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Consistency of Posterior Distribution

Framework
@ X1,...,X,iid Py,0 € ©.
@ O (open) C Ror © = {61,...,0,} finite.
@ Regular model with identifiable 6.

Consistency: Finite ©

Posterior distribution of 6 given X, = (X1,...,X;) :
70 | X)) = PO =0 | Xi,...,X,], 0 €O,

Definition: 7(- | X,,) is consistent if and only if for every ¢’ € ©,
Pgl[‘ﬂ'(@l ‘ Xn) — 1’] >e—0

for all € > 0.

Definition: 7(- | X,,) is a.s. (almost surely) consistent if and

only if for every §' € ©,

a.s.Pyr

(0| X,) —=
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Consistency of Posterior Distribution

Theorem 5.5.1 Let m; = P[0 = 0;], j =1,..., k denote the prior
distribution of 6. Then

7(- | Xp) is consistent iff w; > 0, for all 7; € ©.
Proof:

o Let p(x | 0) denote the density/pmf function of a single X;.
The posterior distribution is given by:
7T(9j | Xl,...,Xn) = P[QZQJ | Xl,...,Xn]
i [Ty p(Xi | 67)
Z§:1 ma [1i21 P(Xi | 0a)
If any 7; = 0, then 7(6; | X,) = 0 for all n; i.e., the posterior
is not consistent.
@ Suppose all m; > 0. For a fixed j, suppose 0; is true, i.e.,
0=0,.
We show that
w(0; | Xp) — 1 and 7(6, | X,) — 0, for a # .
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Consistency Theorem Proof

Proof (continued)
Evaluate the log of the posterior odds to the true 6 :

W(Qa ‘ Xn):| K Hn 1p(X | 0a ):|
log [ = log .
m(0; | Xn) WJH, 1P(Xi | 67)
[1iey p(Xi | 02 )}
[T p(X; | 0;)
_ E n p(X,"@a)
= log _FJ.] + Sy log | 5505
_ 1 p(Xilfa)
= ( log [ J + 137 log [p(&-l@-)])
p(X1]6a)
a + Ellog [5R]])
if a=j
—oo if a#j
(Shannon’s Inequality gives E [ [ i?l‘za H < 0, for a # j)

= log|— +Ig[
L 7j
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Asymptotic Normality of Posterior Distribution

Theorem 5.5.2 (“Bernstein/von Mises”).
X, = (X1,...,Xp) where the X; are iid Py,, 6y € ©.

0, = 0,(X,) is the MLE of 6
Regularity conditions are satisfied such that
(0, — 00) —= N(0,T71(6o)).
The prior distribution on © has density () which is
continuous and positive at all ' € ©.

Consider the scaled version of the posterior distribution:
£ (va(o 0y | X,)

Under sufficient regularity conditions:
£ (Vo = 8) | Xa) — N(O, T7(60))

ie.,

m (VA0 = 0) < x| X, ) — ®(xy/I(0))
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Bernstein / Von Mises Theorem

Proof:

o To compute the asymptotic distribution of \/n(0 — (X)),
define

t=/n(0 — 6(X,))
so that
-0 _t
0 =6(Xn)+ -
@ The posterior density of t given X,, is

N

gn(t) W(H(XZ) + ﬁ) [T72: p(Xi | é(XrAr) +7)
= c;l (0(X,) + ﬁ) H7:1 p(Xi | 0(Xn) + ﬁ)
where ¢, = ffooo ﬂ(é(Xn) + ﬁ) [T p(Xi | é(X,,) + ﬁ)dt‘

e Divide numerator and denominator of g,(t) by
[Tisy p(Xi | 0(Xn))

S|
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Bernstein / Von Mises Theorem

Proof (continued)

a®) = & (0Xn) + )Ty O | 0(X0) + 55)
= cn‘lﬂ(9+7)exp{2, 1 log(p(Xi | 0+ =)} o
= ditn(0+ F)ep{ S (06 |8+ f5) — 0, 0)
where

~

dy = [7 70+ Z)exp{21 60X | 6+ 15) — (X, 8)}dt
Claims

5

P
o dnqn(t) — 2 m(flo)exp{— 1)}

P
e d, % 7(6o) ffooo exp{—szlée0 tds = 90)(;/02?

which give:
Ps
dn — V I(90)¢(t
Theorem follows by Scheffe's Theorem (B.7.6).
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Limiting Posterior Distributions: Examples

Posterior Distribution of Normal Mean
® Xi,..., X, iid N(6g,c?) with o2 known.
o Prior distribution: 8 ~ N(n,72).
@ Posterior distribution:
76 Xs) = Ni1a, 72).
where
7_;2 — 7_72 4 ﬁ

N = wan + (1 — wy) X, with w, =

_a®
nT2+402

Note:
N — — P
017,,—>9:X,T,2,—>0,andX—9—°—>0,so

P
(0| Xp) — , point-mass at 6 = .
@ A posteriori, A o
V(0 —0)  ~  N(/nwa(n = X),n(% + %))
— N(07 I71(90)) 5 N(Oa 02)
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Limiting Posterior Distributions: Examples

Posterior Distribution of Success Probability in Bernoulli
Trials
e Xi,..., X, iid Bernoulli(6p).
e S, =>1X;~ Binomial(n,6p).
@ Prior distribution: 6 ~ Beta(r,s).
e Posterior distribution 6 | S, ~ Beta(r*,s*),
where r* =5, +r,and s* =s+ (n—5,).
@ By Problem 5.3.20, if r* — 0o and s* — oo such that
r*/(r +s*) — 60 € (0,1), then the Beta(r*,s*) r.v. 6:

* ¥ (0=r*/(r*+s*))
P [\/r +s NG ] — N(0,1).

This is easily shown to be equivalent to
V(8 —X) £+ N0, 6o(1 — 60)) = N(0,17%(6o))
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Mutual Optimality of Bayes and MLE Procedures

Theorem 5.5.3 Under the E:onditions of the previous theorems, let
0 be the MLE of 6 and let 6* be the median of the posterior
distribution of #. Then
(i). From a frequentist point of view, i.e., given Py:

ﬁ(é* — HA) 2P0 50, for all 6

0" =60+ L3 17H0) 55(Xi,0) + op, (n71/?)

/(6% — 0) =5 N(0,171(6)).

(ii). From a Bayesian point of view, i.e., for w(6 | Xi,...,Xp):
E[\/ﬁ(w - 9)| - |9 - 9*‘) ‘ X17 o aXn] = OP(]')’ and

ELV/A(0 —0)] — 16]) | X, Xo] =
min (E[Va(10 — o) = 16]) | X .-, Xa]) + 0p(1).
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Mutual Optimality of Bayes and MLE Procedures

Significant Results

@ Bayes estimates for a wide variety of loss functions and priors
are asymptotically efficient in the sense being asymptotically
unbiased with minimum asymptotic variance.

@ Maximume-likelihood estimates are asymptotically equivalent
in a Bayesian sense to the Bayes estimate for a variety of
priors and loss functions.

E.g., the Bayesian posterior median with L(0,d) = |0 — d|,
the Bayesian posterior mean with L(,d) = |6 — d|?.
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Bayes Credible Regions

Theorem 5.5.4 Under the conditions of the previous theorems,
consider

@ The Bayes Credible Region:
Co(X1,..., Xn)={0:7(0| X1,...,Xn) > cn},
where ¢, is chosen so that 7(C, | X1,...,X,) =1— a.
@ For v:0 < v <1, the level (1A— ~) Asymptotically Optimal
Interval Estimate based on 6, given by
Intervaln(v) = [0 — da(7),0 + dln(v)]
where d, =[d71(1 - ~/2)] X (———).
n(7) = [®7 (1 —~/2)] (ﬁ [1(00)])
Then, for every € > 0, and every 6:
Py [Interval,(a 4 €) C Ch(X1, ..., Xn) C Intervaly(a — €)] — 1
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Likelihood Ratio Test Statistic

o X,=(Xq,...,Xy) iid Py,0 € ©.
@ Testing null vs alternative hypotheses:
H:0€0©yvs K:0&0y.
@ Likelihood ratio statistic:
A(Xn) — SUPgeco p(xn | 9)
supgee, P(Xn | 0)
Standard transformation: A A
2log A(xn) = 2[€n(€ | xn) — £n(60 | xn)]
where 6(x,) is the MLE (over all ©) and 6y(x,) is the MLE
under H : 6 € ©q.

Theorem 6.3.1 Given suitable assumptions (e.g. Theorem 6.2.2),
if © C R",and H: 0 = 6 is true, then

210g A(x) = 2[0n(B | X) — £n(60)] = X2,
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Theorem 6.2.2 Proof

@ By Theorem 6.2.2. Given suitable assumptions, the MLE
0(x,) satisfies
Bxa) = 0+ 1 30 T74(6)DE(X;, 0) + op(n~1/2)
so that

V(0(xq) — 0) £ N(0,T71(6)).

e The Taylor expansion of £,(6) about f(x,) evaluated at
0 = 6y gives A
2log A(x) = 2[£n(0 [ x) — £n(f0 | X)]
= n(9(xn) — 00) T1n(6%)(6(xn) — o)
where In(0) = || — £ 3271 55, ag; log P(Xi | O)]].

Po,
the r x r matrix: I,(6) — 1(6p)
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Theorem 6.2.2 Proof (continued)

o With V ~ N(0,171(6)),

2logA\(x) = 2[e(é\x)—€(olx)j
= n(0(xn) — 00) "1n(6%)(0(xn) — 60)
£y VTGV

and by Corollary B.6.2
VTI(6p)V ~ x2.

Theorem 6.3.2 Given suitable assumptions (e.g. Theorem 6.2.2),
if © C R", and H : 0 € ©g with ©g of dimension g < r, then

210g A(x) = 2[£n(8 | x) = £a(fo | X)] = X2
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The Wald Test

The asymptotic level-ac Wald Test of the simple hypothesis
H:0=20¢vs K:0# 6
rejects H when
Wa(60) = n(B(xs) — 60) T1(60)(A(x,) — 6o) > C*,
where the critical value C* is such that P(x2 > C*) =1 — a.

@ Under the assumptions of Theorem 6.2.2

A

Vi(0(x) - 6) = N(0,171(9)).
@ By Slutsky's theorem:
n(@(x) — 0)T1(0)(A(xn) — 0) = VTI(O)V
where V ~ N,(0,171()).
The Wald Test extends to apply to a composite null hypothesis
H:6 € ©y C RI. If the MLE fy(x,,) under the null is consistent,
then it can replace 6y in the Wald Test statistic which is
asymptotically Xf,q under H, where g is the dimensionality of Oy.
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The Rao Score Test

@ Simple hypothesis H : 6 = 6.
@ Apply the Central Limit Theorem to the maximum-likelihood
contrast function, evaluated at 6 = 0q:
Unlf0) = § 21y Dota(B) ~=> N(0.T(%)),
when H is true.
o It follows taht under H
Ra(00) = mi] (60)I~(6o)n(00) = x2.
The asymptotic level-a Rao Score Test rejects H when
Rn(00) > C*
where C*: P(x\2 > C*)=1—-a.
Notes:
@ The Rao Score Test does not require the MLE!!

@ Extension to composite null hypothesis H only requires MLE
under H (see Theorem 6.3.5).

23 MIT 18.655 Asymptotics |lI: Bayes Inference and Large-Sample Tests



MIT OpenCourseWare
http://ocw.mit.edu

18.655 Mathematical Statistics
Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu/terms
http://ocw.mit.edu/

	Asymptotics of Bayes Posterior Distributions
	Consistency of Posterior Distribution
	Asymptotic Normality of Posterior Distribution
	Mutual Optimality of Bayes and MLE Procedures

	Large Sample Tests
	Likelihood Ratio Tests
	Wald's Large Sample Test
	The Rao Score Test




