Convergence of Random Variables Probability Inequalities

MIT 18.655

Dr. Kempthorne

Spring 2016

Convergence, Probability Inequalities Convergence of Random Variables Probability Inequalities

- **→** → **→**

Convergence of Random Variables/Vectors

Framework

- $\mathbf{Z}_n = (Z_{n,1}, Z_{n,2}, \dots, Z_{n,d})^T$, a sequence of random vectors.
- $\mathbf{Z} = (Z_1, Z_2, \dots, Z_d)^T$, a random vector (e.g., sequence limit)

Definitions/Terminology/Theorems

(B.7.1) "Convergence in Probability":

$$\{Z_n\}$$
 converges in probability to Z.
 $|Z_n - Z| \xrightarrow{P} 0$
 $Z_n \xrightarrow{P} Z$
Definition: For every $\epsilon > 0$: $\lim_{n \to \infty} P(|Z_n - Z| > \epsilon) \to 0$.

NOTE(!): Convergence in Probability **REQUIRES** joint distribution of Z_n and Z_n .

Convergence of Random Variables/Vectors

Definitions/Terminology (continued)

(B.7.2) Convergence in Law / Convergence in Distribution: $\{Z_n\}$ converges in law to Z. $Z_n \xrightarrow{\mathcal{L}} Z$ $\mathcal{L}(Z_n) \rightarrow \mathcal{L}(Z)$

Definition: for every $\mathbf{t} \in R^d$, where the distribution function $F_{\mathbf{Z}}$ of \mathbf{Z} is continuous:

 $\lim_{n \to \infty} F_{\mathbf{Z}_n}(\mathbf{t}) = F_{\mathbf{Z}}(\mathbf{t}).$ **NOTE(!):** Convergence in Law/Distribution does **NOT** use joint distribution of \mathbf{Z}_n and \mathbf{Z} .

(A.14.4) If $Z = z_0$, a constant, convergence in law/distribution implies convergence in probability:

$$Z_n \xrightarrow{\mathcal{L}} z_0 \Longrightarrow Z_n \xrightarrow{P} z_0.$$

・ロト ・得ト ・ヨト ・ヨト

Convergence of Random Variables

(A.14.6) If
$$Z_n \xrightarrow{P} z_0$$
, and g is continuous at z_0 , then $g(Z_n) \xrightarrow{P} g(z_0)$.

(A.14.8) If
$$Z_n \xrightarrow{\mathcal{L}} Z$$
, and g is continuous, then
 $g(Z_n) \xrightarrow{\mathcal{L}} g(Z)$.

Theorem (A.14.9) If
$$Z_n \xrightarrow{\mathcal{L}} Z$$
, and $U_n \xrightarrow{P} u_0$, a constant, then
(a). $Z_n + U_n \xrightarrow{\mathcal{L}} Z + u_0$,
(b). $U_n Z_n \xrightarrow{\mathcal{L}} u_0 Z$.

- * @ * * 医 * * 医

э

Convergence of Random Variables

Corollary (A.14.17) Suppose

•
$$\{a_n\}$$
: $\lim_{n\to\infty} a_n = \infty$.

• $b: -\infty < b < \infty$, a fixed number.

•
$$a_n(Z_n-b) \xrightarrow{\mathcal{L}} Z.$$

• $g(\cdot)$: a function of a real variable whose derivative, g', exists and is continuous at b.

Then

$$a_n[g(Z_n)-g(b)] \xrightarrow{\mathcal{L}} g'(b)Z.$$

(人間) ト く ヨ ト く ヨ ト

Convergence of Random Variables/Vectors

Theorem B.7.2 Slutsky's Theorem. Suppose $\mathbf{Z}_n^T = (\mathbf{U}_n^T, \mathbf{V}_n^T)$ where \mathbf{Z}_n is a *d*-vector, \mathbf{U}_n is a *b*-vector, \mathbf{V}_n is a *c*-vector (d = b + c)

• $\mathbf{U}_n \xrightarrow{\mathcal{L}} \mathbf{U}$ • $\mathbf{V}_n \xrightarrow{\mathcal{L}} \mathbf{v}$, a constant vector • $\mathbf{g} : R^d \to R^b$ is continuous

Then

$$\mathbf{g}(\mathbf{U}_n^T, \mathbf{V}_n^T) \xrightarrow{\mathcal{L}} \mathbf{g}(\mathbf{U}^T, \mathbf{V}^T).$$

Examples:

(a).
$$d = 2, b = c = 1,$$

 $g(u, v) = \alpha u + \beta v, \text{ or }$
 $g(u, v) = u/v$

Slutsky's Theorem

Examples (continued):

(b).
$$\mathbf{V}_{n}\mathbf{U}_{n} + \mathbf{W}_{n} \xrightarrow{\mathcal{L}} \mathbf{vU} + \mathbf{w}$$
, where
 $\{\mathbf{V}_{n}\}$ matrix r.v.'s $(r \times d)$
 $\mathbf{V}_{n} \xrightarrow{P} \mathbf{v}$ (constant matrix)
 $\mathbf{U}_{n} \xrightarrow{\mathcal{L}} \mathbf{U}$
 $\mathbf{W}_{n} \xrightarrow{P} \mathbf{w}$ (constant vector)
(all dimensions conformal)

Theorem B.7.4 If

• $\mathbf{U}_n \xrightarrow{P} \mathbf{U}$ • $g(\cdot)$: bounded and $P[\mathbf{U} \in A_g] = 1$, Then: $Eg(\mathbf{U}_n) \rightarrow Eg(\mathbf{U})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dominated Convergence Theorem

Theorem B.7.5 Dominated Convergence Theorem. If $\{W_n\}$, W and V are random variables with

•
$$W_n \xrightarrow{P} W$$

•
$$P(|W_n| < |V|) = 1$$
, for all *n*

• $E[|V|] < \infty$

Then: $E[W_n] \rightarrow E[W]$.

- 4 同 6 4 日 6 4 日 6

Convergence, Probability Inequalities

- Convergence of Random Variables
- Probability Inequalities

□ > < = > <

Inequalities

(a). Chebychev's Inequality: If X is any random variable, then

$$P[|X| \ge a] \le \frac{E[X^2]}{a^2}.$$

(b). Markov's Inequality: If X is any random variable, then

$$\mathsf{P}[|X| \ge \mathsf{a}] \le \frac{\mathsf{E}[|X|]}{\mathsf{a}}.$$

- (c). Generalization: If X is any random variable, and $g(\cdot)$ is non-negative and non-decreasing on range of X: $P[X \ge a] \le \frac{E[g(X)]}{g(a)}.$
- (d). Bernstein's Inequality: $g(t) = e^{st}$: If X is any random variable,

$$P[X \ge a] \le \frac{E[e^{sX}]}{e^{sa}}.$$

- 4 同 6 4 日 6 4 日 6

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.