $1, \dots, n$, and $X' = \sum_{i \ne I} X_i + X_I$. Define F(X, X'), f(X), and $\Delta(X)$ as the following,

$$\begin{split} F(X, X') &\stackrel{\text{def.}}{=} & n \cdot (X - X') = n \cdot (X_I - X'_I) \\ f(X) &\stackrel{\text{def.}}{=} & \mathbb{E} \left(F(X, X') | X \right) = \mathbb{E} \left(n \cdot (X_I - X'_I) | X \right) = \frac{1}{n} \sum_{I=1}^n \mathbb{E} \left(n \cdot (X_I - X'_I) | X \right) \\ \Delta(X) &\stackrel{\text{def.}}{=} & \frac{1}{2} \mathbb{E} \left(\left| (f(X) - f(X')) \cdot F(X, X') \right| | X \right) \\ & = & \frac{n}{2} \cdot \frac{1}{n} \sum_{I=1}^n \mathbb{E} \left((X_I - X'_I)^2 | X \right) \\ & = & \frac{1}{2} \sum_{I=1}^n \left(\mathbb{E} \left(\underbrace{(X_I - \mathbb{E} X_I)^2}_{\leq c_i^2} | X \right) + \underbrace{\mathbb{E} \left((X'_I - \mathbb{E} X'_I)^2 \right)}_{=\sigma_i^2} \right) \\ & \leq & \frac{1}{2} \sum_{I=1}^n \left(c_i^2 + \sigma_i^2 \right). \end{split}$$

It follows that

$$\mathbb{P}\left(\sum X_{i} - \mathbb{E}\sum X_{i} \ge t\right) \le \exp\left(-\frac{t^{2}}{\sum_{i}c_{i}^{2} + \sigma_{i}^{2}}\right)$$
$$\mathbb{P}\left(\left(-\sum X_{i}\right) - \mathbb{E}\left(-\sum X_{i}\right) \ge t\right) \le \exp\left(-\frac{t^{2}}{\sum_{i}c_{i}^{2} + \sigma_{i}^{2}}\right)$$
$$\mathbb{P}\left(\left|\sum X_{i} - \mathbb{E}\sum X_{i}\right| \ge t\right) \le 2\exp\left(-\frac{t^{2}}{\sum_{i}c_{i}^{2} + \sigma_{i}^{2}}\right)$$

Example 42.3. Let $(a_{ij})_{i,j=1,\dots,n}$ be a real matrix where $a_{ij} \in [0,1]$ for $1 \leq i, j \leq n, \pi$ be a random variable uniformly distributed over the permutations of $1, \dots, n$. Let $X = \sum_{i=1}^{n} a_{i,\pi(i)}$, then $\mathbb{E}X = \frac{1}{n} \sum_{i,j} a_{i,j}$, and our goal is to bound $|X - \mathbb{E}X|$ probabilistically. To apply the above theorem, we define exchangeable pairs of permutations in the following way. Given permutation π , pick I, J uniformly and independently from $\{1, \dots, n\}$, and construct $\pi' = \pi \circ (I, J)$ where (I, J) is a transposition of I and J. The two random variables π and π' are exchangeable. We can define F(X, X'), f(X), and $\Delta(X)$ as the following,

$$\begin{split} F(X, X') & \stackrel{\text{def.}}{=} \quad \frac{n}{2} \left(X - X' \right) = \frac{n}{2} \left(\sum_{i=1}^{n} a_{i,\pi(i)} - \sum_{i=1}^{n} a_{i,\pi'(i)} \right) \\ f(X) & \stackrel{\text{def.}}{=} \quad \mathbb{E} \left(F(X, X') | X \right) \\ & = \quad \frac{n}{2} \left(a_{I,\pi(I)} + a_{J,\pi(J)} - a_{I,\pi(J)} - a_{J,\pi(I)} | \pi \right) \\ & = \quad \frac{n}{2} \cdot \frac{1}{n} \sum_{I} a_{I,\pi(I)} + \frac{n}{2} \cdot \frac{1}{n} \sum_{J} a_{J,\pi(J)} - \frac{n}{2} \cdot \frac{1}{n^2} \sum_{I,J} a_{I,J} - \frac{n}{2} \cdot \frac{1}{n^2} \sum_{I,J} a_{I,J} \\ & = \quad \sum_{i} a_{i,\pi(i)} - \frac{1}{n} \sum_{i,j} a_{i,j} \\ & = \quad X - \mathbb{E}X \\ \Delta(X) & \stackrel{\text{def.}}{=} \quad \frac{1}{2} \cdot \frac{n}{2} \mathbb{E} \left((X - X')^2 | \pi \right) \\ & = \quad \frac{n}{4} \mathbb{E} \left((a_{I,\pi(I)} + a_{J,\pi(J)} - a_{I,\pi(J)} - a_{J,\pi(I)})^2 | \pi \right) \\ & \leq \quad \frac{n}{2} \mathbb{E} \left(a_{I,\pi(I)} + a_{J,\pi(J)} - a_{I,\pi(J)} - a_{J,\pi(I)} | \pi \right) \\ & = \quad X + \mathbb{E}X \\ & = \quad f(X) + 2\mathbb{E}X. \end{split}$$

Apply the theorem above, and take union bound, we get $\mathbb{P}(|X - \mathbb{E}X| \ge t) \le 2 \exp\left(-\frac{t^2}{4\mathbb{E}X + t}\right)$.

Example 42.4. In this example, we consider a concentration behavior of the Curie-Weiss model. Let $\sigma = (\sigma_1, \dots, \sigma_n) \in \{-1, 1\}^n$ be random variables observing the probability distribution

$$G\left((\sigma_1, \cdots, \sigma_n)\right) = \frac{1}{Z} \exp\left(\frac{\beta}{n} \sum_{i < j} \sigma_i \sigma_j + \beta \cdot h \sum_{i=1}^n \sigma_i\right).$$

We are interested in the concentration of $m(\sigma) = \frac{1}{n} \sum_{i} \sigma_{i}$ around $\tanh(\beta \cdot m(\sigma) + \beta \cdot h)$ where $\tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$. Given any σ , we can pick I uniformly and independently from $\{1, \dots, n\}$, and generate σ'_{I} according to the conditional distribution of σ_{i} on $\{\sigma_{j} : j \neq i\}$ (Gibbs sampling):

$$\mathbb{P}(\sigma'_{i} = +1 | \{\sigma_{j} : j \neq i\}) = \frac{\exp(\frac{\beta}{n} \sum_{j \neq i} \sigma_{j} + \beta \cdot h)}{2 \cdot (\exp(\frac{\beta}{n} \sum_{j \neq i} \sigma_{j} + \beta \cdot h) + \exp(-\frac{\beta}{n} \sum_{j \neq i} \sigma_{j} - \beta \cdot h))} \\ \mathbb{P}(\sigma'_{i} = -1 | \{\sigma_{j} : j \neq i\}) = \frac{\exp(-\frac{\beta}{n} \sum_{j \neq i} \sigma_{j} - \beta \cdot h)}{2 \cdot (\exp(\frac{\beta}{n} \sum_{j \neq i} \sigma_{j} + \beta \cdot h) + \exp(-\frac{\beta}{n} \sum_{j \neq i} \sigma_{j} - \beta \cdot h))}.$$

Let $\sigma'_j = \sigma_j$ for $j \neq I$. The two random variables σ and σ' are exchangeable pairs. To apply the above theorem, we define F(X, X'), f(X), and $\Delta(X)$ as the following,

$$\begin{split} F(\sigma, \sigma') &\stackrel{\text{def.}}{=} \sum \sigma_i - \sum \sigma'_i = \sigma_I - \sigma'_I \\ f(\sigma) &\stackrel{\text{def.}}{=} \mathbb{E} \left(F(\sigma, \sigma') | \sigma \right) \\ &= \mathbb{E} \left(\sigma_I - \sigma'_I | \sigma \right) \\ &= \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left(\sigma_i - \sigma'_i | \sigma \right) \text{, where } \sigma'_1, \cdots, \sigma'_n \text{ are all by Gibbs sampling.} \\ &= \frac{1}{n} \sum_{i=1}^n \sigma_i - \frac{1}{n} \sum_{i=1}^n \tanh\left(\frac{\beta}{n} \sum_{j \neq i} \sigma_j + \beta h\right) \\ \Delta(X) &\stackrel{\text{def.}}{=} \frac{1}{2} \mathbb{E} \left(\left| (f(X) - f(X')) \cdot F(X, X') \right| \left| X \right) \right| \\ &\leq \frac{|F(\sigma, \sigma')| \leq 2, |f(\sigma) - f(\sigma')| \leq 2(1 + \beta)/n}{n} \\ \leq \frac{1}{2} \cdot 2 \cdot \frac{2(1 + \beta)}{n}. \end{split}$$

 $\begin{aligned} \text{Thus } \mathbb{P}\left(\left|\frac{1}{n}\sum_{i}\sigma_{i}-\frac{1}{n}\sum_{i}\tanh\left(\frac{\beta}{n}\sum_{j\neq i}\sigma_{i}+\beta h\right)\right|\geq t\right) &\leq 2\exp\left(-\frac{t^{2}n}{4(1+\beta)}\right). \quad \text{Since } |\tanh(\beta m_{i}(\sigma)+\beta h)-\tanh(\beta m(\sigma)+\beta h)| \leq \frac{\beta}{n} \text{ where } m_{i}(\sigma) &= \frac{1}{n}\sum_{j\neq i}\sigma_{i}, \text{ we have } \mathbb{P}\left(\left|\frac{1}{n}\sum_{i}\sigma_{i}-\tanh\left(\beta\cdot m(\sigma)+\beta h\right)\right|\geq \frac{\beta}{n}+\frac{t}{\sqrt{n}}\right) \leq 2\exp\left(-\frac{t^{2}n}{4(1+\beta)}\right). \end{aligned}$