Unbiased Estimation and Risk Inequalities

MIT 18.655

Dr. Kempthorne

Spring 2016

Unbiased Estimation and Risk Inequalities Unbiased Estimation

• The Information Inequality

→ < Ξ → <</p>

Unbiased Estimation

Comments on Unbiased Estimation

- Estimation decision problem:
 - $X \sim P_{\theta}, \theta \in \Theta$
 - $\theta(P) = E[X \mid P_{\theta}]$
 - Estimation: $\mathcal{A} = \times$
 - Loss function: $L: \Theta \times A \to R$.
 - Decision procedures: $\mathcal{D} = \{ \delta : \mathcal{X} \to \mathcal{A} \}$
- Restrict estimation procedures to the subclass:

 $\mathcal{D}_0 = \{ \delta \in \mathcal{D} : E[\delta(X) \mid \theta] = \theta, \text{ for all } \theta \in \Theta \}.$

 Apply decision-theoretic principles to identify optimal procedures in \mathcal{D}_0 .

Choice of \mathcal{D}_0 equivalent to choice of constraints:

- Unbiasedness
- Linearity (in X)
- Computational algorithms (e.g., orthogonal polynomials in X, Fourier series. generalized-basis series) ★ 문 ▶ 문 MIT 18.655

Unbiased Estimation

Comments on Unbiased estimation (continued)

- Significant role of unbiasedness in survey sampling.
- Bayes estimates are necessarily biased (Problem 3.4.20).
- Unbiasedness not preserved under non-linear re-parametrization (not equivariant).
- Asymptotic unbiasedness:

$$rac{Bias^2(\hat{ heta}_n)}{Var[\hat{ heta}_n \mid heta]} o 0.$$

.

Outline

Unbiased Estimation and Risk Inequalities Unbiased Estimation

• The Information Inequality

□ > < = > <

э

Information Inequality: Preliminaries

Definition: Regular Problem A statistical inference problem with $X \sim P_{\theta}, \theta \in \Theta$ which satisfies the following regularity conditions:

•
$$\mathcal{X} = \{x : p(x \mid \theta) > 0\}$$
 does not depend on θ .
• $\frac{\partial logp(x \mid \theta)}{\partial \theta}$ exists and is finite for all $x \in \mathcal{X}$ and $\theta \in \Theta$.
• For any statistic T such that $E[|T(X)| \mid \theta] < \infty$
 $\frac{\partial}{\partial \theta} \left[\int T(x)p(x \mid \theta)dx \right] = \int T(x)\frac{\partial}{\partial \theta}[p(x \mid \theta)]dx$.

Definition: Efficient Score Function. For a fixed $\theta_0 \in \Theta$, the *efficient score* for X is $u(X; \theta_0) = \frac{\partial \log p(x \mid \theta)}{\partial \theta}|_{\theta = \theta_0}$ Note: The second secon

Note: The magnitude of $u(X; \theta_0)$ scales how far θ_0 is from $\hat{\theta}_{MLE}$.

Proposition The Efficient Score Function has the following properties:

$$E[u(X;\theta_0) \mid \theta = \theta_0] = 0.$$

Var[u(X;\theta_0) \mid \theta = \theta_0] = E([u(X;\theta_0)]^2 \mid \theta = \theta_0) = I(\theta_0).

 $I(\theta)$ is the Fisher information about θ contained in X which satisfies the following identity

$$I(\theta_0) = Var[(u(X; \theta_0) \mid \theta_0] = E\left[-\frac{\partial^2 \log p(X \mid \theta_0)}{\partial \theta^2} \mid \theta_0\right]$$

Proof:

$$\int p(x \mid \theta) dx = 1$$

$$\implies \int \frac{\partial p(x \mid \theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} (1) = 0$$

$$\implies \int [\frac{\partial p(x \mid \theta)}{\partial \theta} / p(x \mid \theta)] p(x \mid \theta) dx = 0$$

$$\implies \int [\frac{\partial \log[p(x \mid \theta)]}{\partial \theta} p(x \mid \theta) dx = 0$$

$$\implies E[u(X; \theta) \mid \theta] = 0$$

- A 🗄 🕨

Unbiased Estimation and Risk Inequalities

$$E[u(X;\theta) \mid \theta] = 0$$

$$\iff \int \left[\frac{\partial \log[p(x\mid\theta)]}{\partial \theta}p(x\mid\theta)dx = 0$$

$$\frac{\partial}{\partial \theta}\left(\int \left[\frac{\partial \log[p(x\mid\theta)]}{\partial \theta}p(x\mid\theta)dx\right] = \frac{\partial}{\partial \theta}(0)\right]$$

$$\int \left(\frac{\partial^2 \log[p(x\mid\theta)]}{\partial \theta^2}p(x\mid\theta) + \frac{\partial \log[p(x\mid\theta)]}{\partial \theta}(\frac{\partial p(x\mid\theta)}{\partial \theta})\right)dx = 0$$
The last line can be written as:
$$\int \left[\frac{\partial^2 \log[p(x\mid\theta)]}{\partial \theta^2}p(x\mid\theta)dx\right] + \int \left[\frac{\partial \log[p(x\mid\theta)]}{\partial \theta}\right]^2p(x\mid\theta)dx = 0$$
I.e.,
$$E\left[\frac{\partial^2 \log[p(x\mid\theta)]}{\partial \theta^2}\mid\theta\right] + E\left[\left(\frac{\partial \log[p(x\mid\theta)]}{\partial \theta}\right)^2\mid\theta\right] = 0$$
So we have
$$I(\theta) = E[(u(X;\theta))^2\mid\theta] = -E\left[\frac{\partial^2 \log[p(x\mid\theta)]}{\partial \theta^2}\mid\theta\right].$$

$$= Var[u(X;\theta)\mid\theta]$$

æ

Proposition 3.4.1 Suppose P_{θ} is a one-parameter exponential family with density/pmf function:

 $p(x \mid \theta) = h(x) \exp\{\eta(\theta) T(x) - B(\theta)\}$

which has non-vanishing continuous derivative on Θ . Then the statistical inference problem for θ given X is a regular problem.

Theorem 3.4.1. Information Inequality

For a regular problem, let T(X) be any statistic such that $E[T(X) \mid \theta] = \psi(\theta).$ $Var[T(X) \mid \theta] < \infty$, for all θ .

Then for all θ :

•
$$Var[T(X) | \theta] \ge \frac{[\psi'(\theta)]^2}{I(\theta)}$$
,
 $(\psi(\theta) \text{ is differentiable and } I(\theta) = \text{Fisher Information of } P_{\theta}$.

Proof: By the conditions of a regular problem:

$$\psi'(\theta) = \frac{\partial}{\partial \theta} \left(\int T(x)p(x \mid \theta) dx \right)$$

= $\int \left(T(x) \frac{\partial}{\partial \theta} [p(x \mid \theta)] \right) dx$
= $\int \left(T(x) \frac{\partial}{\partial \theta} [\log p(x \mid \theta)] p(x \mid \theta) \right) dx$
= $E[T(X)U(X;\theta) \mid \theta] = Cov[T(X), U(X;\theta) \mid \theta]$
(the last equation follows since $E[U(X;\theta) \mid \theta] = 0.$)

The theorem follows from the Cauchy-Schwarz Inequality for two random variables:

 $(Cov[T(X), U(X; \theta) | \theta])^2 \leq Var[T(X) | \theta] \times Var[U(X; \theta) | \theta]$ i.e.,

 $[\psi'(\theta)]^2 \leq Var[T(X) \mid \theta] \times I(\theta)$

Corollary 3.4.1 Suppose T(X) is unbiased estimate of θ in a regular problem, then

$${\mathscr A}{ar}({\mathcal T}(X) \mid heta) \geq rac{1}{I(heta)} \hspace{0.5cm} ({ extsf{Cramer-Rao}} \hspace{0.5cm} extsf{Lower Bound})$$

Proposition 3.4.2 For a random sample $\mathbf{X} = (X_1, \dots, X_n)$ from a distribution P_{θ} with density $p(x \mid \theta)$ satisfying the conditions of a regular problem. If $I_1(\theta) = E\left[\left(\left(\frac{\partial}{\partial \theta}[\log p(x_1 \mid \theta)]\right)^2 \mid \theta\right]$ then $I(\theta) = nI_1(\theta)$ and $Var[T(\mathbf{X}) \mid \theta] \ge \frac{[\psi'(\theta)]^2}{nI_1(\theta)}$

Proof: This follows directly from the results above upon noting that

$$U(\mathbf{X}; \theta) = \frac{\partial}{\partial \theta} [\log p(\mathbf{x} \mid \theta)]$$

= $\frac{\partial}{\partial \theta} [\sum_{i=1}^{n} \log p(x_i \mid \theta)]$
= $\sum_{i=1}^{n} \frac{\partial}{\partial \theta} [\log p(x_i \mid \theta)]$
= $\sum_{i=1}^{n} U(X_i; \theta)$
By the independence of the terms,
 $Var[U(\mathbf{X}; \theta) \mid \theta] = \sum_{i=1}^{n} Var[U(X_i; \theta)] = nl_1(\theta) = l(\theta).$

Theorem 3.4.2 Consider a regular problem with $X \sim P_{\theta}, \theta \in \Theta$, and $T^*(X)$ is an estimator of $\psi(\theta)$ which is

- Unbiased: $E[T^*(X) | \theta] = \psi(\theta)$, for all $\theta \in \Theta$.
- Achieves the Cramer-Rao Lower Bound:

$$Var(T^*(X) \mid \theta) = rac{|\psi'(\theta)|^2}{I(\theta)}$$
, for all $\theta \in \Theta$.

Then $\{P_{\theta}\}$ is a one-parameter exponential family with density/pmf: $p(x \mid \theta) = h(x) \exp\{\eta(\theta) T^*(x) - B(\theta)\}$

Proof: From the proof of Theorem 3.4.1 for any unbiased estimator of $\psi(\theta)$,

$$\psi(\theta) = E[T(x) | \theta] = \int T(x)p(x | \theta)dx$$

$$\Rightarrow \psi'(\theta) = \int T(x)U(x;\theta)p(x | \theta)dx$$

where $U(x;\theta) = \partial \log p(x | \theta)/\partial \theta$

$$= Cov(T(X), U(X;\theta) | \theta)$$

$$\Rightarrow |\psi'(\theta)| \leq \sqrt{Var(T(X) | \theta) \times Var(U(X;\theta) | \theta)}$$

with equality if and only if $U(X;\theta) = a_1(\theta) + a_2(\theta)T(X)$ for some
functions $a_1(\theta)$ and $a_2(\theta)$.

Technical Details of Proof:

- For each $\theta_0 \in \Theta$, define $A_{\theta_0} = \{x : U(x; \theta_0) = a_1(\theta_0)T^*(x) + a_2(\theta_0)\}$ Note: $P_{\theta_0}(A_{\theta_0}) = 1$ (otherwise the absolute correlation would be less than 1)
- Define $\{\theta_i, i = 1, 2, ...\}$ to be a denumerable dense subset of Θ .

• Define
$$A^{**} = \cap_i A_{\theta_i}$$
. Then
 $P_{\theta_i}(A^{**}) = 1$, for all θ_i .

• Fix any two values $x_1, x_2 \in A^{**}$, for which $T^*(x_1) \neq T^*(x_2)$. Solve the equations:

$$U(x_{1}; \theta) = a_{1}(\theta) T^{*}(x_{1}) + a_{2}(\theta) U(x_{2}; \theta) = a_{1}(\theta) T^{*}(x_{2}) + a_{2}(\theta)$$

to obtain equations for $a_1(\theta), a_2(\theta)$ as linear combinations of $U(x_1; \theta)$ and $U(x_2; \theta)$.

Since $U(x; \theta)$ is continuous in θ , so are $a_1(\theta)$ and $a_2(\theta)$.

Technical Details of Proof (continued):

• Since

 $U(x;\theta) = a_1(\theta)T^*(x) + a_2(\theta)$, for all $\theta_i \in \{\theta_i\}$ and both $U(x;\theta)$ and $a_1(\theta)$ and $a_2(\theta)$ are continuous, this equation must hold for all θ .

• So
$$A^{**} = \bigcap_i A_{\theta_i}$$
 must equal
 $A^* = \{x : U(x; \theta) = a_1(\theta) T^*(x) + a_2(\theta), \text{ for all } \theta \in \Theta\}.$
and $P(A^*) = 1.$

With

$$U(x;\theta) = \frac{\partial \log p(x|\theta)}{\partial \theta} = a_1(\theta)T^*(x) + a_2(\theta)$$

Define: $\eta(\theta) = \int_{\theta_0}^{\theta} a_1(t)dt$ and $B(\theta) = -\int_{\theta_0}^{\theta} a_2(t)dt$,
Then

$$\log\left[\frac{p(x|\theta)}{p(x|\theta_0)}\right] = \int_{\theta_0}^{\theta} \left[\frac{\partial \log p(x|\theta)}{\partial \theta}\right] d\theta = T^*(x)\eta(\theta) - B(\theta),$$

and we have:

$$p(x \mid \theta) = h(x)exp\{\eta(\theta)T^*(x) - B(\theta)\}, x \in A^*$$

where $h(x) = p(x \mid \theta_0)$ (for a fixed value θ_0).

Multiparameter Case

Definition: Regular Problem A statistical inference problem with $X \sim P_{\theta}, \theta \in \Theta$ which satisfies the following regularity conditions:

• $\mathcal{X} = \{x : p(x \mid \theta) > 0\}$ does not depend on θ . • $\frac{\partial logp(x \mid \theta)}{\partial \theta}$ exists and is finite for all $x \in \mathcal{X}$ and $\theta \in \Theta$. • For any statistic T such that $E[|T(X)| \mid \theta] < \infty$ $\frac{\partial}{\partial \theta} \left[\int T(x)p(x \mid \theta)dx \right] = \int T(x)\frac{\partial}{\partial \theta}[p(x \mid \theta)]dx.$

Definition: Efficient Score Function. For a fixed $\theta_0 \in \Theta$, the *efficient score* for X is $u(X; \theta_0) = \frac{\partial \log p(x \mid \theta)}{\partial \theta}|_{\theta = \theta_0}$

Note: The magnitude of $u(X; \theta_0)$ scales how far θ_0 is from $\hat{\theta}_{MLE}$. The definitions extend to vector-valued θ immediately **Proposition** (I). The Efficient Score Function has the following properties:

$$E[u(X;\theta_0) | \theta = \theta_0] = 0.$$

$$Cov[u(X;\theta_0) | \theta = \theta_0] = E([u(X;\theta_0)][u(X;\theta_0)]^T | \theta = \theta_0)$$

$$= I(\theta_0).$$

(II). $I(\theta)$ is the $(d \times d)$ Fisher information matrix whose elements satisfy the following identities

$$[I(\theta_0)]_{i,j} = [Cov[u(X;\theta_0) | \theta_0]]_{i,j}$$

$$= E[[u(X;\theta)]_i[u(X;\theta)]_j | \theta = \theta_0]$$

$$= E[\frac{\partial \log p(X | \theta)}{\partial \theta_i} \frac{\partial \log p(X | \theta)}{\partial \theta_j} | \theta = \theta_0]$$

$$= -E[\frac{\partial^2 \log p(X | \theta)}{\partial \theta_i \partial \theta_j} | \theta = \theta_0]$$
(III). If $\mathbf{X} = (X_1, \dots, X_n)$ is an iid sample from $X \sim P_{\theta}$ with nformation $I_1(\theta)$, then
$$I(\mathbf{X}) = nI_1(\theta).$$

Theorem 3.4.3 For a regular problem with non-singular information matrix $I(\theta)$, consider a scalar-valued statistic T(X) estimating the scalar $\psi(\theta)$, and suppose

$$E[T(X) \mid \theta] = \psi(\theta)$$

$$\dot{\psi}(\theta) = \nabla \psi(\theta) = \frac{\partial \psi(\theta)}{\partial \theta_1}, \dots, \frac{\partial \psi(\theta)}{\partial \theta_1}$$

Then

$$\operatorname{Var}[T(X) \mid \theta] \ge [\dot{\psi}(\theta)]^T [I(\theta)]^{-1} [\dot{\psi}(\theta)]$$

Proof. For a random variable Y, and a random d-vector Z, recall the minimum MSPE linear predictor $\mu_L(Z)$ of Y is given by:

$$\mu_L(Z) = \mu_Y + (Z - \mu_z)^T \Sigma_{Z,Z}^{-1} \Sigma_{Z,Y}$$

$$\nu_z = F[Y] \quad \mu_Z = F[Z]$$

where $\mu_Y = E[Y], \ \mu_Z = E[Z],$

 $\Sigma_{Z,Z} = Cov(Z) \ (d \times d)$, and $\Sigma_{Z,Y} = Cov(Z,Y) \ (d \times 1)$. The variance of $\mu_L(Z)$ satisfies

$$Var(\mu_L(Z)) = [\Sigma_{Z,Y}]^T \Sigma_{Z,Z}^{-1} \Sigma_{Z,Y} \leq Var(Y),$$

with equality only if $Y = \mu_L(Z)$. The Theorem follows setting Y = T(X) and $Z = u(X; \theta)$. **Theorem** 3.4.4 For a regular problem as in Theorem 3.4.3 suppose:

$$T(X) = (T_1(X), \dots, T_d(X))^T \in \mathbb{R}^d$$

$$E[T(X) \mid \theta] = \psi(\theta) \quad (d \times 1) \text{ vector}$$

$$\overset{\bullet}{\psi}(\theta) = \bigtriangledown \psi(\theta) = \left[\frac{\partial \psi(\theta)}{\partial \theta_1} \mid \dots \mid \frac{\partial \psi(\theta)}{\partial \theta_d}\right] \quad (d \times d) \text{ matrix}$$

Then

$$Var[T(X) \mid heta] \geq [\overset{ullet}{\psi}(heta)][I(heta)]^{-1}[\overset{ullet}{\psi}(heta)]^T$$

where
$$A \ge B$$
 means $(A - B)$ is postive semi-definite:
 $a^{T}(A - B)a \ge 0$, for all $a \in \mathbb{R}^{d}$.
Proof. Problem 3.4.21

Note: For
$$\hat{\theta}$$
 : $E[\hat{\theta} \mid \theta] = \theta$,
 $\psi(\theta) = \theta$, and $\dot{\psi}(\theta) = I_d$, the $(d \times d)$ identity matrix.

and

$$Var(\hat{ heta} \mid heta) \geq [I(heta)]^{-1}$$

A 10

A B + A B +

э

Preview:

- When X = (X₁,...,X_n) corresponds to a random sample from a population whose distribution has information I₁(θ) for a single observation, the information in a sample of size n is I(X) = nI₁(θ)
- As the sample size grows large such samples, optimal estimators of parameters $q(\theta)$ are sought.
- The Cramer-Rao Lower Bound defines the golden standard of performance for estimators which are unbiased asymptotically.
- Such estimators will be called *asymptotically efficient*.

□ > < = > <

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.