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Maximum Likelihood in Exponential Families

Issues:

@ Existence of MLEs
@ Uniqueness of MLEs
Significant Feature of Exponential Family of Distributions

@ Concavity of the log likelihood

h(n) = log[p(x | )],
for all x € X, where 1 is the natural parameter in the

canonical representation.
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Existence and Uniqueness Theorem

Proposition 2.3.1 Suppose X ~ P € {Py,0 € ©} with

@ © C RP, an open set.

@ The corresponding densitites of Py, p(x | §), are such that for
any x € X the likelihood function
1x(0) = log[p(x | §)] is strictly concave in

o /x(0) — —o0 as § — 0O, where )
00 = © — O, the boundary of ©, defined using ©,
the closure of © in [—o0, 00].

Then:
o The MLE A(x) exists.
e The MLE 6(x) is unique.
Proof:
@ Apply properties of convexity of sets/functions.
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Convexity

Definitions (Section B.9)

o A subset S C R¥ is convex if for every x,y € S,
ax+(l—a)ye S, foralla:0<a<1.
o for k =1, convex sets are intervals (finite or infinite).
o for k > 1, spheres, rectangles (finite or infinite) are convex.
@ xg € S, the interior of the convex set S if and only if
{x:d"x>d"xo} NS°# ()
and
{x:d"x <dTxo} NS® # ()
for every d # 0.
@ A function g : S — R is convex if
glax+ (1 —a)y) < ag(x) + (1 —a)g(y)
forallx,ye S,andall a: 0 < a<1.
o A function g : S — R is strictly convex if

glax+ (1 - a)y) < ag(x) + (1 — a)g(y)
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Convexity

Properties (Section B.9)
@ A convex function is continuous on S°
@ For k =1, if g” exists:
o g'’(x)>0,x€S < g(-) is convex.
o g’(x)>0,x€eS < g() is strictly convex.
@ For g(-) : S — R convex and fixed x,y € S,
h(a) = g(ax + (1 — a)y) is convex in «, for

0<a<l. ,
o When k > 1, if 26-X)
Ox;0x;

0g*(x)
iuj > 0,
%,: 1t oxi0x; —
for allu = (u1,...,ux)” € Rk and x € S.
e A function h: S — R is (strictly) concave if

g = —h is (strictly) convex.

exists, convexity is equivalent to
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Convexity

Jensen’s Inequality If

e S C Rk is convex and closed
@ g is convex on S.
@ U a random vector with sample space Y = S,
P[U € S] =1 and E[U] finite
Then
E[U] e S
E[g(U)] exists
Elg(U)] > g(E[U])
E[g(U)] = g(E[V]) if and only if
P(g(U)=a+bTU)=1.
for some fixed a € R and b(k x 1) € R,
If g is strictly convex, then
E[g(U)] = g(E[V)) if and only if P(U =c¢) =1,
for some ¢ € Rk.

e 6 o
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Existence and Uniqueness of MLE

Proof of Proposition 2.3.1

@ Because /4(f) : © — R is strictly concave, it follows that it is
continuous on ©.

o Because /() — —oo as § — 9O, the mle f(x) exists.
This follows from
Lemma 2.3.1:

o Suppose the function / : © — R where © C RP is open and /
is continuous.

o Iflim{/(0): 0 — 0O} = —oo, then
there exists § € © such that: /() = max{/(0) : 6 € ©}
o Suppose #; and > are distinct MLEs: /X(él) = IX(éQ) and
6, #* 6. By the strict concavity of I,
(301 + 305) > L1(61) + 11(82). > 1(61)
but this contradicts 6; being an MLE.
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MLEs for Canonical Exponential Family

Theorem 2.3.1 Suppose P is the canonical exponential family
generated by (T, h), and that

@ The natural parameter space £ is open

@ The family is of rank k.

(a). If to € Rk satisfies:
Plc"T(X)>cTtg] >0 forall c #0, (%)
then the MLE 4 exists, is unique,
and is a s.olution to the equation
A(n) = E(T(X) [n) =to. (%)
(b). If to € R does not satisfy (%), then the MLE does not exist
and (%) has no solution.
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Recall canonical exponential family generated by (T, h):

o Natural Sufficient Statistic: T(X) = (T1(X),..., Te(X))T
o Natural Parameter: n = (1n1,...,mk)"

@ Density function
p(x | m) = h(x)exp{TT (x)n) — Aln)}
where A(-) is defined to normalize the density:
A(n) = log [ -+ [ h(x)exp{TT (x)n}dx
or
A(n) =log[  h(x)exp{T T (x)n}]
XEX
o Natural Parameter space: € = {n € R¥ : —00 < A(n) < co}.
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Proof.

@ We can suppose that h(x) = p(x | no) for some reference
no € E.

o The canonical family generated by (T(x), h(x)) with natural
parameter 1 and normalization term A(7), is identical to the
family generated by (T(x), ho(x)) with ho(x) = p(x | o) and
natural parameter n* and normalization term A*(n*).

° N =n—10

o A*(n*) = A(n" +no) — Almo)

(Problem 1.6.27)

@ We can also assume that typ = T(x) = 0. (N.B. x is fixed)

e The class P is the same exponential family generated by
T*(X) = T(X) — to.

@ The likelihood function for x is

I(n) = log[p(x | n)] = —A(n) + log[h(x)]
since T(x) =0.
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Proof (continued)

Claim: If {9} has no subsequence converging to a point in &,
then for any convergent subsequence {nm, } :

liMk—so0 Ix(Nm, ) = —o0.
@ Any sub-sequence that has a limit is on the boundary of &,
outside £.

@ The existence of the MLE 7j(x) is guaranteed by Lemma 2.3.1.

Proof of Claim: Let {n,} be a sequence with no subsequence
converging to a point in £ and let {nm,, } be convergent.
Express the 7, in terms of scalars A\, and unit k-vectors u, € Rk:
Nm = AmUm,
where Uy = nm/|Mm| and Am = [17m]
Two cases to consider:
Case 1: )\, — 00, and upm, > u  (|1m,| = 00)
Case 2: \p,, = A\, and up,, — u (Nm,— A € E)
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Case 1: )\, — o0, and upy, — u. Writing Eg for E[- | ng], and Py
for Py, then for some § > 0:

k—o0

lim /e";kT(X)h(X)dx =

2
>

k“—>moo Eo[e’\’"k U, T(x)]

Jlim Eole?n T s 1({ul, T(X) > 0})]
Jim_ e* O Eo[1({u), T(X) > 6})]

kli_>moo e)‘"’k‘sPo[{u,Zk T(X) > d}]

Jim_ e O Py[{u” T(X) > 6}]

+00

The first inequality follows because under condition (@) of the theorem,
we are given that ty € R¥ satisfies:
PlcTT(X) > cTtg] >0 forall c#0, (x)
So, with tg =0, and ¢ = u (# 0), it must be that for some § > 0,
Po(uT T(X) > 4) > 0.
A(1m,) = log[[ & W h(x)dx] = 00 = k() = =00
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Proof (continued)

Case 2: \p,, = A, and up, — u, with n* = Ap € €.
lim / e T h(x)dx = lim o[ m T()]
k—00 k—o0

= M TX)] = log A(n*),
But A(n*) = +oo since n* ¢ £ ={n: A(n) < }. So

A(nm,) = log[[ €™ T@h(x)dx] — oo
= L(m,) — —o0

We can conclude:

e Under both Cases 1 and 2, limy I(7m,) — —o0 so it must be
that /(7,) — —oo. By Lemma 2.3.1 it must be that #j(x)
exists.

@ By Theorem 1.6.4, the mle 7j(x) is unique and satisfies:

A(n) = E(T(X) [n) =to.  (+*)
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Proof (continued)

Nonexistence:
(b). Suppose no ty € Rk satisfies:
PlcTT(X) > cTtg] >0forall c #0. (x)
Then, with ty = 0, there exists a ¢ # 0 such that
P[cTT(X)>0]=0
equivalently
Po[cTT(X) <0] =1.
It follows that:
E,[cT T(X)] <0 for all 7.
If 7} exists, then it solves E,(T (X)) = to = 0 which means there is
an n such that
E,(cT T(X)) = 0. But for this 7, it would have to be that
P,(cTT(X)=0)=1.
and this contradicts the assumption that the family is of rank k.
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Corollary 2.3.1 Under the conditions of Theorem 2.3.1, if
Cr is the convex support of the distribution of T(X).
then 7j(x) exists and is unique if and only if
to = T(x) € CY, the interior of Cr.
Proof: A point tp is in the interior of Ct if and only if there exist
points in C% on either side of it; that is, for all d # 0:
{t:dTt>dTt} N CL #0
and
{t:dTt<dTt} N CL #0
and that the two sets are open.
It follows that condition (a) of Theorem 2.3.1 is satisfied:
PlcTT(X) > ctg] > 0 for all ¢ # 0.
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Example 2.3.1 The Gaussian Model.
® Xi,...,X,iid N(u,0?), with 4 € R, and 02 > 0
o T(X)= (327 X;,> 1 X?) is the natural sufficieint statistic.
e Cr=RxR™.
@ The density of T(X) can be derived for n=1,2,...

@ Forn>2 Cr= C? and the mle of the natural parameter 7
exists (and thus of § = (u, 0?).

For n =1, T(X) is a parabola in x; and T(x) is a point. So
C% = 0 and the MLE does not exist.

(i = X1 and the likelihood becomes unbounded as 6 — 07.)
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Theorem 2.3.2 Suppose the conditions of Theorem 2.3.1 hold and
T (k x 1) has a continuous case density on RX. Then the MLE #
exists with proba?ility 1 and necessarily satisfies (2.3.3)
A(n) = E(TOX) [ 1) = to. (+4)

Proof. The boundary of a convex set necessarily has volume 0. If
T has continuous density Pr(t), then

P(T € 8CT) = fBCT pT(t)dt =0.
By Corollary 2.3.1, T(X) is in the interior of Ct with probability 1
and in that case, the MLE exists and is unique.
Notes:

o Generalized method-of-moments principle. For exponential
families, the MLE solves
E,[T(X)] = to, for n given T(x) = to,
which matches moments because:
E,[T(X)] = An).
@ MLEs are generally best; the better method-of-moments
estimators are often those that are equivalent to MLEs.
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Example 2.3.2 Two-Parameter Gamma Family.

Xi,...,Xp are iid Gamma(p, \) random variables:
)\po—le—)\x
p(x | p,A) = ———~—
CIp ) =)

where x > 0,, p > 0,, A > 0.
o Natural Sufficient Statistic: T = (3.7 log Xi, >_7 Xi)
e Natural Parameters: n = (p, —\)
o A(n1,m2) = n(log (1) — mlog(—2)]
@ The likelihood equations:

(p) — log A = log (X)
=X

where log(X) = "7 log X;/n.
To apply the theorems we need to demonstrate that the
distribution of T has a continuous density.

> || 1
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Example 2.3.3 I\/Iultinomial Trials. Recall:

p(X | 6) = X1| x |0X1¢9X2 . 92‘17 Xj > O, fo,- =n
= Xl!...qu x exp{log(01)x1 + - - + log(0q—1)xg—1
Hlog(1 3216l — 3 ]}
h(x)exp{>>}" ) S1i(0) Ti(x) — B(6)}
- h(x)exp{ 3771 1 Ti(x) — A(n)}
° h(x)= ﬁ
© 7(0) = (1m(0),n2(6). - - - . ng-1(9))
ni(0) = log(0;/(1 =971 0;)), j=1,...,g—1

® T(x)=(X1,Xa,...,Xq— ) = (T1(x), T2(x), ..., Tg—1(x)).
® B(0) = —nlog(1—> 7" 6;) and A(n) = +nlog(1 + Zj-’z_ll e')

Y e'li a—1lg
Al = nisier ”1+zq/E Ve z:)lek) =
(77):,1 - n9/917 ( 75./) and A(n)i,i - nei(l - 9/’),
MIT 18.655 Methods of Estimation Il
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Multinomial Example (continued)

Note: MLE for 0 exists only if X; >0 foralli=1,...,q
Argument:
@ The condition of Theorem 2.3.1 (2.3.2) for existence of MLE
is
P[c" T(X) > cTtg] > 0, for all ¢ # 0.
@ For any given ¢, decompose:
cTty = Z ci[to]i + Z Cj[to]j
c;i>0 ¢i<0
@ To have positive probability that ¢’ T(X) is larger than c to,
we need to have:
T(x)i<nfori:ci>0
and
T(x)i>0forj:¢c <0
@ Varying c leads to the condition that 0 < X; < n for all .
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Corollary 2.3.2 Consider the exponential family:
p(x | 0) = h(x exp{z ¢(0)Ti(x) — B(9)}, x € X, 0 € ©.
j=1
o Let CO be the interior of the range of (c1(f),...,ck(0))"

@ Let x be the observed data.

If the equations
E¢T;(X)=Ti(x),i=1,...,k
have a solution
f(x) € CO,
then d(x) is the unique MLE of 6.
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Bisection Method: Root Solution to Equation
Consider the problem of solving: f(x) = 0 for x.

@ Function f(-): continuous for x € (a, b)

e f(at)<0and f(b7) >0

@ Intermediate value theorem of calculus:

Ix* € (a,b) : f(x*)=0.

o If f(-) is strictly increasing then x* is unique.
Bisection Algorithm

@ Find xp < x1: f(x0) <0 < f(x1).

@ Evaluate f(x,) for x, = (xo + x1)/2.

@ If f(x.) <0, replace xp with x, or

if f(xx) > 0, replace x; with x,
Q Go back to step 2 until |x; — xp| < € for some fixed € > 0
© Return x, as the approximate solution (|x. — x*| < €)
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Theorem 2.4.1
@ p(x | n) is the density/pmf function of a one-parameter
canonical exponential family generated by (T(X), h(x))
@ The conditions of Theorem 2.3.1 are satisfied:
e Natural parameter space £ is open
o Family is of rank k
o T(x) =ty € CY, the interior of convex support for p(t | 1),
the density/pmf of T(X).
The unique MLE 7 (by Theorem 2.3.1) may be approximated by
the bisection method applied to
f(n) = E[T(X) | n] — to.
Proof
e f(n) is strictly increasing because f'(n) = Var[T(X) | n] > 0.
e f(n) is continuous .
@ The existence of the MLE 7j implies that with £ = (a, b), it
must be that
flat) <0< f(b).
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Other Algorithms

@ Coordinate Ascent

e Line search: coordinate by coordinate

@ Newton-Raphson Algorithm

o lterative solution of quadratic approximations of (7).

e Expectation-Maximization (EM) Algorithm

e Problems where likelihood function easily maximized if
observed variables extended to include additional variables
(missing data/latent variables).

e lIterative solution alternates:

E-Step: estimating unobserved variables given a
preliminary estimate );

M-Step: maximizing the full-data likelihood to obtain
an updated estimate )
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EM Algorithm

Preliminaries

o Complete Data: X ~ Py, with density p(x | §),0 € © C RC.

o Log likelihood: I, «(#) easy to maximize.

Suppose the distribution is a member of the canonical

exponential family with

o Natural parameter 7(6)
Natural sufficient statistic: T(X) = (T1(X), ..., Tk(X))
E[T(X) [ n] = A(n)
Given T(x) = ty, the mle for 7 is the solution to:
A(n) = E(T(X) [ n) = to. (%)
@ Incomplete Data / Observed Data:
S = 5(X) ~ Qy with density g(s | 6).

o Log likelihood: Igs(#) is hard to maximize.
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EM Algorithm

Example 2.4.5 Mixture of Gaussians. Let S;,...,5, be iid P with
density
p(s [ 0) = Ao, (s — p1) + (1 = A)¢o, (s — p2)
where
e A:0< L1

@ ¢,(-) is the density of a Gaussian distribution with mean zero
and variance 02, i.e., ¢5(s) = L¢(s/c)) where ¢(-) is the
density of a standard Gaussian distribution (mean 0 and
variance 1).

° 0= ()":U’lv U%,Mz,(f%)

The {S;} are a sample from a Gaussian-mixture distribution which
is N(ju1,02) with probability A and is N(p2,03) with probability
(1-=N).
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EM Algorithm: Gaussian Mixture

Consider adding to {S;} the variables (Ay,...,A,) indicating
whether or not case i came from the first Gaussian distribution
(A; =1) or the second (A; = 0). The complete data are thus
{X,': (A,’,S,‘),iz 1,...,n}
and
e A areiid Bernoulli()\), i.e., P(Aj=1)=A=1—P(A; =0).
e Given A;, the density of §; is
p(s | Ai,0) = ¢o, (5 — ps)
where
p = Ajug + (1 — Aj)pe, and
02 =N;o? +(1-A)o3.
Consider inference about 0 = (\, y1,02, u2, 03) observing
S(X) =(51,..-,5n)
rather than
X=(Xg,...,Xn) = ((A1,51),---,(An, Sn)
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EM Algorithm: Theoretical Basis

For complete data X and incomplete data S(X), the
complete-data density p(x | 6) satisfies

p(x [ 0) =a(s | O)r(x|s,0)
where

@ g(s| @) is the density of S(X) = s given 6, and
@ r(x|s,0) is the density of the conditional distribution of X
given S(x) =s, and 6.

Claim 1: The likelihood ratio of 6 to 6y based on S(X) is the
conditional expectation of the likelihood ratio based on X given
S(X) = s and 6.

q(s | 0) p(x | 0)

als100) ~© Lplx ) ) ==
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EM Algorithm: Theoretical Basis

Proof of Claim 1:

p(x | 0) B _ a(s | 0)r(x | s, 0) -
p(x | 90)|5()(<)| 0)5, 90] ( |E LC)J(S [00)r(x | 5790)|5(X) = 5,00}
_ qls _ r(x|s, B
Sl a) kA =) ’5’ (Xa)) o
_ a% r(x | s, rix | s
- q((s ||900)) {X:S%)::S} [r(x \ 5790)} (x| s,60)
q(s
- ' [r(x | s, 0)]
q(s | 0o) {X:S%):_S}
_q(s]9)
q(s | 6o)
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EM Algorithm: Theoretical Basis

32

Claim 2: Suppose 6 = 6 is not the MLE §(S) for S(X) =s. As a
function of 6, the likelihood ratio based on S at 6 versus 6

q(s [ 0)

a(s | 60)
will increase (above 1) for 8* maximizing:

J(9|9o):E[log(p(Xj'g’ ) K X)_s,eo} £ % %)
Proof: Substitute p(x | §) = q(s | O)r(x | S(X) =s,0) in (x * x)
e a(s 10 (X | 5.6)

J(6| 6o) = log ofs ‘9)+E[Iogr(X’S7’QO)\S(X):s,eo]

By Jensen's inequality, since log() is a concave function:
X X
E |ogr(|5’9)|5(x):5,go} < Iog(E [’(5’9)5()():5790])

r(X'|'s,0) r(X | s, 6)
< log(1)=0
o*
It follows that: log E || 2 ; > J(0" | 6p) > 0, since J(Bo | Bo) =
MIT 18.655 Methods of Estimation Il
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EM Algorithm: Theoretical Basis

Claim 3: Under suitable regularity conditions,

° % log g(s | 0), the gradient of the log likelihood for the
incomplete data S, and

° %J(Q | 6p), the gradient of the conditional expectation of the
complete-data log likelihood ratio given 6y

are identical when evaluated at 6 = 6.
Proof: From Claim 1:

als|0) _ B
q(s [ 6o) E[ 00)|5( ) = 590}
— HIZETN = (E[FRIs00 = s.40)
S| Vo
— Gloga(s | Dlo-ss = E|% (((XX||990))>|5(X)=5,90]
= E[Zllog (p(x | 0))]IS(X) = 5,00] lo=s,
= 2 (E llog (p(x | 0))]|S(X) = s, o)) [o=s,

= 50| 00)|o=0,
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EM Algorithm: Practical Implementation

Theorem 2.4.3. Suppose {Py,0 € ©} is a canonical exponential
family generated by (T, h) satisfying (conditions of Theorem
2.3.1):
@ The natural parameter space £ is open
@ The family is of rank k.
o For complete data X, if T(X) =ty € R¥, and
Plc"T(X) > cTtg] > 0, for all ¢ = 0.
and the MLE 1) exists, is unique and the solution to the
equation:.
A(n) = E[T(X) [ n] = to.
Let S(X) be any statistic (incomplete-data version of X), then the
EM Algorithm given S(X) = s consists of:
Q Initialize n = ng
@ Solve A(n) = E[T(X) | 10, S(X) = s] for *
© Replace ng with n*, and return to step 2.
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EM Algorithm: Theorem 2.4.3

Theorem 2.4.3 (continued). If
@ The sequence {#j,} obtained from the EM algorithm is
bounded.
@ The equation /.4(77) = E[T(X) | nS(X) = s] has a unique
solution

Then the limit of 7, exists and is a local maximum of g(s, 0).
Proof:
Jmln) = E[(n—m)" T(X)—[A(n) — Alno)] | S(X) = s, no]
= (n—m0)TE[T(X) | S(X) = s,m0] — [A(n) — A(1o)]
So, %[J(n | 70)] = 0 yields the equation:

E[T(X) | S(X) = s,10] = A(1)
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EM Algorithm: Gaussian Mixture

For the Gaussian Mixture (Example 2.4.5) derive the EM
Algorithm.
The complete-data likelihood of X; = (A;, S;) for

0 = (A, p1,0%, i, 03) is:
p(A;,Si10) = p(A;i|0)p(Si|0,A;)
Mip(S;i |6, A ,)A'(l N I=2)p(S; | 0, ;)40
— exp{log ()  [log(1— )]
J151 _ 1 2 _ 1
+A; [ 1S —I—( 20%)5, 2( 1+|20g(27rol)>}+
a5 {251 (5 o)
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EM Algorithm: Gaussian Mixture

Complete-Data Natural Sufficient Statistic and Expectation:

A A\
AiSi A1

T(X)=| AS? and E[T(X,) | 6] = | \o? + 12)
(1-A4))S (1= Nz
(1= 2957 (L= N)(03 +13)

Compute the MLE 0 by solving
T(X) = {T(X:)=nE[T(X [ 0)] (+)
EM Algorithm:
@ Initialize estimate 5,,, n=1
@ Given preliminary estimate 6, solve (*) for 6* using
E[T(X) | S(X),6 = 6,] in place of T(X).

© Replace 0, with 6,,1 = 6" and return to step 2.
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Finite Mixture Model

© 51,5,...,S, i.i.d. with density p(s; | §), s; € RY.
o p(si|0) =>""1 \j¢j(si) where
{1(), ..., ®m(-)} are densities of mixture
components
{)\1, e /\m}i )\J' > 0, and ijzl /\J' =1.
are component probabilities of the model
0=(M, .., Am, P1,. .., 0m), (mixture model parameter)
@ Assume every ¢; € P, a given family of models
E.g. 1: Gaussian Mixtures
P ={N(n,0%), (n,0%) € R x R*}
E.g. 2: p-parameter family given by (- | -)

P=A{¢(-|€),£ €€ CRP}
E.g. 3: Conditionally i.i.d. coordinates of S;

P ={¢(si) = szl f(si k), non — parametric f}.
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Complete Data Augmentation for Finite Mixtures

Observed Data: 51,5,,...,5,
Missing Data: 2y, 4o, ..., Z,, which are i.i.d.
Multinomial(N = 1, probs = (A1, ..., Am)), i.e.,
Zi=(Zix, Zin, - Zim)
Z;j = 1if case i drawn from component j
(otherwise 0)
Z;j €{0,1} (Bernoulli)
P(Zij=1) =\,
Aj>0,j=1,...,m, and Zj'":l)\j: 1.
Complete Data: Xi, Xo,..., X,
Xi=(5i,Z;), i=1,...,n with density
p(xi | 0) = p(Si,Zi|0)
= p(Zi | 0)p(Si| Zi,0) ]
D1 lz,,p(Zij=110)p(Si | Zij = 1,0)
ijzl IZi,jAj¢j(5i)
with: 0 = (A,... . Am, 01,...,Om).
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EM Algorithm for Finite Mixtures

Log-Likelihood of Observed Data S = (S1,...,S,)
s(0) =211 log p(Si | 0) = 321y log[>-q Aji(Si)]
Conditional Expectation of Complete-Data Log-Likelihood
J(O100)) = E (37, loglp(X; | 0) | S,00)])
EM Algorithm

Generate sequence of parameter estimates {G(t), t=1,2,...}
Initialize 6() for t = 1.

Given 0() generate A(t+1) as follows:

E-Step: Compute J(6 | 6(1)).

M-Step: Set 6(tt1) = argmaxyJ(6 | 6(1)).
Repeat previous step until successive changes in 0(!) indicate
convergence
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E-Step in EM Algorithm for Finite Mixtures

Conditional Expectation of Complete-Data Log-Likelihood
JO[0V) = E (37 loglp(X; | 0)] | S,00)
= B (Tl loalxa 2, 0S| 5,00)
= E(X IZ,,|°g[)‘J¢J( S Q(t)>
= Xin j"lE(/z,,log[%%( N 1S.00)
= i = TALE Iz, 1 5.09)] loglje5(Si)]
= YL X LP(Ziy =11 5,60)]log[Ng;(S)]
= YL YA ogly(5)
= (X7 log(\)(Zry A7)
+ STy logld;(S))]

A qs(* (S)
where p,(;-) =P(Z;=1|5,9 t)) STy A i@y JO(S7)
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M-Step in EM Algorithm for Finite Mixtures

Solve for 0 = (A1,..., Am, #1, ..., Pm) Maximizing

JO109) = E(X7,loglp(Xi | 0)] | S,00)
= X1, log(M)(XL 1p,‘,j))1
I (0 P log[o;(S)])]

A0l (s)
where pfj,) — P(Z,‘J =1 ’ S,H(t)) — nl 1)\1*]( *j(t)(S,-)

M-Step for A1, ..., \m: f“) 15 pY

(same formula for all qu )
M-Step for ¢1,...,¢m: maximize sum of case-weighted
conditional-log-likelihoods of the qSJ( )

[0 (27 el logle(Si)) ]
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