Asymptotics III: Bayes Inference and Large-Sample Tests

MIT 18.655

Dr. Kempthorne

Spring 2016

MIT 18.655 Asymptotics III: Bayes Inference and Large-Sample Tests

→ 3 → 4 3

Consistency of Posterior Distribution Asymptotic Normality of Posterior Distribution Mutual Optimality of Bayes and MLE Procedures

Outline

1 Asymptotics of Bayes Posterior Distributions

• Consistency of Posterior Distribution

• Asymptotic Normality of Posterior Distribution

Mutual Optimality of Bayes and MLE Procedures

2 Large Sample Tests

- Likelihood Ratio Tests
- Wald's Large Sample Test
- The Rao Score Test

Consistency of Posterior Distribution

Framework

- X_1, \ldots, X_n iid $P_{\theta}, \theta \in \Theta$.
- Θ (open) $\subset R$ or $\Theta = \{\theta_1, \dots, \theta_k\}$ finite.
- Regular model with identifiable θ .

Consistency: Finite Θ

Posterior distribution of θ given $\mathbf{X}_n = (X_1, \dots, X_n)$: $\pi(\theta' \mid \mathbf{X}_n) \equiv P[\theta = \theta' \mid X_1, \dots, X_n], \ \theta' \in \Theta.$

 $\begin{array}{l} \textbf{Definition:} \ \pi(\cdot \mid \textbf{X}_n) \text{ is consistent if and only if for every } \theta' \in \Theta, \\ P_{\theta'}[|\pi(\theta' \mid \textbf{X}_n) - 1|] \geq \epsilon \rightarrow 0 \end{array}$

for all $\epsilon > 0$.

Definition: $\pi(\cdot | \mathbf{X}_n)$ is a.s. (almost surely) consistent if and only if for every $\theta' \in \Theta$,

$$\pi(\theta' \mid \mathbf{X}_n) \xrightarrow{a.s.P_{\theta'}} 1.$$

(日)

Consistency of Posterior Distribution

Theorem 5.5.1 Let $\pi_j = P[\theta = \theta_j], j = 1, ..., k$ denote the prior distribution of θ . Then

$$\pi(\cdot \mid \mathbf{X}_n)$$
 is consistent iff $\pi_j > 0$, for all $\pi_j \in \Theta$.

Proof:

7

Let p(x | θ) denote the density/pmf function of a single X_i.
 The posterior distribution is given by:

$$\pi(\theta_j \mid X_1, \dots, X_n) = P[\theta = \theta_j \mid X_1, \dots, X_n] \\ = \frac{\pi_j \prod_{i=1}^n p(X_i \mid \theta_j)}{\sum_{a=1}^k \pi_a \prod_{i=1}^n p(X_i \mid \theta_a)}$$
f any $\pi_j = 0$, then $\pi(\theta_j \mid \mathbf{X}_n) = 0$ for all *n*; i.e., the posterior s not consistent.

• Suppose all $\pi_j > 0$. For a fixed j, suppose θ_j is true, i.e., $\theta = \theta_j$. We show that

$$\pi(\theta_j \mid \mathbf{X}_n) \longrightarrow 1 \text{ and } \pi(\theta_a \mid \mathbf{X}_n) \xrightarrow{\square \to 0} 0, \text{ for } a \neq j, \quad \exists$$

Consistency of Posterior Distribution Asymptotic Normality of Posterior Distribution Mutual Optimality of Bayes and MLE Procedures

Consistency Theorem Proof

Proof (continued)

Evaluate the log of the posterior odds to the true θ :

$$\log \left[\frac{\pi(\theta_{a} \mid \mathbf{X}_{n})}{\pi(\theta_{j} \mid \mathbf{X}_{n})} \right] = \log \left[\frac{\pi_{a} \prod_{i=1}^{n} p(X_{i} \mid \theta_{a})}{\pi_{j} \prod_{i=1}^{n} p(X_{i} \mid \theta_{j})} \right]$$
$$= \log \left[\frac{\pi_{a}}{\pi_{j}} \right] + \log \left[\frac{\prod_{i=1}^{n} p(X_{i} \mid \theta_{a})}{\prod_{i=1}^{n} p(X_{i} \mid \theta_{j})} \right]$$
$$= \log \left[\frac{\pi_{a}}{\pi_{j}} \right] + \sum_{i=1}^{n} \log \left[\frac{p(X_{i} \mid \theta_{a})}{p(X_{i} \mid \theta_{j})} \right]$$
$$= n \left(\frac{1}{n} \log \left[\frac{\pi_{a}}{\pi_{j}} \right] + \frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{p(X_{i} \mid \theta_{a})}{p(X_{i} \mid \theta_{j})} \right] \right)$$
$$\longrightarrow n \left(0 \qquad + E \left[\log \left[\frac{p(X_{i} \mid \theta_{a})}{p(X_{i} \mid \theta_{j})} \right] \right] \right)$$
$$\longrightarrow \begin{cases} 0 & \text{if } a = j \\ -\infty & \text{if } a \neq j \end{cases}$$
(Shannon's Inequality gives $E \left[\log \left[\frac{p(X_{1} \mid \theta_{a})}{p(X_{1} \mid \theta_{j})} \right] \right] < 0, \text{ for } a \neq j \right)$

MIT 18.655

Asymptotics III: Bayes Inference and Large-Sample Tests

Consistency of Posterior Distribution Asymptotic Normality of Posterior Distribution Mutual Optimality of Bayes and MLE Procedures

Outline

1 Asymptotics of Bayes Posterior Distributions

- Consistency of Posterior Distribution
- Asymptotic Normality of Posterior Distribution
- Mutual Optimality of Bayes and MLE Procedures

2 Large Sample Tests

- Likelihood Ratio Tests
- Wald's Large Sample Test
- The Rao Score Test

Asymptotic Normality of Posterior Distribution

Theorem 5.5.2 ("Bernstein/von Mises").

- $\mathbf{X}_n = (X_1, \dots, X_n)$ where the X_i are iid $P_{\theta_0}, \theta_0 \in \Theta$.
- $\hat{\theta}_n = \hat{\theta}_n(\mathbf{X}_n)$ is the MLE of θ_0
- Regularity conditions are satisfied such that

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \mathrm{I}^{-1}(\theta_0)).$$

- The prior distribution on Θ has density $\pi(\cdot)$ which is continuous and positive at all $\theta' \in \Theta$.
- Consider the scaled version of the posterior distribution: $\mathcal{L}\left(\sqrt{n}(\theta - \hat{\theta}) \mid \mathbf{X}_n\right)$

Under sufficient regularity conditions:

$$\mathcal{L}\left(\sqrt{n}(\theta - \hat{\theta}) \mid \mathbf{X}_n\right) \longrightarrow \mathcal{N}(0, \mathrm{I}^{-1}(\theta_0))$$

i.e.,

$$\pi\left(\sqrt{n}(\theta - \hat{\theta}) \leq x \mid \mathbf{X}_n\right) \longrightarrow \Phi(x\sqrt{\mathrm{I}(\theta_0)})_{\mathbb{R} \times \mathbb{C}^*}$$

Consistency of Posterior Distribution Asymptotic Normality of Posterior Distribution Mutual Optimality of Bayes and MLE Procedures

Bernstein / Von Mises Theorem

Proof:

• To compute the asymptotic distribution of $\sqrt{n}(\theta - \hat{\theta}(\mathbf{X}_n))$, define

$$t = \sqrt{n}(\theta - \hat{\theta}(\mathbf{X}_n))$$

so that

$$\theta = \hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}.$$

• The posterior density of t given \mathbf{X}_n is

$$q_n(t) \propto \pi(\hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^n p(X_i \mid \hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) \\ = c_n^{-1} \pi(\hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^n p(X_i \mid \hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) \\ \text{where } c_n = \int_{-\infty}^\infty \pi(\hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^n p(X_i \mid \hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) dt.$$

• Divide numerator and denominator of $q_n(t)$ by $\prod_{i=1}^n p(X_i \mid \hat{\theta}(\mathbf{X}_n))$

< 口 > < 同 > < 三 > < 三

Bernstein / Von Mises Theorem

Proof (continued)

$$\begin{aligned} q_n(t) &= c_n^{-1} \pi(\hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) \prod_{i=1}^n p(X_i \mid \hat{\theta}(\mathbf{X}_n) + \frac{t}{\sqrt{n}}) \\ &= c_n^{-1} \pi(\hat{\theta} + \frac{t}{\sqrt{n}}) \exp\{\sum_{i=1}^n \log(p(X_i \mid \hat{\theta} + \frac{t}{\sqrt{n}}))\} \\ &= d_n^{-1} \pi(\hat{\theta} + \frac{t}{\sqrt{n}}) \exp\{\sum_{i=1}^n \ell(X_i \mid \hat{\theta} + \frac{t}{\sqrt{n}}) - \ell(X_i, \hat{\theta})\} \end{aligned}$$

where

$$d_n = \int_{-\infty}^{\infty} \pi(\hat{\theta} + \frac{t}{\sqrt{n}}) \exp\{\sum_{i=1}^n \ell(X_i \mid \hat{\theta} + \frac{t}{\sqrt{n}}) - \ell(X_i, \hat{\theta})\} dt$$
Claims

•
$$d_n q_n(t) \xrightarrow{P_{\theta_0}} \pi(\theta_0) \exp\{-\frac{t^2 I(\theta_0)}{2}\}$$

• $d_n \xrightarrow{P_{\theta_0}} \pi(\theta_0) \int_{-\infty}^{\infty} \exp\{-\frac{s^2 I(\theta_0)}{2}\} ds = \frac{\pi(\theta_0)\sqrt{2\pi}}{\sqrt{I(\theta_0)}}$

which give:

$$q_n \xrightarrow{P_{\theta_0}} \sqrt{\mathrm{I}(\theta_0)} \phi(t\sqrt{\mathrm{I}(\theta_0)}).$$

Theorem follows by Scheffe's Theorem (B.7.6).

э

Limiting Posterior Distributions: Examples

Posterior Distribution of Normal Mean

- X_1, \ldots, X_n iid $N(\theta_0, \sigma^2)$ with σ^2 known.
- Prior distribution: $\theta \sim N(\eta, \tau^2)$.
- Posterior distribution:

$$\pi(\theta \mid \mathbf{X}_n) = N(\eta_n, \tau_n^2),$$

where

$$au_n^{-2} = au^{-2} + rac{n}{\sigma^2}$$

 $\eta_n = w_n \eta + (1 - w_n) \overline{X}$, with $w_n = rac{\sigma^2}{n \tau^2 + \sigma^2}$

Note:

•
$$\eta_n \longrightarrow \hat{\theta} = \overline{X}, \ \tau_n^2 \longrightarrow 0, \text{ and } \overline{X} \xrightarrow{P_{\theta_0}} \theta, \text{ so}$$

 $\pi(\theta \mid \mathbf{X}_n) \xrightarrow{P_{\theta_0}} \text{ point-mass at } \theta = \theta_0.$

• A posteriori,

ν

$$\overline{n}(heta - \hat{ heta}) \sim N(\sqrt{n}w_n(\eta - \overline{X}), n(rac{n}{\sigma^2} + rac{1}{\tau^2})^{-1}) \ \longrightarrow N(0, \mathrm{I}^{-1}(heta_0)) = N(0, \sigma_{\mathrm{e}}^2)$$

Limiting Posterior Distributions: Examples

Posterior Distribution of Success Probability in Bernoulli Trials

- X_1, \ldots, X_n iid Bernoulli (θ_0) .
- $S_n = \sum_{i=1}^{n} X_i \sim Binomial(n, \theta_0).$
- Prior distribution: $\theta \sim Beta(r, s)$.
- Posterior distribution θ | S_n ~ Beta(r^{*}, s^{*}), where r^{*} = S_n + r, and s^{*} = s + (n − S_n).
- By Problem 5.3.20, if $r^* \to \infty$ and $s^* \to \infty$ such that $r^*/(r^* + s^*) \to \theta_0 \in (0, 1)$, then the $Beta(r^*, s^*)$ r.v. θ : $P\left[\sqrt{r^* + s^*} \frac{(\theta - r^*/(r^* + s^*))}{\sqrt{\theta_0(1 - \theta_0)}}\right] \longrightarrow N(0, 1).$

This is easily shown to be equivalent to

$$\sqrt{n}(heta-\overline{X}) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, heta_0(1- heta_0)) = \mathcal{N}(0,\mathrm{I}^{-1}(heta_0))$$

Consistency of Posterior Distribution Asymptotic Normality of Posterior Distribution Mutual Optimality of Bayes and MLE Procedures

Outline

1 Asymptotics of Bayes Posterior Distributions

- Consistency of Posterior Distribution
- Asymptotic Normality of Posterior Distribution
- Mutual Optimality of Bayes and MLE Procedures

2 Large Sample Tests

- Likelihood Ratio Tests
- Wald's Large Sample Test
- The Rao Score Test

Mutual Optimality of Bayes and MLE Procedures

Theorem 5.5.3 Under the conditions of the previous theorems, let $\hat{\theta}$ be the MLE of θ and let $\hat{\theta}^*$ be the median of the posterior distribution of θ . Then

(i). From a frequentist point of view, i.e., given P_{θ} :

$$\begin{split} &\sqrt{n}(\hat{\theta}^* - \hat{\theta}) \xrightarrow{a.s.P_{\theta}} 0, \text{ for all } \theta \\ &\hat{\theta}^* = \theta + \frac{1}{n} \sum_{i=1}^{n} \mathrm{I}^{-1}(\theta) \frac{\partial \ell}{\partial \theta}(X_i, \theta) + o_{P_{\theta}}(n^{-1/2}) \\ &\sqrt{n}(\hat{\theta}^* - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \mathrm{I}^{-1}(\theta)). \end{split}$$

(ii). From a Bayesian point of view, i.e., for $\pi(\theta \mid X_1, \dots, X_n)$: $E[\sqrt{n}(|\theta - \hat{\theta})| - |\theta - \hat{\theta}^*|) \mid X_1, \dots, X_n] = o_P(1)$, and

$$E[\sqrt{n}(|\theta - \hat{\theta})| - |\theta|) | X_1, \dots, X_n] = \min_d \left(E[\sqrt{n}(|\theta - d)| - |\theta|) | X_1, \dots, X_n] \right) + o_P(1).$$

- 同 ト - ヨ ト - - ヨ ト

Mutual Optimality of Bayes and MLE Procedures

Significant Results

- Bayes estimates for a wide variety of loss functions and priors are asymptotically efficient in the sense being asymptotically unbiased with minimum asymptotic variance.
- Maximum-likelihood estimates are asymptotically equivalent in a Bayesian sense to the Bayes estimate for a variety of priors and loss functions.
 - E.g., the Bayesian posterior median with $L(\theta, d) = |\theta d|$, the Bayesian posterior mean with $L(\theta, d) = |\theta - d|^2$.

・ロト ・同ト ・ヨト ・ヨト

Bayes Credible Regions

Theorem 5.5.4 Under the conditions of the previous theorems, consider

• The Bayes Credible Region:

 $C_n(X_1,\ldots,X_n) = \{\theta : \pi(\theta \mid X_1,\ldots,X_n) \ge c_n\},$ where c_n is chosen so that $\pi(C_n \mid X_1,\ldots,X_n) = 1 - \alpha$.

• For $\gamma : 0 < \gamma < 1$, the level $(1 - \gamma)$ Asymptotically Optimal Interval Estimate based on $\hat{\theta}$, given by $Interval_n(\gamma) = [\hat{\theta} - d_n(\gamma), \hat{\theta} + d_n(\gamma)]$ where $d_n(\gamma) = [\Phi^{-1}(1 - \gamma/2)] \times (\frac{1}{\sqrt{n}\sqrt{[I(\theta_0)]}})$.

Then, for every $\epsilon > 0$, and every θ : $P_{\theta}[Interval_n(\alpha + \epsilon) \subset C_n(X_1, \dots, X_n) \subset Interval_n(\alpha - \epsilon)] \longrightarrow 1$

イロト イポト イラト イラト

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

Outline

Asymptotics of Bayes Posterior Distributions

- Consistency of Posterior Distribution
- Asymptotic Normality of Posterior Distribution
- Mutual Optimality of Bayes and MLE Procedures

2 Large Sample Tests

- Likelihood Ratio Tests
- Wald's Large Sample Test
- The Rao Score Test

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

Likelihood Ratio Test

Likelihood Ratio Test Statistic

- $\mathbf{X}_n = (X_1, \ldots, X_n)$ iid $P_{\theta}, \theta \in \Theta$.
- Testing null vs alternative hypotheses:
 H : θ ∈ Θ₀ vs K : θ ∉ Θ₀.
- Likelihood ratio statistic: $\lambda(\mathbf{x}_n) = \frac{\sup_{\theta \in \Theta} p(\mathbf{x}_n \mid \theta)}{\sup_{\theta \in \Theta_0} p(\mathbf{x}_n \mid \theta)}$

Standard transformation:

$$2 \log \lambda(\mathbf{x}_n) = 2[\ell_n(\hat{\theta} \mid \mathbf{x}_n) - \ell_n(\hat{\theta}_0 \mid \mathbf{x}_n)]$$

where $\hat{\theta}(\mathbf{x}_n)$ is the MLE (over all Θ) and $\hat{\theta}_0(\mathbf{x}_n)$ is the MLE
under $H : \theta \in \Theta_0$.

Theorem 6.3.1 Given suitable assumptions (e.g. Theorem 6.2.2), if $\Theta \subset R^r$, and $H : \theta = \theta_0$ is true, then $2 \log \lambda(\mathbf{x}) = 2[\ell_n(\hat{\theta} \mid \mathbf{x}) - \ell_n(\theta_0)] \xrightarrow{\mathcal{L}} \chi_r^2$,

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

Theorem 6.2.2 Proof

• By Theorem 6.2.2. Given suitable assumptions, the MLE $\hat{\theta}(\mathbf{x}_n)$ satisfies $\hat{\theta}(\mathbf{x}_n) = \theta + \frac{1}{n} \sum_{i=1}^{n} \mathrm{I}^{-1}(\theta) D\ell(X_i, \theta) + o_P(n^{-1/2})$ so that

$$\sqrt{n}(\hat{\theta}(\mathbf{x}_n) - \theta) \xrightarrow{\mathcal{L}} N(0, \mathrm{I}^{-1}(\theta)).$$

• The Taylor expansion of $\ell_n(\theta)$ about $\hat{\theta}(\mathbf{x}_n)$ evaluated at $\theta = \theta_0$ gives $2 \log \lambda(\mathbf{x}) = 2[\ell_n(\hat{\theta} \mid \mathbf{x}) - \ell_n(\theta_0 \mid \mathbf{X})]$ $= n(\hat{\theta}(\mathbf{x}_n) - \theta_0)^T I_n(\theta^*)(\hat{\theta}(\mathbf{x}_n) - \theta_0)$ where $I_n(\theta) = || - \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \theta_k} \frac{\partial}{\partial \theta_j} \log p(X_i \mid \theta) ||$, the $r \times r$ matrix: $I_n(\theta) \xrightarrow{\mathcal{P}_{\theta_0}} I(\theta_0)$

(4月) (1日) (日)

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

Theorem 6.2.2 Proof (continued)

• With
$$\mathbf{V} \sim N(0, \mathbf{I}^{-1}(\theta_0))$$
,
 $2 \log \lambda(\mathbf{x}) = 2[\ell_n(\hat{\theta} \mid \mathbf{x}) - \ell_n(\theta_0 \mid \mathbf{X})]$
 $= n(\hat{\theta}(\mathbf{x}_n) - \theta_0)^T \mathbf{I}_n(\theta^*)(\hat{\theta}(\mathbf{x}_n) - \theta_0)$
 $\xrightarrow{\mathcal{L}} \mathbf{V}^T \mathbf{I}(\theta_0) \mathbf{V}$
and by Corollary B.6.2
 $\mathbf{V}^T \mathbf{I}(\theta_0) \mathbf{V} \sim \chi_r^2$.

Theorem 6.3.2 Given suitable assumptions (e.g. Theorem 6.2.2), if $\Theta \subset R^r$, and $H : \theta \in \Theta_0$ with Θ_0 of dimension q < r, then $2 \log \lambda(\mathbf{x}) = 2[\ell_n(\hat{\theta} \mid \mathbf{x}) - \ell_n(\hat{\theta}_0 \mid \mathbf{X})] \xrightarrow{\mathcal{L}} \chi^2_{r-q}.$

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

Outline

Asymptotics of Bayes Posterior Distributions

- Consistency of Posterior Distribution
- Asymptotic Normality of Posterior Distribution
- Mutual Optimality of Bayes and MLE Procedures

2 Large Sample Tests

- Likelihood Ratio Tests
- Wald's Large Sample Test
- The Rao Score Test

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

The Wald Test

The asymptotic level- α Wald Test of the simple hypothesis

$$H: \theta = \theta_0 \text{ vs } K: \theta \neq \theta_0$$

rejects H when

$$W_n(\theta_0) = n(\hat{\theta}(\mathbf{x}_n) - \theta_0)^T I(\theta_0)(\hat{\theta}(\mathbf{x}_n) - \theta_0) \ge C^*,$$

where the critical value C^* is such that $P(\chi_r^2 > C^*) = 1 - \alpha.$

• Under the assumptions of Theorem 6.2.2

$$\sqrt{n}(\hat{\theta}(\mathbf{x}_n) - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \mathrm{I}^{-1}(\theta)).$$

• By Slutsky's theorem:

$$\begin{split} & n(\hat{\theta}(\mathbf{x}_n) - \theta)^{T} \mathrm{I}(\theta)(\hat{\theta}(\mathbf{x}_n) - \theta) \xrightarrow{\mathcal{L}} \mathbf{V}^{T} \mathrm{I}(\theta) \mathbf{V} \\ & \text{where } \mathbf{V} \sim \mathcal{N}_r(0, \mathrm{I}^{-1}(\theta)). \end{split}$$

The Wald Test extends to apply to a composite null hypothesis $H: \theta \in \Theta_0 \subset R^q$. If the MLE $\hat{\theta}_0(\mathbf{x}_n)$ under the null is consistent, then it can replace θ_0 in the Wald Test statistic which is asymptotically χ^2_{r-q} under H, where q is the dimensionality of Θ_0 .

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

Outline

Asymptotics of Bayes Posterior Distributions

- Consistency of Posterior Distribution
- Asymptotic Normality of Posterior Distribution
- Mutual Optimality of Bayes and MLE Procedures

2 Large Sample Tests

- Likelihood Ratio Tests
- Wald's Large Sample Test
- The Rao Score Test

Likelihood Ratio Tests Wald's Large Sample Test The Rao Score Test

The Rao Score Test

- Simple hypothesis $H: \theta = \theta_0$.
- Apply the Central Limit Theorem to the maximum-likelihood contrast function, evaluated at θ = θ₀:

$$\psi_n(\theta_0) = \frac{1}{n} \sum_{i=1}^n D_{\theta} \ell_n(\theta_0) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \mathbf{I}(\theta_0)),$$

when H is true.

• It follows taht under H

$$R_n(\theta_0) = n\psi_n^{\mathsf{T}}(\theta_0) \mathrm{I}^{-1}(\theta_0) \psi_n(\theta_0) \xrightarrow{\mathcal{L}} \chi_r^2.$$

The asymptotic level- α Rao Score Test rejects ${\cal H}$ when

$$R_n(heta_0) \ge C^*$$

where $C^* : P(\chi_r^2 > C^*) = 1 - lpha$.
Notes:

- The Rao Score Test does not require the MLE!!
- Extension to composite null hypothesis *H* only requires MLE under *H* (see Theorem 6.3.5).

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.