Minimax Procedures

MIT 18.655

Dr. Kempthorne

Spring 2016

_ ₽ ▶

Decision-Theoretic Framework Game Theory Minimax Theorems

Outline

1 Minimax Procedures

- Decision-Theoretic Framework
- Game Theory
- Minimax Theorems

э

____ ▶

Decision Problem: Basic Components

- $\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}$: parametric model.
- $\Theta = \{\theta\}$: Parameter space.
- $\mathcal{A}{a}$: Action space.
- $L(\theta, a)$: Loss function.
- $R(\theta, \delta) = E_{X|\theta}[L(\theta, \delta(X))]$

Minimax Criterion

• Two decision procedures δ_1 and δ_2 in \mathcal{D} . δ_1 is preferred to δ_2 if $sup_{\theta \in \Theta} R(\theta, \delta_1) < \sup R(\theta, \delta_2)$

$$\theta \in \Theta$$

• δ^* is **minimax** if

$$sup_{ heta \in \Theta} R(heta, \delta^*) \leq \sup_{ heta \in \Theta} R(heta, \delta)$$
 for all $\delta \in \mathcal{D}$

i.e.,

Decision-Theoretic Framework Game Theory Minimax Theorems

Outline

Minimax Procedures

• Decision-Theoretic Framework

• Game Theory

Minimax Theorems

A.

Minimax Procedures: Game Theory

Two-Person Zero-Sum Game

- Nature(N): chooses $\theta \in \Theta$, using distribution $\pi(\cdot)$.
- Statistician(S) : chooses $\delta \in \mathcal{D}$.
- Outcome of Game: Payoff paid by S to N

$$r(\pi,\delta) = \int_{\theta\in\Theta} R(\theta,\delta)\pi(d\theta)$$

Partial-Information Case I

- S chooses δ first
- *N* specifies $\pi(\cdot)$ knowing δ
- S knows that N will have knowledge of δ .

Optimal strategies:

• Given δ , N will specify π as π_{δ} :

 $r(\pi_{\delta}, \delta) = \sup r(\pi, \delta)), \quad \pi_{\delta} \text{ is least favorable to } \delta.$

• Given knowlege of \hat{N} 's strategy, S will choose δ^* :

$$r(\pi_{\delta^*}, \delta^*) = \sup r(\pi, \delta^*) = \inf \sup r(\pi, \delta)_{\mathbb{B}^{\mathsf{b}}} \quad \text{if } s \to s \in \mathbb{B}^{\mathsf{b}}$$

Game Theory Minimax Theorems

Claim: δ^* is minimax

• For any prior π and decision procedure δ

$$r(\pi,\delta) = \int_{\Theta} R(\theta,\delta)\pi(d\theta) \leq \sup_{\theta} R(\theta,\delta)$$

 Given any δ, the least-favorable prior to δ (π_δ) gives positive weight only to those θ_{*}:

$$R(heta_*,\delta) = \sup_{ heta} R(heta,\delta).$$

It follows that

$$\sup_{\pi} r(\pi, \delta) = r(\pi_{\delta}, \delta) = \sup_{\theta} R(\theta, \delta).$$

• Player S will choose
$$\delta^*$$
 such that
 $r(\pi_{\delta^*}, \delta^*) = \sup_{\pi} r(\pi, \delta^*) = \sup_{\theta} R(\theta, \delta^*)$
 $= \inf_{\delta} \sup_{\pi} r(\pi, \delta) = \inf_{\delta} \sup_{\theta} R(\theta, \delta)$

a minimax procedure.

Partial-Information Case II

- N chooses π first.
- S specifies δ knowing π .
- N knows that S will have knowledge of π .

Optimal strategies:

• Given
$$\pi$$
, S will choose the Bayes procedure δ_{π} .
 $r(\pi, \delta_{\pi}) = \inf_{\delta} r(\pi, \delta)$

• Given knowlege of S's strategy, N will choose π^* : $r(\pi^*, \delta_{\pi^*}) = \sup_{\pi} r(\pi, \delta_{\pi}) = \sup_{\pi} \inf_{\delta} r(\pi, \delta).$ π^* is the Least Favorable Prior Distribution.

Minimax Procedures: Game Theory

Theorem 3.3.1 (von Neumann). For the Two-Person Zero-Sum Game define:

• The Lower Value of the Game is

$$\underline{v} \equiv \sup_{\pi} \inf_{\delta} r(\pi, \delta)$$
• The Upper Value of the Game is

$$\overline{v} \equiv \inf_{\delta} \sup_{\pi} r(\pi, \delta)$$

If Θ and ${\mathcal D}$ are finite, then

- the least favorable π_* and minimax δ^* exist and $\underline{v} = r(\pi^*, \delta^*) = \overline{v}$
- $\delta^* = \delta_{\pi^*}$, the Bayes procedure for prior π^*
- $\pi * = \pi_{\delta^*}$, the least-favorable prior against $\delta *$

Minimax Theorems

Outline

Minimax Procedures

- Decision-Theoretic Framework
- Game Theory
- Minimax Theorems

э

A.

Minimax Theorems

Theorem 3.3.2 Suppose δ^* is such that

•
$$sup_{\theta}R(\theta, \delta^*) = r < \infty.$$

• There exists a prior π^* such that: δ^* is Bayes for π^* $\pi^*\{\theta : R(\theta, \delta^*) = r\} = 1$

Then

 δ^* is minimax.

Proof. This theorem follows from the following two propositions. **Proposition 3.3.2** π_{δ} is least favorable against δ if and only if $\pi_{\delta}\{\theta : R(\theta, \delta) = \sup_{\theta'} R(\theta', \delta)\} = 1.$ Only maximal-risk points θ get positive weight from π_{δ} **Proof:** π_{δ} is least favorable against δ iff

 $r(\pi_{\delta}, \delta) = \sup_{\pi} r(\pi, \delta) = \sup_{\theta} R(\theta, \delta),$

which is true iff the condition of the proposition is satisfied.

Decision-Theoretic Framework Game Theory Minimax Theorems

Proposition 3.3.1 Suppose the procedure δ^{**} and the prior π^{**} can be found such that

 $\begin{aligned} &\delta^{**} \text{ is Bayes for } \pi^{**} \\ &\pi^{**} \text{ is least-favorable against } \delta^{**}. \end{aligned}$

Then

$$\underline{v} = \overline{v} = r(\pi^{**}, \delta^{**})$$

and

 π^{**} is a least favorable prior δ^{**} is a minimax procedure.

Proof:

First we show that $\underline{v} \leq \overline{v}$

•
$$\inf_{\delta} r(\pi, \delta) \leq r(\pi, \delta')$$
, for all π, δ' .

$$\underline{v} \equiv \sup_{\pi} \inf_{\delta} r(\pi, \delta) \leq \inf_{\delta'} \sup_{\pi} r(\pi, \delta') \equiv \overline{v}$$

Proof (continued):

Second we show that $\underline{v} \geq \overline{v}$

By definition: $v \equiv \sup_{\pi} \inf_{\delta} r(\pi, \delta) > \inf_{\delta} r(\pi', \delta)$, for all π' 2 For $\pi' = \pi^{**}$ this gives $v > \inf_{\delta} r(\pi^{**}, \delta) = r(\pi^{**}, \delta^{**}).$ **3** By definition of π^{**} $r(\pi^{**}, \delta^{**}) = \sup_{\pi} r(\pi, \delta^{**})$ But $\sup_{\pi} r(\pi, \delta^{**}) > \inf_{\delta} \sup_{\pi} r(\pi, \delta) \equiv \overline{v}$ Outting 2 and 3 together we have: $v > \overline{v}$.

Minimax Example

Minimax Estimation of Binomial Probability (Case I)

- For a sample (X_1, \ldots, X_n) iid *Bernoulli* (θ) , $S = \sum_{i=1}^{n} X_i$ is sufficient and $S \sim Binomial(n, \theta)$.
- Relative squared-error loss:

$$L(heta, \mathbf{a}) = rac{(heta - \mathbf{a})^2}{ heta(1 - heta)}$$
 , $0 < heta < 1$.

•
$$\delta(S) = S/n = \overline{X}$$
 has constant risk
 $R(\theta, \overline{X}) = \frac{1}{\theta(1-\theta)} E[(\overline{X} - \theta)^2] = \frac{1}{\theta(1-\theta)} \times [\frac{\theta(1-\theta)}{n}] = \frac{1}{n}$

• Since
$$\overline{X}$$
 is Bayes for the prior $\theta \sim \pi = \beta(1, 1)$, it must be that \overline{X} is minimax, and $\pi = Unif(0, 1)$ is least favorable.

▲ 伊 ▶ ▲ 三 ▶

Decision-Theoretic Framework Game Theory Minimax Theorems

Minimax Example

Minimax Estimation of Binomial Probability (Case II)

- For a sample (X_1, \ldots, X_n) iid *Bernoulli* (θ) , $S = \sum_{i=1}^{n} X_i$ is sufficient and $S \sim Binomial(n, \theta)$.
- Ordinary squared-error loss:

$$\begin{array}{l} L(\theta,a) = (\theta-a)^2 \ , \ 0 < \theta < 1. \\ \bullet \ \delta^*(S) = \frac{S + \frac{1}{2}\sqrt{n}}{n + \sqrt{n}} = \frac{\sqrt{n}}{\sqrt{n+1}}\overline{X} + \frac{1}{\sqrt{n+1}}\frac{1}{2} \\ \text{has constant risk} \end{array}$$

•
$$\delta^*(S)$$
 is Bayes for $\pi = \beta(\sqrt{n}/2, \sqrt{n}/2)$

• From the theorem it follows that

 $\delta^{*}(S) \text{ is minimax, and} \\ \pi = \beta(\sqrt{n}/2, \sqrt{n}/2) \text{ is least favorable.} \\ \text{Note: as } \lim_{n \to \infty} \frac{R(\theta, \delta^{**})}{R(\theta, \overline{X})} > 1, \text{ for all } \theta \neq 1/2, \text{ and} \\ \lim_{n \to \infty} \frac{R(\theta, \delta^{**})}{R(\theta, \overline{X})} = 1, \text{ for } | \theta = 1/2.$

Decision-Theoretic Framework Game Theory Minimax Theorems

Theorem 3.3.3 Let δ^* be a rule such that $\sup_{\theta} R(\theta, \delta^*) = r < \infty$. Let $\{\pi_k\}$ be a sequence of prior distributions with Bayes risks $r_k = \inf_{\delta} r(\pi_k, \delta)$. If

$$\lim_{k\to\infty}r_k=r,$$

then

 δ^* is minimax.

Proof:

Consider any other procedure δ . It must be that $\sup_{\theta} R(\theta, \delta) \ge E_{\pi_k}[R(\theta, \delta)] \ge r_k$ Taking the limit as $k \to \infty$, it follows that $\sup_{\theta} R(\theta, \delta) \ge \lim_{k \to \infty} r_k = r = \sup_{\theta} R(\theta, \delta^*)$. Thus, δ^* is minimax. **Example 3.3.3** \overline{X} is minimax for estimating a *Normal*(θ, σ^2) mean under squared error loss.

- $R(\theta, \overline{X}) = \sigma^2/n$.
- $\pi_k = N(\eta_0, \tau^2 = k).$
- Bayes risk $r_k = \left[\frac{n}{\sigma^2} + \frac{1}{k}\right]^{-1}$.
- $\lim_{k\to\infty} r_k = \sigma^2/n$

It follows that \overline{X} is minimax.

Example 3.3.4 Minimaxity of \overline{X} in Nonparametric Model.

•
$$X_1, \ldots, X_n$$
 iid $P \in \mathcal{P}$.

•
$$\mathcal{P} = \{P : Var_P(X_i) \leq M\}$$

• Decision problem: estimate $\theta(P) = E_P(X_i)$ with squared-error loss.

Apply Theorem 3.3.3: define a sequence of prior distributions $\{\pi_k\}$ such that

$$r_k = \inf_{\delta} r(\pi_k, \delta) \to r,$$

where

$$r = \max_P R(P, \overline{X}).$$

Define π_k :

- π_k gives positive weight only to $P : Var_P(X_i) = M$. $\pi_k(\{P : Var_P(X_i) < M\}) = 0.$
- π_k gives positive weight only to $P : P = N(\mu, M)$ for some μ . $\pi_k(\{P : P \neq N(\mu, M), \text{ for some } \mu\}) = 0.$
- π_k is a Gaussian mixture of Gaussian distributions

Minimax Procedures Decision-Theoretic Framework Game Theory Minimax Theorems

• π_k is a Gaussian mixture of Gaussian distributions Let $\mu(P) = E[X_i | P]$ be the mixing parameter: $\mu \sim N(0, k)$ and $P | \mu = N(\mu, M)$

Note: the prior-predictive distribution of all X_i is N(0, M + k).

The problem is identical to Example 3.3.3 with $\sigma^2 = M$, and $\eta_0 = 0$. It follows that

$$r_k = [\frac{n}{M} + \frac{1}{k}]^{-1} \to M/n = R(P, \overline{X})$$

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.