
Methods of Estimation II 

Methods of Estimation II 

MIT 18.655 

Dr. Kempthorne 

Spring 2016
 

1 MIT 18.655 Methods of Estimation II 



Methods of Estimation II Maximum Likelihood in Multiparameter Exponential Families 
Algorithmic Issues 

Outline 

1 Methods of Estimation II 
Maximum Likelihood in Multiparameter Exponential Families 
Algorithmic Issues 

2 MIT 18.655 Methods of Estimation II 



Methods of Estimation II Maximum Likelihood in Multiparameter Exponential Families 
Algorithmic Issues 

Maximum Likelihood in Exponential Families 

Issues: 

Existence of MLEs 

Uniqueness of MLEs 

Significant Feature of Exponential Family of Distributions 

Concavity of the log likelihood 
lx (η) = log [p(x | η)], 

for all x ∈ X , where η is the natural parameter in the 
canonical representation. 
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Existence and Uniqueness Theorem 

Proposition 2.3.1 Suppose X ∼ P ∈ {Pθ, θ ∈ Θ} with 

Θ ⊂ Rp, an open set. 

The corresponding densitites of Pθ, p(x | θ), are such that for 
any x ∈ X the likelihood function 

lx (θ) = log[p(x | θ)] is strictly concave in θ 

lx (θ) → −∞ as θ → ∂Θ, where 
¯ ¯∂Θ = Θ − Θ, the boundary of Θ, defined using Θ, 

the closure of Θ in [−∞, ∞]. 

Then: 

The MLE θ̂(x) exists. 

The MLE θ̂(x) is unique. 

Proof: 

Apply properties of convexity of sets/functions. 
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Convexity 

Definitions (Section B.9) 

A subset S ⊂ Rk is convex if for every x , y ∈ S , 
αx + (1 − α)y ∈ S , for all α : 0 ≤ α < 1. 

for k = 1, convex sets are intervals (finite or infinite). 
for k > 1, spheres, rectangles (finite or infinite) are convex. 

x0 ∈ S0, the interior of the convex set S if and only if 
{x : dT x > dT x0} ∩ S0  = ∅
 

and
 
{x : dT x < dT x0} ∩ S0  = ∅
 

for every d  
= 0.
 
A function g : S → R is convex if
 

g(αx + (1 − α)y) ≤ αg(x) + (1 − α)g(y) 
for all x, y ∈ S , and all α : 0 ≤ α ≤ 1. 
A function g : S → R is strictly convex if 

g(αx + (1 − α)y) < αg(x) + (1 − α)g(y) 
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Convexity
 

Properties (Section B.9) 

A convex function is continuous on S0 

For k = 1, if g ii exists: 
g ll(x) ≥ 0, x ∈ S ⇐⇒ g(·) is convex. 
g ll(x) > 0, x ∈ S ⇐⇒ g(·) is strictly convex. 

For g(·) : S → R convex and fixed x, y ∈ S , 
h(α) = g(αx + (1 − α)y) is convex in α, for 

0 ≤ α ≤ 1. 
∂g2(x)

When k > 1, if exists, convexity is equivalent to
∂xi ∂xj
  ∂g2(x)
 

ui uj ≥ 0,
 
i ,j 

∂xi ∂xj
 

for all u = (u1, . . . , uk )
T ∈ Rk , and x ∈ S .
 

A function h : S → R is (strictly) concave if
 
g = −h is (strictly) convex.
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Convexity 

Jensen’s Inequality If 

S ⊂ Rk is convex and closed 
g is convex on S . 
U a random vector with sample space U = S , 

P[U ∈ S ] = 1 and E [U] finite 

Then 

E [U] ∈ S 
E [g(U)] exists 
E [g(U)] ≥ g(E [U]) 
E [g(U)] = g(E [U]) if and only if 

P(g(U) = a + bT U) = 1.
 
for some fixed a ∈ R and b(k × 1) ∈ Rk .
 
If g is strictly convex, then 

E [g(U)] = g(E [U]) if and only if P(U = c) = 1, 
for some c ∈ Rk . 
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Existence and Uniqueness of MLE 

Proof of Proposition 2.3.1 

Because lx (θ) : Θ → R is strictly concave, it follows that it is
 
continuous on Θ.
 

Because lx (θ) → −∞ as θ → ∂Θ, the mle θ̂(x) exists.
 
This follows from
 
Lemma 2.3.1:
 

Suppose the function l : Θ → R where Θ ⊂ Rp is open and l
 
is continuous.
 
If lim{l(θ) : θ → ∂Θ} = −∞, then
 
there exists θ̂ ∈ Θ such that: l(θ̂) = max{l(θ) : θ ∈ Θ}
 

Suppose θ̂1 and θ̂2 are distinct MLEs: lx (θ̂1) = lx (θ̂2) and 
ˆ ˆθ1 = θ2. By the strict concavity of lx ,
 

(1 ˆ 1 ˆ 1 (ˆ (ˆ (ˆ
lx θ1 + θ2) > lx θ1) + 1 lx θ2). > lx θ1)2 2 2 2
 

but this contradicts θ̂1 being an MLE.
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MLEs for Canonical Exponential Family 

Theorem 2.3.1 Suppose P is the canonical exponential family 
generated by (T , h), and that 

The natural parameter space E is open 

The family is of rank k. 

(a). If t0 ∈ Rk satisfies: 
P[cT T (X ) > cT t0] > 0 for all c = 0, (∗) 

then the MLE η̂ exists, is unique, 
and is a solution to the equation

• 

A(η) = E (T (X ) | η) = t0. (∗∗) 
(b). If t0 ∈ Rk does not satisfy (∗), then the MLE does not exist 

and (∗∗) has no solution. 
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Recall canonical exponential family generated by (T, h): 

Natural Sufficient Statistic: T(X) = (T1(X ), . . . , Tk (X ))T 

Natural Parameter: η = (η1, . . . , ηk )
T 

Density function 
p(x | η) = h(x)exp{TT (x)η) − A(η)}


where A(·) is defined to normalize the density:
 o o 
A(η) = log · · · h(x)exp{TT (x)η}dx
 

or
 
A(η) = log [ h(x)exp{TT (x)η}]
 

x∈X 

Natural Parameter space: E = {η ∈ Rk : −∞ < A(η) < ∞}. 
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Proof. 

We can suppose that h(x) = p(x | η0) for some reference 
η0 ∈ E . 

The canonical family generated by (T (x), h(x)) with natural 
parameter η and normalization term A(η), is identical to the 
family generated by (T (x), h0(x)) with h0(x) = p(x | η0) and 
natural parameter η∗ and normalization term A∗(η∗). 
η∗ = η − η0
 

A∗(η∗) = A(η∗ + η0) − A(η0)
 
(Problem 1.6.27)
 

We can also assume that t0 = T (x) = 0. (N.B. x is fixed) 

The class P is the same exponential family generated by 
T ∗(X ) = T (X ) − t0. 

The likelihood function for x is 
lx (η) = log [p(x | η)] = −A(η) + log[h(x)]
 

since T (x) = 0.
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Proof (continued) 

Claim: If {ηm} has no subsequence converging to a point in E , 
then for any convergent subsequence {ηmk } : 

limk→∞ lx (ηmk ) = −∞. 

Any sub-sequence that has a limit is on the boundary of E , 
outside E . 
The existence of the MLE η̂(x) is guaranteed by Lemma 2.3.1. 

Proof of Claim: Let {ηm} be a sequence with no subsequence 
converging to a point in E and let {ηmk } be convergent. 
Express the ηm in terms of scalars λm and unit k-vectors um ∈ Rk : 

ηm = λmum, 
where um = ηm/|ηm| and λm = |ηm|
Two cases to consider: 

Case 1: λmk → ∞, and umk → u (|ηmk | → ∞) 
Case 2: λmk → λ, and umk → u (ηmk → λµ  ∈ E) 

12 MIT 18.655 Methods of Estimation II 



 
 

Methods of Estimation II Maximum Likelihood in Multiparameter Exponential Families 
Algorithmic Issues 

Proof (continued) 

Case 1: λmk → ∞, and umk → u. Writing E0 for E [· | η0], and P0 

for Pη0 , then for some δ > 0 : / 
TηT T (x) λmk

u T (x)mk mklim e h(x)dx = lim E0[e ] 
k→∞ k→∞ 

Tλmk umk 
T (x) T≥ lim E0[e × 1({u T (X ) > δ})]mkk→∞ 

λmk T≥ lim e δ E0[1({u T (X ) > δ})]mkk→∞ 
T = lim e λmk δ P0[{u T (X ) > δ}]mkk→∞ 

= lim e λmk δ P0[{u T T (X ) > δ}] 
k→∞ 

= +∞ 
The first inequality follows because under condition (a) of the theorem, 
we are given that t0 ∈ Rk satisfies: 

P[cT T (X ) > cT t0] > 0 for all c = 0, (∗) 
So, with t0 = 0, and c = u (= 0), it must be that for some δ > 0, 

P0(u
T T (X ) > δ) > 0. o ηT 

mk 
T (x)A(ηmk ) = log[ e h(x)dx ] → ∞ =⇒ lx (ηmk ) → −∞ 
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Proof (continued)
 

Case 2: λmk → λ, and umk → u, with η∗ = λµ  ∈ E ./ 
TηT T (x)	 u T (x)mk	 

λmk mklim e h(x)dx = lim E0[e ] 
k→∞ k→∞
 

λu
= E0[e
TT (X )] = log A(η∗), 

But A(η∗) = +∞ since η∗  ∈ E = {η : A(η) < ∞}. So o ηT T (x)A(ηmk ) = log[ e	 mk h(x)dx ] → ∞ 
=⇒ lx (ηmk ) → −∞ 

We can conclude: 

Under both Cases 1 and 2, limk lx (ηmk ) → −∞ so it must be 
that lx (ηn) → −∞. By Lemma 2.3.1 it must be that η̂(x) 
exists. 

By Theorem 1.6.4, the mle η̂(x) is unique and satisfies: 
• 

A(η) = E (T (X ) | η) = t0. (∗∗) 
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Proof (continued) 

Nonexistence: 
(b). Suppose no t0 ∈ Rk satisfies: 

P[cT T (X ) > cT t0] > 0 for all c = 0. (∗) 
Then, with t0 = 0, there exists a c = 0 such that 

P[cT T (X ) > 0] = 0 
equivalently 

P0[c
T T (X ) ≤ 0] = 1. 

It follows that: 
Eη[c

T T (X )] ≤ 0 for all η. 
If η̂ exists, then it solves Eη(T (X )) = t0 = 0 which means there is 
an η such that 

Eη(c
T T (X )) = 0. But for this η, it would have to be that 

Pη(c
T T (X ) = 0) = 1. 

and this contradicts the assumption that the family is of rank k. 
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Corollary 2.3.1 Under the conditions of Theorem 2.3.1, if 
CT is the convex support of the distribution of T (X ). 

then η̂(x) exists and is unique if and only if 
t0 = T (x) ∈ C 0 , the interior of CT .T 

Proof: A point t0 is in the interior of CT if and only if there exist 
points in C 0 on either side of it; that is, for all d = 0: T 

{t : dT t > dT t0} ∩ C 0 = ∅T 
and 

{t : dT t < dT t0} ∩ C 0 = ∅T 
and that the two sets are open. 
It follows that condition (a) of Theorem 2.3.1 is satisfied: 

P[cT T (X ) > cT t0] > 0 for all c = 0. 
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Example 2.3.1 The Gaussian Model. 

X1, . . . , Xn iid N(µ, σ2), with µ ∈ R, and σ2 > 0   
X 2 
iT (X ) = (
 n Xi ,

n ) is the natural sufficieint statistic.
 1 1 

CT = R × R+ . 

The density of T (X ) can be derived for n = 1, 2, . . . 

= C 0
 

exists (and thus of θ = (µ, σ2).
 

For n = 1, T (X ) is a parabola in x1 and T (x) is a point. So 

TFor n ≥ 2, CT and the mle of the natural parameter η
 

C 0 = ∅ and the MLE does not exist.
 
(µ̂ = X1 and the likelihood becomes unbounded as σ̂ → 0+
 
T 

.)
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Theorem 2.3.2 Suppose the conditions of Theorem 2.3.1 hold and 
T (k × 1) has a continuous case density on Rk . Then the MLE η̂ 
exists with probability 1 and necessarily satisfies (2.3.3) 

• 

A(η) = E (T (X ) | η) = t0. (∗∗) 
Proof. The boundary of a convex set necessarily has volume 0. If 
T has continuous density PT (t), then o 

P(T ∈ ∂CT ) = ∂CT 
pT (t)dt = 0. 

By Corollary 2.3.1,T (X ) is in the interior of CT with probability 1 
and in that case, the MLE exists and is unique. 
Notes: 

Generalized method-of-moments principle. For exponential 
families, the MLE solves 

Eη[T (X )] = t0, for η given T (x) = t0,
 
which matches moments because:
 

• 

A(η).Eη[T (X )] = 
MLEs are generally best; the better method-of-moments
 
estimators are often those that are equivalent to MLEs.
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Example 2.3.2 Two-Parameter Gamma Family. 
X1, . . . , Xn are iid Gamma(p, λ) random variables: 

λp p−1 −λxx e
p(x | p, λ) = 

Γ(p) 
where x > 0,, p > 0,, λ > 0. 

Natural Sufficient Statistic: T = ( n 
1 log Xi , 

n 
1 Xi ) 

Natural Parameters: η = (p, −λ) 

A(η1, η2) = n(log [Γ(η1) − η1log(−η2)] 

The likelihood equations: 
Γi 

Γ 
(p̂) − log λ̂ = log (X ) 

p̂ 

λ̂ 
= X 

where log(X ) = n 
1 log Xi /n. 

To apply the theorems we need to demonstrate that the 
distribution of T has a continuous density. 
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Example 2.3.3 Multinomial Trials. Recall: 
n θx1 θx2 xq qp(x | θ) = · · · θq , xi ≥ 0, 1 xi = n x1!···xq ! 1 2
 
n
 = × exp{log(θ1)x1 + · · · + log(θq−1)xq−1x1!···xq ! 

q−1 q−1 +log(1 − θj )[n − xj ]}1 1 
q−1 = h(x)exp{ ηj (θ)Tj (x) − B(θ)}j=1 
q−1 = h(x)exp{ ηj Tj (x) − A(η)}j=1 

where: 

nh(x) = x1!···xq ! 

η(θ) = (η1(θ), η2(θ), . . . , ηq−1(θ)) 

ηj (θ) = log(θj /(1 − q−1 
θj )), j = 1, . . . , q − 11 

T (x) = (X1, X2, . . . , Xq−1) = (T1(x), T2(x), . . . , Tq−1(x)). 

q−1 q−1B(θ) = −nlog(1 − θj ) and A(η) = +nlog(1 + eηj )j=1 j=1 

• q−1 
e ηj θj /(1− θk )A(η)j = n � ηj 

= n � 1 � = nθjq−1 q−1 q−11+ e 1+ θk /(1− θk )j=1 1 1 

A(η)i,j = −nθi θj , (i = j) and A(η)i,i = nθi (1 − θi ), 
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Multinomial Example (continued)
 

Note: MLE for θ exists only if Xi > 0 for all i = 1, . . . , q 
Argument: 

The condition of Theorem 2.3.1 (2.3.2) for existence of MLE 
is
 

P[cT T (X ) > cT t0] > 0, for all c = 0.
 

For any given c , decompose: 
cT t0 = ci [t0]i + cj [t0]j 

ci >0 cj <0 

To have positive probability that cT T (X ) is larger than cT t0, 
we need to have: 

T (x)i < n for i : ci > 0 
and
 

T (x)i > 0 for j : cj < 0
 

Varying c leads to the condition that 0 < Xi < n for all i . 

21 MIT 18.655 Methods of Estimation II 

∑ ∑
6=



 

Methods of Estimation II Maximum Likelihood in Multiparameter Exponential Families 
Algorithmic Issues 

Corollary 2.3.2 Consider the exponential family: 
k 

p(x | θ) = h(x)exp{ cj (θ)Tj (x) − B(θ)}, x ∈ X , θ ∈ Θ. 
j=1 

Let C 0 be the interior of the range of (c1(θ), . . . , ck (θ))
T 

Let x be the observed data. 

If the equations 
EθTj (X ) = Tj (x), i = 1, . . . , k 

have a solution 
θ̂(x) ∈ C 0 , 

then θ̂(x) is the unique MLE of θ. 
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Bisection Method: Root Solution to Equation 
Consider the problem of solving: f (x) = 0 for x . 

Function f (·): continuous for x ∈ (a, b) 
f (a+) < 0 and f (b−) > 0 
Intermediate value theorem of calculus: 

∗∃x ∈ (a, b) : f (x ∗) = 0. 
∗If f (·) is strictly increasing then x is unique. 

Bisection Algorithm 

1 

2 

Find x0 < x1 : f (x0) < 0 < f (x1). 
Evaluate f (x∗) for x∗ = (x0 + x1)/2. 

3 If f (x∗) < 0, replace x0 with x∗ or 
if f (x∗) > 0, replace x1 with x∗ 

4 Go back to step 2 until |x1 − x0| < E for some fixed E > 0 
5 Return x∗ as the approximate solution (|x∗ − x ∗| < E) 
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Theorem 2.4.1 

p(x | η) is the density/pmf function of a one-parameter 
canonical exponential family generated by (T (X ), h(x)) 
The conditions of Theorem 2.3.1 are satisfied: 

Natural parameter space E is open 
Family is of rank k 

T (x) = t0 ∈ C 0 , the interior of convex support for p(t | η),T 
the density/pmf of T (X ). 

The unique MLE η̂ (by Theorem 2.3.1) may be approximated by 
the bisection method applied to 

f (η) = E [T (X ) | η] − t0. 
Proof 

f (η) is strictly increasing because f i(η) = Var [T (X ) | η] > 0.
 
f (η) is continuous .
 
The existence of the MLE η̂ implies that with E = (a, b), it
 
must be that
 

f (a+) < 0 < f (b−). 
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Other Algorithms
 

Coordinate Ascent 

Line search: coordinate by coordinate 

Newton-Raphson Algorithm 

Iterative solution of quadratic approximations of f (η). 

Expectation-Maximization (EM) Algorithm 

Problems where likelihood function easily maximized if 
observed variables extended to include additional variables 
(missing data/latent variables). 
Iterative solution alternates: 

E-Step: estimating unobserved variables given a 
preliminary estimate η̂j 

M-Step: maximizing the full-data likelihood to obtain 
an updated estimate η̂j+1 
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EM Algorithm
 

Preliminaries 

Complete Data: X ∼ Pθ, with density p(x | θ), θ ∈ Θ ⊂ Rd . 

Log likelihood: lp,x (θ) easy to maximize. 
Suppose the distribution is a member of the canonical 
exponential family with 

Natural parameter η(θ)
 
Natural sufficient statistic: T (X ) = (T1(X ), . . . , Tk (X ))
 

• 

E [T (X ) | η] = A(η)
 
Given T (x) = t0, the mle for η is the solution to:
 

• 

A(η) = E (T (X ) | η) = t0. (∗∗) 

Incomplete Data / Observed Data:
 
S = S(X ) ∼ Qθ with density q(s | θ).
 

Log likelihood: lq,s (θ) is hard to maximize. 
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EM Algorithm 

Example 2.4.5 Mixture of Gaussians. Let S1, . . . , Sn be iid P with 
density 

p(s | θ) = λφσ1 (s − µ1) + (1 − λ)φσ2 (s − µ2) 
where 

λ : 0 ≤ λ ≤ 1. 

φσ(·) is the density of a Gaussian distribution with mean zero 
and variance σ2 , i.e., φσ(s) = 1 φ(s/σ)) where φ(·) is the σ 
density of a standard Gaussian distribution (mean 0 and 
variance 1). 

θ = (λ, µ1, σ1
2, µ2, σ2

2) 

The {Si } are a sample from a Gaussian-mixture distribution which 
is N(µ1, σ1

2) with probability λ and is N(µ2, σ2
2) with probability 

(1 − λ). 
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EM Algorithm: Gaussian Mixture 

Consider adding to {Si } the variables (Δ1, . . . , Δn) indicating 
whether or not case i came from the first Gaussian distribution 
(Δi = 1) or the second (Δi = 0). The complete data are thus 

{Xi = (Δi , Si ), i = 1, . . . , n}
and 

Δi are iid Bernoulli(λ), i.e., P(Δi = 1) = λ = 1 − P(Δi = 0). 
Given Δi , the density of Si is
 

p(s | Δi , θ) = φσ∗ (s − µ∗)
 
where
 

µ∗ = Δi µ1 + (1 − Δi )µ2, and
 
σ∗ 
2 = Δi σ1

2 + (1 − Δi )σ2
2 .
 

Consider inference about θ = (λ, µ1, σ1
2, µ2, σ2

2) observing 
S(X) = (S1, . . . , Sn) 

rather than 
X = (X1, . . . , Xn) = ((Δ1, S1), . . . , (Δn, Sn)) 
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EM Algorithm: Theoretical Basis 

For complete data X and incomplete data S(X ), the 
complete-data density p(x | θ) satisfies 

p(x | θ) = q(s | θ)r(x | s, θ) 
where 

q(s | θ) is the density of S(X ) = s given θ, and 

r(x | s, θ) is the density of the conditional distribution of X 
given S(x) = s, and θ. 

Claim 1: The likelihood ratio of θ to θ0 based on S(X ) is the 
conditional expectation of the likelihood ratio based on X given 
S(X ) = s and θ0.   

q(s | θ) p(x | θ) 
= E |S(X ) = s, θ0

q(s | θ0) p(x | θ0)
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EM Algorithm: Theoretical Basis
 

Proof of Claim 1: 

p(x | θ) q(s | θ)r(x | s, θ)
E |S(X ) = s, θ0 = E |S(X ) = s, θ0 

p(x | θ0) q(s | θ0)r(x | s, θ0)

q(s | θ) r(x | s, θ)
 

= · E |S(X ) = s, θ0 
q(s | θ0) r(x | s, θ0)
q(s | θ) r(x | s, θ) 

= · r(x | s, θ0) 
q(s | θ0) r(x | s, θ0){x :S(x)=s}
q(s | θ) 

= · [r(x | s, θ)] 
q(s | θ0) {x :S(x)=s}
q(s | θ) 

= . 
q(s | θ0) 
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EM Algorithm: Theoretical Basis 

Claim 2: Suppose θ = θ0 is not the MLE θ̂(S) for S(X ) = s. As a 
function of θ, the likelihood ratio based on S at θ versus θ0 

q(s | θ) 
q(s | θ0) 

will increase (above 1) for θ∗ maximizing: e m  
p(x |θ)J(θ | θ0) = E log | S(X ) = s, θ0 (∗ ∗ ∗)p(x |θ0) 

Proof: Substitute p(x | θ) = q(s | θ)r(x | S(X ) = s, θ) in (∗ ∗ ∗) 
to give 

q(s | θ) r(X | s, θ)
J(θ | θ0) = log + E log | S(X ) = s, θ0 

q(s | θ0) r(X | s, θ0) 
By Jensen’s inequality, since log() is a concave function: n 

r(X | s, θ) r(X | s, θ)
E log | S(X ) = s, θ0 ≤ log E | S(X ) = s, θ0

r(X | s, θ0) r(X | s, θ0) 
≤ log (1) = 0 

q(s | θ∗)
It follows that: log ≥ J(θ ∗ | θ0) > 0, since J(θ0 | θ0) = 0. 

q(s | θ0) 
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EM Algorithm: Theoretical Basis 

Claim 3: Under suitable regularity conditions, 
∂ log q(s | θ), the gradient of the log likelihood for the ∂θ 
incomplete data S , and 
∂ J(θ | θ0), the gradient of the conditional expectation of the ∂θ 
complete-data log likelihood ratio given θ0 

are identical when evaluated at θ = θ0. 
Proof: From Claim 1: 

q(s | θ) p(x |θ)= E |S(X ) = s, θ0 
q(s | θ0) p(x |θ0) e  m q(s | θ) p(x |θ)∂ ∂ =⇒ ∂θ [ q(s | θ0)

] = ∂θ E p(x |θ0) |S(X ) = s, θ0e m 
∂ ∂ p(x |θ)=⇒ ∂θ [log q(s | θ)]|θ=θ0 = E ∂θ p(x |θ0) |S(X ) = s, θ0[  

∂ = E [log (p(x | θ))]|S(X ) = s, θ0 |θ=θ0∂θ 
∂ = (E [log (p(x | θ))]|S(X ) = s, θ0]) |θ=θ0∂θ 
∂ 
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EM Algorithm: Practical Implementation 

Theorem 2.4.3. Suppose {Pθ, θ ∈ Θ} is a canonical exponential 
family generated by (T , h) satisfying (conditions of Theorem 
2.3.1): 

The natural parameter space E is open 
The family is of rank k. 
For complete data X , if T (X ) = t0 ∈ Rk , and 

P[cT T (X ) > cT t0] > 0, for all c = 0. 
and the MLE η̂ exists, is unique and the solution to the 
equation:

• 

A(η) = E [T (X ) | η] = t0. 

Let S(X ) be any statistic (incomplete-data version of X ), then the 
EM Algorithm given S(X ) = s consists of: 

1 Initialize η = η0 

2 Solve A
• 

(η) = E [T (X ) | η0, S(X ) = s] for η∗ 

3 Replace η0 with η∗, and return to step 2. 
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EM Algorithm: Theorem 2.4.3 

Theorem 2.4.3 (continued). If 

The sequence {η̂n} obtained from the EM algorithm is 
bounded. 

• 

The equation A(η) = E [T (X ) | ηS(X ) = s] has a unique 
solution 

Then the limit of η̂n exists and is a local maximum of q(s, θ). 
Proof: [

J(η | η0) = E (η − η0)T T (X ) − [A(η) − A(η0)] | S(X ) = s, η0 

= (η − η0)T E [T (X ) | S(X ) = s, η0] − [A(η) − A(η0)] 
∂So, [J(η | η0)] = 0 yields the equation: ∂η 

• 

E [T (X ) | S(X ) = s, η0] = A(η) 
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EM Algorithm: Gaussian Mixture
 

For the Gaussian Mixture (Example 2.4.5) derive the EM
 
Algorithm.
 
The complete-data likelihood of Xi = (Δi , Si ) for
 
θ = (λ, µ1, σ1

2, µ2, σ2
2) is:
 

p(Δi , Si | θ) = p(Δi | θ)p(Si | θ, Δi )
 
= λΔi p(Si | θ, Δi )

Δi (1 − λ)(1−Δi )p(Si | θ, Δi )
(1−Δi )
 

λ = exp{Δi log ( ) − [−log(1 − λ)]1−λe m e m 
µ1 1 S2 − 1 µ1+Δi Si + − 

2 

+ log (2πσ2) + 
σ2 2σ2 i 2 σ2 1 
1 e1 m 1 e m 

µ
(1 − Δi ) 

µ2 Si + − 1 S2 − 1 2
2 

+ log (2πσ2 
σ2 2σ2 i 2 σ2 2) 
2 2 2 

} 
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EM Algorithm: Gaussian Mixture 

Complete-Data Natural Sufficient Statistic and Expectation:
 ⎤⎡⎤⎡ 
Δi λ 

T(Xi ) = 

⎢⎢⎢⎢⎣ 

Δi Si 
Δi S

2 
i 

(1 − Δi )Si 

⎥⎥⎥⎥⎦ 
and E [T(Xi ) | θ] = 

⎢⎢⎢⎢⎣ 

λµ1 
2λ(σ1

2 + µ1) 
(1 − λ)µ2 

⎥⎥⎥⎥⎦ 
2(1 − Δi )S

2 (1 − λ)(σ2
2 + µ2)i 

Compute the MLE θ̂ by solving 
nT(X) = T(Xi ) = nE [T (Xi | θ)] (∗)1 

EM Algorithm: 

1 

2 

3 

Initialize estimate θ̃n, n = 1 

Given preliminary estimate θ̃n solve (∗) for θ∗ using 
˜E [T(X) | S(X ), θ = θn] in place of T(X).
 

Replace θn with θn+1 = θ∗ and return to step 2.
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Finite Mixture Model
 

S1, S2, . . . , Sn i .i .d . with density p(si | θ), si ∈ Rd . 
m p(si | θ) = λj φj (si ) where j=1 

{φ1(·), . . . , φm(·)} are densities of mixture 
components 

m{λ1, . . . , λm}: λj > 0, and λj = 1.j=1 
are component probabilities of the model 

θ = (λ1, . . . , λm, φ1, . . . , φm), (mixture model parameter) 

Assume every φj ∈ P, a given family of models 
E.g. 1: Gaussian Mixtures 

P = {N(µ, σ2), (µ, σ2) ∈ R × R+}
E.g. 2:	 p-parameter family given by φ(· | ·) 

P = {φ(· | ξ), ξ ∈ E ⊂ Rp}
E.g. 3: Conditionally i .i .d . coordinates of SiodP = {φ(si ) = f (si ,k ), non − parametric f }.k=1 
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Complete Data Augmentation for Finite Mixtures 

Observed Data: S1, S2, . . . , Sn 

Missing Data: Z1, Z2, . . . , Zn, which are i .i .d . 
Multinomial(N = 1, probs = (λ1, . . . , λm)), i.e., 

Zi = (Zi ,1, Zi ,2, . . . , Zi ,m) 
Zi ,j = 1 if case i drawn from component j 

(otherwise 0) 
Zi ,j ∈ {0, 1} (Bernoulli) 
P(Zi ,j = 1) = λj , 

mλj > 0, j = 1, . . . , m, and λj = 1.j=1 
Complete Data: X1, X2, . . . , Xn 

Xi = (Si , Zi ), i = 1, . . . , n with density 
p(xi | θ) = p(Si , Zi | θ) 

= p(Zi | θ)p(Si | Zi , θ) 
m ]

=	 j=1 IZi,j p(Zi ,j = 1 | θ)p(Si | Zi ,j = 1, θ) 
m = IZi,j λj φj (Si )j=1 

with: θ = (λ1, . . . , λm, φ1, . . . , φm). 
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EM Algorithm for Finite Mixtures 

Log-Likelihood of Observed Data S = (S1, . . . , Sn) 
n n mCS (θ) = log p(Si | θ) = log[ λj φj (Si )]i=1 i=1 j=1 

Conditional Expectation of Complete-Data Log-Likelihood o -nJ(θ | θ(t)) = E log[p(Xi | θ) | S , θ(t)]i=1 
EM Algorithm 

Generate sequence of parameter estimates {θ(t), t = 1, 2, . . .} 

Initialize θ(t) for t = 1. 

Given θ(t), generate θ(t+1) as follows: 
E-Step: Compute J(θ | θ(t)). 
M-Step: Set θ(t+1) = argmaxθJ(θ | θ(t)). 

Repeat previous step until successive changes in θ(t) indicate 
convergence 

40 MIT 18.655 Methods of Estimation II 

∑ ∑ ∑
∑



                 

Methods of Estimation II Maximum Likelihood in Multiparameter Exponential Families 
Algorithmic Issues 

E-Step in EM Algorithm for Finite Mixtures
 

Conditional Expectation of Complete-Data Log-Likelihood o	 -nJ(θ | θ(t)) = E log[p(Xi | θ)] | S , θ(t) i=1e	 m 
n m = E i=1 log[ j=1 IZi,j λj φj (Si )] | S , θ(t) e	 m 
n m = E i=1 j=1 IZi,j log[λj φj (Si )] | S , θ(t) o	 -n m = i=1 j=1 E IZi,j log[λj φj (Si )] | S , θ(t) o -n m =	 i=1 j=1[E IZi,j | S , θ(t) ] log[λj φj (Si )] 

n m = [P(Zi ,j = 1 | S , θ(t))] log[λj φj (Si )]i=1 j=1
n m (t)

=	 log[λj φj (Si )]i=1 j=1 pi ,j 
m n (t)

= [ log(λj )( )]j=1 i=1 pi ,j 
m n (t)

+ [ ( log[φj (Si )])]j=1	 i=1 pi ,j 
(t) (t)

(t) λ φ (Si )
where p = P(Zi ,j = 1 | S , θ(t)) =  m 

j j 
i ,j	 λj ∗ j(t)φj ∗ j(t)(Si )j∗=1 
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M-Step in EM Algorithm for Finite Mixtures 

Solve for θ = (λ1, . . . , λm, φ1, . . . , φm) maximizing o -nJ(θ | θ(t)) = E log[p(Xi | θ)] | S , θ(t) i=1 
m n (t)

= [ log(λj )( )]j=1 i=1 pi ,j 
m n (t)

+ [ ( log[φj (Si )])]j=1 i=1 pi ,j 
(t) (t)

(t) λj φj (Si )
where p = P(Zi ,j = 1 | S , θ(t)) = mi ,j λj∗ j(t)φj∗ j(t)(Si )j ∗ =1 

(t+1) 1 n (t)
M-Step for λ1, . . . , λm: λ = j n i=1 pi ,j 

(t)
(same formula for all φ )j 

M-Step for φ1, . . . , φm: maximize sum of case-weighted 
conditional-log-likelihoods of the φj (·) 

m n (t)
[ ( log[φj (Si )]) ] j=1 i=1 pi ,j 
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