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Unbiased Estimation

Comments on Unbiased Estimation

@ Estimation decision problem:

X ~ Py,0 € ©

0(P) = E[X | Po]

Estimation: A = x

Loss function: L:© x A — R.

Decision procedures: D= {§ : X — A}

@ Restrict estimation procedures to the subclass:

Do={0€D:E[6X)]|0] =80, forall 6 € O}.

@ Apply decision-theoretic principles to identify optimal

procedures in Dy.

Choice of Dy equivalent to choice of constraints:
@ Unbiasedness
e Linearity (in X)
e Computational algorithms (e.g., orthogonal polynomials in X,
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Unbiased Estimation

Comments on Unbiased estimation (continued)

@ Significant role of unbiasedness in survey sampling.
@ Bayes estimates are necessarily biased (Problem 3.4.20).
@ Unbiasedness not preserved under non-linear
re-parametrization (not equivariant).
@ Asymptotic unbiAasedness:
Bias?(0,)
Var[f, | 6]
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Information Inequality: Preliminaries

Definition: Regular Problem A statistical inference problem with
X ~ Py, 0 € © which satisfies the following regularity conditions:

o X ={x:p(x|6f) >0} does not depend on 6.
o Dlogp(x | 0)
a0

e For any statistic T such that E[|T(X)| | 0] < o0

5y || TGt 10| = [ 760 1ot | )]

Definition: Efficient Score Function. For a fixed 6y € ©, the
efficient score for X fi)sl (x16)
og p(x
u(X;6p) = %\9:%
Note: The magnitude of u(X;6) scales how far 6y is from QAMLE.

exists and is finite for all x € X and 0 € ©.
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The Information Inequality

Proposition The Efficient Score Function has the following
properties:
E[U(X;eo) ‘ 0= 90] = 0.
Var[u(X;00) | 0 = 6] = E([u(X;00)]% |6 =6) = 1(6).

1(0) is the Fisher information about 6 contained in X which

satisfies the following identity
_ 9?log p(X | 6o)

/(90) = Var[(u(X;Ho) ‘ 90] =E 892 ’ (90
Proof:
ép((x || g))dx = 1a
p(x
» ’9): S 50 dx = %(1):0
= 1B /p(x | 0)]p(x | 6)dx = 0

12U IO i pyase =
= E[u(x:0)|0] =
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The Information Inequality

E[u(X;6)]160] = 0

JRLE D)

f[(‘?/og[p(x | 6)] p(x | 8)dx

20 X [o) X X
[ <a/g([9,;(2|9)]p(x 10)+ 6/ g[g(g | 9)](813(89’ 9))> dx = 0

The Iast line can be written as:

f[a /og[p(xya)] |9d]+/[8/og[px\0]]z( [ 0)dx = 0

| 962

_[8loglp(x | 0)] ologlp(x | O\? )]
R L
So we have

2 o, X
1) = el o= | R o]
= Var[u(X;0) | 0]
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The Information Inequality

Proposition 3.4.1 Suppose Py is a one-parameter exponential
family with density/pmf function:

p(x | 8) = h(x)exp{n(6) T(x) — B(6)}
which has non-vanishing continuous derivative on ©. Then the
statistical inference problem for 8 given X is a regular problem.
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The Information Inequality

Theorem 3.4.1. Information Inequality

For a regular problem, let T(X) be any statistic such that
E[T(X) | 0] = (0).
Var[T(X) | 8] < oo, for all 6.

Then for all 6:

[v'(0))?
o Var[T(X)|6] > O

(1(0) is differentiable and /(6) = Fisher Information of Py).

Proof: By the conditions of a regular problem:

P'(0) = 669 (/ T(x)p(x | 9)dx>
= I (700t 1) o

= 1 (700 g logptc | O)o(x | ) ox

= E[T(X)U(X;0)|6] = Cov[T(X),U(X;0)|0]
(the last equation follows since E[U(X;6) | ] =0.)
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The Information Inequality

The theorem follows from the Cauchy-Schwarz Inequality for two
random variables:

(Cov[T(X),U(X;0) | 9]) < Var[T(X) | 0] x Var[U(X;0) | 6]
ie.,

[/ (0)) < Var[T(X) | 6] x 1(0)

Corollary 3.4.1 Suppose T(X) is unbiased estimate of # in a
regular problem, then

Var(T(X) | 0) > L

1(0)

(Cramer-Rao Lower Bound)
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The Information Inequality

Proposition 3.4.2 For a random sample X = (Xi,...,X,) from a
distribution Py with density p(x | 8) satisfying the conditions of a

regular problem. If /1(0) = E [((%[Iog p(x | 9)])2 | 9] then
1(6) =nh(0) and

[v'(0))?
Varl T(X) | 6] = =0

Proof: This follows directlly from the results above upon noting
that

UX:0) = fiog plx | )]

= %] ~flog p(xi | )

= > U(Xi;0)
By the independence of the terms,
Var[U(X;0) | 0] = Zi’ Var[U(X;; 0)] = nl(0) = 1(6).
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The Information Inequality

Theorem 3.4.2 Consider a regular problem with X ~ Py, 0 € ©,
and T*(X) is an estimator of 1(#) which is

@ Unbiased: E[T*(X) | 6] = ¢(0), for all § € ©.
@ Achieves the Cramer-Rao Low/er Bound:

Var(T*(X) | 0) = wIEZT , for all 6 € ©.
Then {Py} is a one-parameter exponential family with density/pmf:
p(x | 6) = h(x)exp{(6) T*(x) — B(9)}
Proof: From the proof of Theorem 3.4.1 for any unbiased
estimator of ¥(6),
P(0) = E[T(x \0] f T(x)p(x | 0)dx
—¢'(0) = [T(x )p(x | 9)dx
where U(x 9) dlogp(x | 6)/00
= Cov(T(X),U(X;8)]0)
= [/(0)] < /Var(T(X)]8) x Var(U(X;0) | 0)
with equality if and only if U(X;0) = a1(6) + a2(0) T(X) for some
functions a;(6) and ax(0).
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The Information Inequality

Technical Details of Proof:

@ For each 0y € ©, define
Ago = {X : U(X;eo) = 31(90) T*(X) + 22(90)}
Note: PQO(AQO) =1
(otherwise the absolute correlation would be less than 1)
e Define {0;,i =1,2,...} to be a denumerable dense subset of
©.
@ Define A*™* =N;Ag,. Then
Pp.(A**) =1, for all 6.
e Fix any two values x1, xo € A**, for which T*(x1) # T*(x2).
Solve the equations:
U(x1;0) = a1(0)T*(x1) + a2(0)
U(x2;0) = a1(0) T*(x2) + a2(0)
to obtain equations for a;(6), a2(6) as linear combinations of
U(x1;0) and U(x2;0).
Since U(x;0) is continuous in 6, so are a;(#) and ax(6).
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The Information Inequality

Technical Details of Proof (continued):

@ Since
U(x;0) = a1(0) T*(x) + a2(0), for all 6; € {6}
and both U(x;0) and a1(0) and ax(#) are continuous,
this equation must hold for all 6.
@ So A*™ = N;Ap, must equal
A* ={x: U(x;0) = a1(0) T*(x) + a2(0), for all 6 € ©}.
and P(A*) =1.
o With
U(x; 0) = 2R = 31(0)T*(x) + 22(0)
Define: n(0) = fe ai(t)dt and B(0) = —fai ax(t)dt
Then

log [2GI0)] = [1212%8p1) 1 ig — T+(x)(6) — B(),
and we have:

p(x | 0) = h(x)exp{n(0) T*(x) — B(#)}, x € A*
where h(x) = p(x | 6p) (for a fixed value 6p).
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Multiparameter Case

Definition: Regular Problem A statistical inference problem with
X ~ Py, 0 € © which satisfies the following regularity conditions:

o X ={x:p(x|0) >0} does not depend on 6.
o logp(x | 0)
a0

e For any statistic T such that E[|T(X)| | 0] < oo

o | [ TOIwtc 03| = [ 760 1ot | )1

Definition: Efficient Score Function. For a fixed 6y € ©, the

efficient score for X 5s| (x1)
og p(x
u(Xito) = “EE sy,

Note: The magnitude of u(X;0) scales how far 6y is from OmLE.
The definitions extend to vector-valued 6 immediately

exists and is finite for all x € X and 0 € ©.
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The Information Inequality

Proposition (1). The Efficient Score Function has the following
properties:
E[U(X;@o) | 0= 00] = 0.
Cov[u(X;00) | 0 =0o] = E([u(X;00)][u(X;0)]T | 6 =60)
= 1(6o).
(I1). 1(0) is the (d x d) Fisher information matrix whose elements
satisfy the following identities
[1(60)]ij = [Cov[u(X;Hbo) | bolli;
= E[[u(X;0)]i[u(X: 0)]j | 6 = o]

dlog p(X | 0) log p(X | 0)

p— E =
B 0*logp(X 10) |,

(H). If X = (Xq,...,X,) is an iid sample from X ~ Py with
Information /1(6), then
1(X) = nh(0).

MIT 18.655 Unbiased Estimation and Risk Inequalities



Unbiased Estimation and Risk Inequalities Uslbizied |Esiltiitel

The Information Inequality

Theorem 3.4.3 For a regular problem with non-singular
information matrix /(#), consider a scalar-valued statistic T(X)
estimating the scalar (), and suppose

E[T(X) | 0] = (0) .

o _ _op(0)  9y(0)

do) = wo) = Tl O
Then . .

Var[T(X) | 6] > [w(O)] " [1(0)] " [v:(0)]
Proof. For a random variable Y, and a random d-vector Z, recall
the minimum MSPE linear predictor i, (Z) of Y is given by:

pi(Z) = py +(Z —p) 27557y
where py = E[Y], nz = E[Z],

Yz7=Cov(Z)(dxd), and Xzy = Cov(Z,Y) (d x 1).

The variance of p;(Z) satisfies

Var(u(2)) = [£27]7E75 52y < Var(Y),
with equality only if Y = u;(2).
The Theorem follows setting Y = T(X) and Z = u(X;0).
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The Information Inequality

Theorem 3.4.4 For a regular problem as in Theorem 3.4.3 suppose:
T(X) = (Ti(X),..., T4(X))" € RY
E[T(X)| 0] =v(0) (dx1) vector
o _ _[0v(0),  0v(6)

Then

Var[T(X) | 6] = [D(O)]1(8)] [(6)]

(d x d) matrix

where A > B means (A — B) is postive semi-definite:
a"(A—B)a>0, forall ac R
Proof. Problem 3.4.21

Note: For 6 : E[f | 0] = 6,

»(0) = 0, and P(0) = Iy, the (d x d) identity matrix.
and
Var(6 | 6) > [1(6)] !
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The Information Inequality

Preview:

@ When X = (Xi,...,X,) corresponds to a random sample
from a population whose distribution has information /1(6) for
a single observation, the information in a sample of size n is
1(X) = nly(6)
@ As the sample size grows large such samples, optimal
estimators of parameters g(¢) are sought.

@ The Cramer-Rao Lower Bound defines the golden standard of
performance for estimators which are unbiased asymptotically.

@ Such estimators will be called asymptotically efficient.
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