Asymptotics: Consistency and Delta Method

MIT 18.655

Dr. Kempthorne

Spring 2016

< ∃ →

Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distribution

Outline

Asymptotics

- Asymptotics: Consistency
- Delta Method: Approximating Moments
- Delta Method: Approximating Distributions

▲□ ▶ ▲ □ ▶ ▲ □

Consistency

Statistical Estimation Problem

- X_1, \ldots, X_n iid $P_{\theta}, \theta \in \Theta$.
- $q(\theta)$: target of estimation.
- $\hat{q}(X_1, \ldots, X_n)$: estimator of $q(\theta)$.

Definition: \hat{q}_n is a **consistent** estimator of $q(\theta)$, i.e.,

$$\hat{q}_n(X_1,\ldots,X_n) \xrightarrow{P_{\theta}} q(\theta)$$

 $\text{ if for every } \epsilon > \mathbf{0}, \\$

$$\lim_{n\to\infty} P_{\theta}(|q_n(X_1,\ldots,X_n)-q(\theta)|>\epsilon)=0.$$

Example: Consider P_{θ} such that:

•
$$E[X_1 | \theta] = \theta$$

• $q(\theta) = \theta$
• $\hat{q}_n = \frac{\sum_{i=1}^n X_i}{n} = \overline{X}$

When is \hat{q}_n consistent for θ ?

伺下 イヨト イヨト

Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions

Consistency: Example

Example: Consistency of sample mean $\hat{q}_n(X_1, \ldots, X_n) = \overline{X} = \overline{X}_n$.

• If $Var(X_1 \mid \theta) = \sigma^2(\theta) < \infty$, apply Chebychev's Inequality. For any $\epsilon > 0$: $P_{\theta}(|\overline{X}_n| \ge \epsilon) \le \frac{Var(\overline{X}_n \mid \theta)}{\epsilon^2} = \frac{\sigma^2(\theta)/\epsilon^2}{n} \xrightarrow{n \to \infty} 0$ • If $Var(X_1 \mid \theta) = \infty$, \overline{X}_n is consistent if $E[|X_1| \mid \theta] < \infty$.

Proof: Levy Continuity Theorem.

Consistency: A Stronger Definition

Definition: \hat{q}_n is a **uniformly consistent** estimator of $q(\theta)$, if for every $\epsilon > 0$,

$$\lim_{n\to\infty}\left(\sup_{\theta\in\Theta}[P_{\theta}(|q_n(X_1,\ldots,X_n)-q(\theta)|>\epsilon)]\right)=0.$$

Example: Consider the sample mean $\hat{q}_n = \overline{X}_n$ for which

•
$$E[\overline{X}_n \mid \theta] = \theta$$

• $Var[\overline{X}_n \mid \theta] = \sigma^2(\theta).$

Proof of consistency of $\hat{q}_n = \overline{X}_n$ extends to uniform consistency if $\sup_{\theta \in \Theta} \sigma^2(\theta) \le M < \infty$ (*). Examples Satisfying (*)

- X_i i.i.d. $Bernoulli(\theta)$.
- X_i i.i.d. $Normal(\mu, \sigma^2)$, where $\theta = (\mu, \sigma^2)$ $\Theta = \{\theta\} = (-\infty, +\infty) \times [0, M]$, for finite $M < \infty$.

Consistency: The Strongest Definition

Definition:
$$\hat{q}_n$$
 is a **strongly consistent** estimator of $q(\theta)$, if
 $P_{\theta}\left(\lim_{n \to \infty} |q_n(X_1, \dots, X_n) - q(\theta)| \le \epsilon\right)] = 1$, for every $\epsilon > 0$.
 $\hat{q}_n \xrightarrow{a.s.} q(\theta)$. (a.s. \equiv "almost surely")

Compare to:

Definition: \hat{q}_n is a **(weakly) consistent** estimator of $q(\theta)$, if for every $\epsilon > 0$, $\lim_{n \to \infty} [P_{\theta}(|q_n(X_1, \dots, X_n) - q(\theta)| > \epsilon)] = 0.$

(日) (同) (三) (三)

Plug-In Estimators: Discrete Case

• Discrete outcome space of size K:

$$\mathcal{X} = \{x_1, \dots, x_K\}$$
• $X_1, \dots, X_n \text{ iid } P_{\theta}, \theta \in \Theta, \text{ where}$

$$\theta = (p_1, \dots, p_K)$$

$$P(X_1 = x_k \mid \theta) = p_k, \ k = 1, \dots, K$$

$$p_k \ge 0 \text{ for } k = 1, \dots, K \text{ and}$$

$$\sum_{1}^{K} p_k = 1.$$
• $\Theta = S_{\mathcal{K}} (K\text{-dimensional simplex}).$
• Define the **empirical distribution**:

$$\hat{\theta}_n = (\hat{p}_1, \dots, \hat{p}_K)$$
where

$$\hat{p}_k = \frac{\sum_{i=1}^{n} \mathbf{1}(X_i = x_k)}{n} \equiv \frac{N_k}{n}$$

• $\hat{\theta}_n \in \mathcal{S}_K$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition/Theorem (5.2.1) Suppose $X_n = (X_1, ..., X_n)$ is a random sample of size *n* from a discrete distribution $\theta \in S$. Then:

- $\hat{\theta}_n$ is uniformly consistent for $\theta \in S$.
- For any continuous function $q : S \to R^d$, $\hat{q} = q(\hat{\theta}_n)$ is uniformly consistent for $q(\theta)$.

Proof:

• For any
$$\epsilon > 0$$
, $P_{\theta}(|\hat{\theta}_n - \theta| \ge \epsilon) \longrightarrow 0$.
This follows upon noting that:
 $\{\mathbf{x}_n : |\hat{\theta}_n(\mathbf{x}_n) - \theta|^2 < \epsilon^2\} \supset \cap_{k=1}^{K} \{\mathbf{x}_n : |(\hat{\theta}_n(\mathbf{x}_n) - \theta)_k|^2 < \epsilon^2/K\}$
So
 $P(\{\mathbf{x}_n : |\hat{\theta}_n(\mathbf{x}_n) - \theta|^2 \ge \epsilon^2\} \le \sum_{k=1}^{K} P(\{\mathbf{x}_n : |(\hat{\theta}_n(\mathbf{x}_n) - \theta)_k|^2 \ge \epsilon^2/K\}$
 $\le \sum_{k=1}^{K} \frac{1}{4n}/(\epsilon^2/K) = \frac{K^2}{4n\epsilon^2}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof (continued):

• $q(\cdot)$: continuous on compact S $\implies q(\cdot)$ uniformly continuous on S. For every $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that:

$$| heta_1- heta_0|<\delta(\epsilon)\Longrightarrow |q(heta_1)-q(heta_0)|<\epsilon,$$

uniformly for all $\theta_0, \theta_1 \in \Theta$.

It follows that

$$\{\mathbf{x}: |q(\hat{ heta}_n(\mathbf{x})) - q(heta)| < \epsilon\}^c \subseteq \{\mathbf{x}: |\hat{ heta}_n - heta| < \delta(\epsilon)\}^c$$

$$\implies \quad P_{\theta}[|\hat{q}_n - q(\theta)| \geq \epsilon] \quad \leq \quad P_{\theta}[|\hat{\theta}_n - \theta| \geq \delta(\epsilon)]$$

Note: uniform consistency can be shown; see B&D.

Proposition 5.2.1 Suppose:

•
$$\mathbf{g} = (g_1, \dots, g_d) : \mathcal{X} \to \mathcal{Y} \subset \mathbb{R}^d$$
.
• $E[|g_j(X_1)| \mid \theta] < \infty$, for $j = 1, \dots, d$, for all $\theta \in \Theta$.

• $m_j(\theta) \equiv E[g_j(X_1) \mid \theta]$, for $j = 1, \dots, d$.

Define:

$$q(\theta) = h(\mathbf{m}(\theta)),$$

where

$$\mathbf{m}(\theta) = (m_1(\theta), \dots, m_d(\theta))$$

 $h: \mathcal{Y} \to R^p$, is continuous.

Then:

$$\hat{q}_n = h(\bar{\mathbf{g}}) = h\left(\frac{1}{n}\sum_{i=1}^n \mathbf{g}(X_i)\right)$$

is a consistent estimator of $q(\theta)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Asymptotics

Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions

Consistency of Plug-In Estimators

Proposition 5.2.1 Applied to Non-Parametric Models

$$\mathcal{P} = \{P : E_P(|\mathbf{g}(X_1)|) < \infty\} \text{ and } \nu(P) = h(E_P\mathbf{g}(X_1))$$
$$\nu(\hat{P}_n) \xrightarrow{P} \nu(P) \text{ where } \hat{P}_n \text{ is empirical distribution.}$$

Consistency of MLEs in Exponential Family

Theorem 5.2.2 Suppose:

• \mathcal{P} is a canonical exponential family of rank d generated by $\mathbf{T} = (T_1(X), \dots, T_d(X))^T$.

•
$$p(x \mid \eta) = h(x)exp\{\mathbf{T}(x)\eta - A(\eta)\}$$

•
$$\mathcal{E} = \{\eta\}$$
 is open.

•
$$X_1, \ldots, X_n$$
 are i.i.d $P_\eta \in \mathcal{P}$

Then:

- $P_{\eta}[$ the MLE $\hat{\eta}$ exists $] \xrightarrow{n \to \infty} 1.$
- $\hat{\eta}$ is consistent.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Consistency of MLEs in Exponential Family

Proof:

- $\hat{\eta}(X_1, \ldots, X_n)$ exists iff $\overline{\mathbf{T}}_n = \sum_{i=1}^n \mathbf{T}(X_i)/n \in C^o_{\mathbf{T}_n}$.
- If η_0 is true, then $\mathbf{t}_0 = E[\mathbf{T}(X_1) \mid \eta_0] \in C^o_{\mathbf{T}_n}$ and $\dot{A}(\boldsymbol{\eta}_0) = \mathbf{t}_0$.
- By definition of the interior of the convex support, there exists $\delta > 0$: $S_{\delta} = \{ \mathbf{t} : |\mathbf{t} - E_{\eta_0}[\mathbf{T}(X_1)| < \delta \} \subset C^o_{\mathbf{T}_n}.$
- By the WLLN:

$$\overline{\mathbf{T}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{T}(X_i) \xrightarrow{P_{\eta_0}} E_{\eta_0} [\mathbf{T}(X_1)]$$
$$\implies P_{\eta_0} [\overline{\mathbf{T}}_n \in C^o_{\mathbf{T}_n}] \xrightarrow{n \to \infty} 1.$$

• $\hat{\eta}$ exists if it solves $\dot{A}(\eta) = \overline{T}_n$, i.e., if $\overline{T}_n \in C^o_{T_n}$,

• The map $\eta \to \dot{A}(\eta)$ is 1-to-1 on C^0_{T} and continuous on \mathcal{E} , so the inverse function \dot{A}^{-1} is continuous, and Prop. 5.2.1 applies.

Consistency of Minimum-Contrast Estimates

Minimum-Contrast Estimates

•
$$X_1, \ldots, X_n$$
 iid $P_{\theta}, \theta \in \Theta \subset \mathbb{R}^d$.

- $\rho(X, \theta) : \mathcal{X} \times \Theta \rightarrow R$, a contrast function
- $D(\theta_0, \theta) = E[\rho(X, \theta) | \theta_0]$: the discrepancy function $\theta = \theta_0$ uniquely minimizes $D(\theta_0, \theta)$.
- The Minimum-Contrast Estimate $\hat{\theta}$ minimizes:

$$\rho_n(\mathbf{X}, \theta) = \frac{1}{n} \sum_{i=1}^n \rho(X_i, \theta).$$

Theorem 5.2.3 Suppose

•
$$\sup_{\theta \in \Theta} \{ \frac{1}{n} \sum_{i=1}^{n} \rho(X_i, \theta) - D(\theta_0, \theta) \} \xrightarrow{P_{\theta_0}} 0$$

•
$$\inf_{|\theta - \theta_0| \ge \epsilon} \{ D(\theta_0, \theta) \} > D(\theta_0, \theta_0), \text{ for all } \epsilon > 0.$$

Then $\hat{\theta}$ is consistent.

白 ト イ ヨ ト イ ヨ

Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributi

Outline

1 Asymptotics

• Asymptotics: Consistency

• Delta Method: Approximating Moments

• Delta Method: Approximating Distributions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Delta Method

Theorem 5.3.1 (Applying Taylor Expansions) Suppose that:

- X_1, \ldots, X_n iid with outcome space $\mathcal{X} = R$.
- $E[X_1] = \mu$, and $Var[X_1] = \sigma^2 < \infty$.
- $E[|X_1|^m] < \infty$.
- $h: R \to R$, *m*-times differentiable on *R*, with $m \ge 2$. $h^{(j)} = \frac{d^j h(x)}{dx^j}, j = 1, 2, ..., m$. • $||h^{(m)}||_{\infty} \equiv \sup_{x \in \mathcal{X}} |h^{(m)}(x)| \le M < \infty$.

Then

$$E(h(\overline{X})) = h(\mu) + \sum_{j=1}^{m-1} \frac{h^{(j)}(\mu)}{j!} E[(\overline{X} - \mu)^j] + R_m$$
$$|R_m| \le M \frac{E[|X_1|^m]}{m!} n^{-m/2}$$

where

Proof:

• Apply Taylor Expansion to
$$h(\overline{X})$$
:
 $h(\overline{X}) =$
 $h(\mu) + \sum_{j=1}^{m-1} \frac{h^{(j)}(\mu)}{j!} (\overline{X} - \mu)^j + h^{(m)}(X^*)(\overline{X} - \mu)^m,$
where $|X^* - \mu| \le |\overline{X} - \mu|$

• Take expectations and apply Lemma 5.3.1: If $E|X_1|^j < \infty, j \ge 2$, then there exist constants $C_j > 0$ and $D_j > 0$ such that $E|\overline{X} - \mu|^j \le C_j E|X_1|^j n^{-j/2}$ $|E[(\overline{X} - \mu)^j]| \le D_i E|X_1|^j n^{-(j+1)/2}$ for j odd

- 4 同 ト 4 ヨ ト 4 ヨ ト

Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions

Applying Taylor Expansions

Corollary 5.3.1 (a).
If
$$E|X_1|^3 < \infty$$
 and $||h^{(3)}||_{\infty} < \infty$, then
 $E[h(\overline{X})] = h(\mu) + 0 + [\frac{h^{(2)}(\mu)}{2}]\frac{\sigma^2}{n} + O(n^{-3/2})$

Corollary 5.3.1 (b).
If
$$E|X_1|^4 < \infty$$
 and $||h^{(4)}||_{\infty} < \infty$, then
 $E[h(\overline{X})] = h(\mu) + 0 + [\frac{h^{(2)}(\mu)}{2}]\frac{\sigma^2}{n} + O(n^{-2})$

For (b), use Lemma 5.3.2 with
$$j = 3$$
 (odd) gives
 $|E(\overline{x} - \mu)^3| \le D_3 E[|X_1|^3] \times \frac{1}{n^2} = O(n^{-2})$

Note: Asymptotic bias of $h(\overline{X})$ for $h(\mu)$:

If h⁽²⁾(µ) ≠ 0, then O(n⁻¹)
If h⁽²⁾(µ) = 0, then O(n^{-3/2}) if third-moment finite and O(n⁻²) if fourth-moment finite.

Applying Taylor Expansions: Asymptotic Variance

Corollary 5.3.2 (a).
If
$$||h^{(j)}||_{\infty} < \infty$$
, for j=1,2,3, and $E|Z_1|^3 < \infty$, then
 $Var[h(\overline{X})] = \frac{\sigma^2[h^{(1)}(\mu)]^2}{n} + O(n^{-3/2})$

Proof: Evaluate

$$Var[h(\overline{X})] = E[(h(\overline{X})^2] - (E[h(\overline{X}])^2]$$

From Corollary 5.3.1 (a):

$$E[h(\overline{X})] = h(\mu) + 0 + \left[\frac{h^{(2)}(\mu)}{2}\right]\frac{\sigma^2}{n} + O(n^{-3/2})$$

$$\implies (E[h(\overline{X})])^2 = (h(\mu) + \left[\frac{h^{(2)}(\mu)}{2}\right]\frac{\sigma^2}{n})^2 + O(n^{-3/2})$$

$$= (h(\mu))^2 + [h(\mu)h^{(2)}(\mu)]\frac{\sigma^2}{n} + O(n^{-3/2})$$

Exponentiation of the Taylor Exponentiation

Taking Expectation of the Taylor Expansion:

$$E([h(\overline{X})]^{2}) = [h(\mu)]^{2} + E[\overline{X} - \mu] (2[h(\mu)]h^{(1)}(\mu)) + \frac{1}{2}E[(\overline{X} - \mu)^{2}] (2[h^{(1)}(\mu)]^{2} + 2[h(\mu)]h^{(2)}(\mu)) + \frac{1}{6}E[(\overline{X} - \mu)^{3}] ([h^{2}(\mu)]^{(3)}(X^{*}))$$

Difference gives result.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Note:

- Asymptotic bias of $h(\overline{X})$ for $h(\mu)$ is $O(\frac{1}{n})$.
- Asymptotic standard deviation of $h(\overline{X})$ is $O(\frac{1}{\sqrt{n}})$ unless (!) $h^{(1)}(\mu) = 0$.
- More terms in aTaylor Series with finite expectations of $E[|\overline{X} \theta|^j]$ yields finer approximation to order $O(n^{-j/2})$
- Taylor Series Expansions apply to functions of vector-valued statistics (See Theorem 5.3.2).

(人間) (人) (人) (人) (人) (人)

Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions

Outline

- Asymptotics: Consistency
- Delta Method: Approximating Moments
- Delta Method: Approximating Distributions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 5.3.3 Suppose

- X_1, \ldots, X_n iid with $\mathcal{X} = R$.
- $E[X_1^2] < \infty$.

•
$$\mu = E[X_1]$$
 and $\sigma^2 = Var(X_1)$.

• $h: R \to R$ is differentiable at μ .

Then

$$\mathcal{L}\left(\sqrt{n}(h(\overline{X}) - h(\mu))\right) \to N(0, \sigma^2(h))$$

where

$$\sigma^2(h) = [h^{(1)}(\mu)]^2 \sigma^2.$$

Proof: Apply Taylor expansion of $h(\overline{X})$ about μ :

$$h(\overline{X}) = h(\mu) + (\overline{X} - \mu)[h^{(1)}(\mu) + R_n]$$

$$\implies \sqrt{n}(h(\overline{X}) - h(\mu)) = [\sqrt{n}(\overline{X} - \mu)][h^{(1)}(\mu) + R_n]$$

$$\stackrel{\mathcal{L}}{\longrightarrow} [N(0, \sigma^2)] \times h^{(1)}(\mu)$$

Limiting Distributions of *t* Statistics

Example 5.3.3 One-sample t-statistic

•
$$X_1, \ldots, X_n$$
 iid $P \in \mathcal{P}$

•
$$E_P[X_1] = \mu$$

•
$$Var_P(X_1) = \sigma^2 < \infty$$

• For a given μ_0 , define *t*-statistic for testing $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$.

$$T_n = \sqrt{n} \frac{(X - \mu_0)}{s_n} \quad \text{where}$$

$$s_n^2 = \frac{n}{1} (X_i - \overline{X})^2 / (n - 1).$$

If *H* is true then $T_n \xrightarrow{\mathcal{L}} N(0,1)$.

Proof: Apply Slutsky's theorem for limit of $\{U_n/v_n\}$ where

•
$$U_n = \sqrt{n} \frac{(\overline{X} - \mu_0)}{\sigma} \xrightarrow{\mathcal{L}} N(0, 1).$$

• $v_n = s_n / \sigma \xrightarrow{P} 1.$

Limiting Distributions of *t* Statistics

Example 5.3.3 Two-Sample t-statistic

- X_1, \ldots, X_{n_1} iid with $E[X_1] = \mu_1$ and $Var[X_1] = \sigma_1^2 < \infty$.
- Y_1, \ldots, X_{n_2} iid with $E[Y_1] = \mu_2$ and $Var[Y_1] = \sigma_2^2 < \infty$.
- Define *t*-statistic for testing $H_0: \mu_2 = \mu_1$ versus $H_1: \mu_2 > \mu_1$.

$$T_n = \frac{\overline{Y} - \overline{X}}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}} = \sqrt{\frac{n_1 n_2}{n}} \left(\frac{\overline{Y} - \overline{X}}{s}\right)$$

where $s^2 = \frac{1}{n-2} \left[\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{j=1}^{n_2} (Y_i - \overline{Y})^2\right]$

If *H* is true, $\sigma_1^2 = \sigma_2^2$, and all distributions are Gaussian, then $T_n \sim t_{n-2}$, (a *t*-distribution) In general, if *H* is true, and $n_1 \to \infty$ and $n_2 \to \infty$, with $n_1/n \to \lambda$, $(0 < \lambda < 1)$, then $T_n \xrightarrow{\mathcal{L}} N(0, \tau^2)$, where $\tau^2 = \frac{(1-\lambda)\sigma_1^2 + \lambda \sigma_2^2}{\lambda \sigma_1^2 + (1-\lambda)\sigma_2^2}$ (≈ 1 , when?)

Additional Topics

- Monte Carlo simulations/studies: evaluating asymptotic distribution approximations.
- Variance-stabilizing transformations: When E[X̄] = μ, but Var[X̄] = σ²(μ), consider h(X̄) such that σ²(μ)[h⁽¹⁾(μ)]² = constant Asymptotic distribution approximation for h(X̄) will have a

Asymptotic distribution approximation for h(X) will have a constant variance.

• Edgeworth Approximations: Refining the Central Limit Theorem to match nonzero skewness and non-Gaussian kurtosis.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Taylor Series Review

Power Series Representation of function f(x) $f(x) = \sum_{j=0}^{\infty} c_j (x-a)^j$, for x : |x-a| < d a = center; and d = radius of convergenceTheorem: If f(x) has a power series representation, then

•
$$c_j = \frac{f^{(j)}(a)}{j!} = \frac{\frac{d^j}{dx^j}[f(x)]}{j!}|_{x=a}$$
.
• Define $T_m(x) = \sum_{j=1}^m c_j(x-a)^j$, and $R_m(x) = f(x) - T_m(x)$.
 $\lim_{m \to \infty} T_m(x) = f(x)$ and $(\Leftrightarrow) \lim_{m \to \infty} R_m(x) = 0$.

/□ ▶ < 글 ▶ < 글

Asymptotics

Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions

Power Series Approximation of f(x) where

• $f^{(j)}(x)$: finite for $1 \le j \le m$ • $\sup_{x} ||f^{(m)}(x)|| \le M$.

For m = 2:

$$\begin{array}{rcl} f^{(2)}(x) &\leq & M \\ \Longrightarrow & \int_{a}^{x} f^{(2)}(t) dt &\leq & \int_{a}^{x} M dt \\ \Leftrightarrow & f^{(1)}(x) - f^{(1)}(a) &\leq & M(x-a) \\ \Leftrightarrow & & f^{(1)}(x) &\leq & f^{(1)}(a) + M(x-a) \end{array}$$

Integrate again:

$$\begin{cases} \int_a^x f^{(1)}(t)dt &\leq \int_a^x [f^{(1)}(a) + M(t-a)]dt \\ \iff f(x) - f(a) &\leq f^{(1)}(a)(x-a) + M\frac{(x-a)^2}{2} \\ \iff f(x) &\leq f(a) + f^{(1)}(a)(x-a) + M\frac{(x-a)^2}{2} \\ \end{cases}$$
Reverse inequality and use $-M$:

$$\Rightarrow f(x) \geq f(a) + f^{(1)}(a)(x-a) - M\frac{(x-a)^2}{2} \Rightarrow f(x) = f(a) + f^{(1)}(a)(x-a) + R_2(x) where |R_2(x)| \leq M\frac{(t-a)^2}{2}$$

Delta Method for Function of a Random Variable

• X a r.v. with
$$\mu = E[x]$$

• $h(\cdot)$ function with *m* derivatives

•
$$h(X) = h(\mu) + (X - \mu)h^{(1)}(\mu) + R_2(X)$$

where $|R_2(X)| \le \frac{M}{2}(X - \mu)^2$.

•
$$h(X) = h(\mu) + (X - \mu)h^{(1)}(\mu) + (X - \mu)^2 \frac{h^{(2)}(\mu)}{2} + R_3(X)$$

where $|R_3(X)| \le \frac{M}{3!}|X - \mu|^3$.

•
$$h(X) = h(\mu) + (X - \mu)h^{(1)}(\mu) + (X - \mu)^2 \frac{h^{(2)}(\mu)}{2} + (X - \mu)^3 \frac{h^{(3)}(\mu)}{3!} + R_4(X)$$

where $|R_4(X)| \le \frac{M}{4!}|X - \mu|^4$.

3

Asymptotics

Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions

Key Example: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, for i.i.d. X_i $E[X_1] = \theta, \quad E[(X_1 - \theta)^2] = \sigma^2$ $E[(X_1 - \mu)^3] = \mu_3 \quad E[|X_1 - \mu|^3] = \kappa_3$ With \bar{X} for a given sample size *n* $E[\bar{X}] = \theta, \quad E[(\bar{X} - \theta)^2] = \frac{\sigma^2}{r}$ $E[(\bar{X}-\theta)^3] = \frac{\mu_3}{n^2} \quad E[|\bar{X}-\mu|^3] = 0_p[(\frac{1}{\sqrt{n}})^3]$ Taking Expectations of the Delta Formulas (cases m = 2, 3) $E[h(\bar{X})] = E[h(\theta) + (\bar{X} - \theta)h^{(1)}(\theta) + R_2(\bar{X})]$ $= h(\theta) + E[(\bar{X} - \theta)]h^{(1)}(\theta) + E[R_2(\bar{X})]$ $= h(\theta) + 0 + E[R_2(X)]$ where $|E[R_2(\bar{X})]| \leq E[|R_2(\bar{X})|] \leq \frac{M}{2}E[(\bar{X}-\theta)^2] = \frac{M}{2}\frac{\sigma^2}{r}$ $E[h(\bar{X})] = E[h(\theta) + (\bar{X} - \theta)h^{(1)}(\theta) + (\bar{X} - \theta)^2 \frac{h^{(2)}(\theta)}{2} + R_3(X)]$ $= h(\theta) + \frac{\sigma^2}{2} \frac{h^{(2)}(\theta)}{2} + E[R_3(\bar{X})]$ where

Taking Expectations of the Delta Formula (case m = 4) $E[h(\bar{X})] = E[h(\theta) + (\bar{X} - \theta)h^{(1)}(\theta) + (\bar{X} - \theta)^2 \frac{h^{(2)}(\theta)}{2}] + E[(\bar{X} - \theta)^3 \frac{h^{(3)}}{3!} + R_4(X)]$ $= h(\theta) + \frac{\sigma^2}{n} \frac{h^{(2)}(\theta)}{2} + E[(\bar{X} - \theta)^3] \frac{h^{(3)}}{3!} + E[R_4(X)]$ $= h(\theta) + \frac{\sigma^2}{n} \frac{h^{(2)}(\theta)}{2} + \frac{\mu_3}{n^2} \frac{h^{(3)}}{3!} + E[R_4(X)]$ $= h(\theta) + \frac{\sigma^2}{n} \frac{h^{(2)}(\theta)}{2} + O_p(\frac{1}{n^2})$

because $|E[R_4(\bar{X})]| \leq [E|R_4(\bar{X})|] \leq \frac{M}{4!}E[|X - \theta|^4] = \frac{M}{4!}O_p[|\frac{1}{n^2}|].$

伺 ト イ ヨ ト イ ヨ ト

Taking Expectations of the Delta Formula (case m = 4) $E[h(\bar{X})] = E[h(\theta) + (\bar{X} - \theta)h^{(1)}(\theta) + (\bar{X} - \theta)^2 \frac{h^{(2)}(\theta)}{2}] + E[(\bar{X} - \theta)^3 \frac{h^{(3)}}{3!} + R_4(X)]$ $= h(\theta) + \frac{\sigma^2}{n} \frac{h^{(2)}(\theta)}{2} + E[(\bar{X} - \theta)^3] \frac{h^{(3)}}{3!} + E[R_4(X)]$ $= h(\theta) + \frac{\sigma^2}{n} \frac{h^{(2)}(\theta)}{2} + \frac{\mu_3}{n^2} \frac{h^{(3)}}{3!} + E[R_4(X)]$ $= h(\theta) + \frac{\sigma^2}{n} \frac{h^{(2)}(\theta)}{2} + O_p(\frac{1}{n^2})$

because $|E[R_4(\bar{X})]| \leq [E|R_4(\bar{X})|] \leq \frac{M}{4!}E[|X - \theta|^4] = \frac{M}{4!}O_p[|\frac{1}{n^2}|].$

伺 ト イ ヨ ト イ ヨ ト

Asymptotics

Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions

Key Example: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, for i.i.d. X_i $E[X_1] = \theta, \quad E[(X_1 - \theta)^2] = \sigma^2$ $E[(X_1 - \mu)^3] = \mu_3 \quad E[|X_1 - \mu|^3] = \kappa_3$ With \overline{X} for a given sample size n $E[\bar{X}] = \theta, \quad E[(\bar{X} - \theta)^2] = \frac{\sigma^2}{r}$ $E[(\bar{X}-\theta)^3] = \frac{\mu_3}{p^2} \quad E[|\bar{X}-\mu|^3] = 0_p[(\frac{1}{\sqrt{p}})^3]$ Limit Laws from the Delta Formula (case m = 2) $h(\bar{X}) = h(\theta) + (\bar{X} - \theta)h^{(1)}(\theta) + R_2(\bar{X})$ $\Rightarrow \sqrt{n}[h(\bar{X}) - h(\theta)] = \sqrt{n}(\bar{X} - \theta)h^{(1)}(\theta) + \sqrt{n}R_2(\bar{X})$ $= \sqrt{n}(\bar{X}-\theta)h^{(1)}(\theta) + O_p(\frac{1}{\sqrt{n}})$ $\underline{\mathcal{L}} \quad N(0, \frac{\sigma^2}{n} [h^{(1)}(\theta)]^2)$ since $\sqrt{n}|E[R_2(\bar{X})]| < \sqrt{n}\frac{M}{2}\frac{\sigma^2}{r}$ Note: if $h^{(1)}(\theta) = 0$, then

• $\sqrt{n}[h(\bar{X}) - h(\theta)] \xrightarrow{Pr} 0.$

• Consider increasing scaling to $n[h(\bar{X}) - h(\theta)]$

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.