Statistical Models

MIT 18.655

Dr. Kempthorne

Spring 2016

æ

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models

- Definitions
- Examples
- Modeling Issues
- Regression Models
- Time Series Models

< 17 ▶

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Definitions

Def: Statistical Model

- Random experiment with sample space Ω .
- Random vector X = (X₁, X₂,..., X_n) defined on Ω.
 ω ∈ Ω: outcome of experiment X(ω): data observations
- Probability distribution of X
 - \mathcal{X} : Sample Space = {outcomes x} \mathcal{F}_X : sigma-field of measurable events
 - $P(\cdot)$ defined on $(\mathcal{X}, \mathcal{F}_X)$

Statistical Model

 $\mathcal{P} = \{ \mathsf{family of distributions} \}$

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Definitions

Def: Parameters / Parametrization

• Parameter θ identifies/specifies distribution in \mathcal{P} .

•
$$\mathcal{P} = \{ P_{\theta}, \theta \in \Theta \}$$

•
$$\Theta = \{\theta\}$$
, the Parameter Space

< A >

Definitions Examples Modeling Issues Regression Models Time Series Models

1 Statistical Models

Definitions

• Examples

- Modeling Issues
- Regression Models
- Time Series Models

< □ > <

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Examples

Example 1.1.1 Sampling Inspection

- Shipment of manufactured items inspected for defects
- N = Total number of items
- $N\theta =$ Number of defective items
- Sample *n* < *N* items without replacement and inspect for defects
- X = Number of defective items in the sample

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Sampling Inspection Example

Probability Model for X

•
$$\mathcal{X} = \{x\} = \{0, 1, \dots, n\}.$$

- Parameter θ : proportion of defective items in shipment $\Theta = \{\theta\} = \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}\}.$
- Probability distribution of X

$$P(X = k) = \frac{\binom{N\theta}{k}\binom{N-N\theta}{n-k}}{\binom{N}{n}}$$

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Sampling Inspection Example

Probability Model for X (continued)

▲ 同 ▶ → 三 ▶

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Examples

Example 1.1.2 One-Sample Model

X₁, X₂,..., X_n i.i.d. with distribution function F(·).
 E.g., Sample n members of a large population at random and measure attribute X

E.g., *n* independent measurements of a physical constant μ in a scientific experiment.

- Probability Model: $\mathcal{P} = \{ \text{distribution functions } F(\cdot) \}$
- Measurement Error Model:

 $\begin{aligned} X_i &= \mu + \epsilon_i, \ i = 1, 2, \dots, n \\ \mu \text{ is constant parameter (e.g., real-valued, positive)} \\ \epsilon_1, \epsilon_2, \dots, \epsilon_n \text{ i.i.d. with distribution function } G(\cdot) \\ & (G \text{ does not depend on } \mu.) \end{aligned}$

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Examples

Example 1.1.2 One-Sample Model (continued)

$$X_i = \mu + \epsilon_i, i = 1, 2, ..., n$$

 μ is constant parameter (e.g., real-valued,

 $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ i.i.d. with distribution function $G(\cdot)$

positive)

Image: A image: A

(G does not depend on μ .)

$$\implies X_1, \dots, X_n \text{ i.i.d. with distribution function} F(x) = G(x - \mu). \mathcal{P} = \{(\mu, G) : \mu \in R, G \in \mathcal{G}\} where $\mathcal{G} \text{ is } \dots$$$

Definitions Examples Modeling Issues Regression Models Time Series Models

Example: One-Sample Model

Special Cases:

- Parametric Model: Gaussian measurement errors $\{\epsilon_j\}$ are i.i.d. $N(0, \sigma^2)$, with $\sigma^2 > 0$, unknown.
- Semi-Parametric Model: Symmetric measurement-error distributions with mean μ
 {ε_j} are i.i.d. with distribution function G(·), where G ∈ G,
 the class of symmetric distributions with mean 0.
- Non-Parametric Model: X_1, \ldots, X_n are i.i.d. with distribution function $G(\cdot)$ where

 $G \in \mathcal{G}$, the class of all distributions

on the sample space \mathcal{X} (with center μ)

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Examples

Example 1.1.3 Two-Sample Model

- X_1, X_2, \ldots, X_n i.i.d. with distribution function $F(\cdot)$
- Y₁, Y₂,..., Y_m i.i.d. with distribution function G(·)
 E.g., Sample n members of population A at random and m members of population B and measure some attribute of population members.
- Probability Model: $\mathcal{P} = \{(F, G), F \in \mathcal{F}, \text{ and } G \in \mathcal{G}\}$ Specific cases relate \mathcal{F} and \mathcal{G}
- Shift Model with parameter δ
 - $\{X_i\}$ i.i.d. $X \sim F(\cdot)$, response under Treatment A.
 - $\{Y_j\}$ i.i.d. $Y \sim G(\cdot)$, response under Treatment B.
 - $Y = X + \delta$, i.e., $G(v) = F(v \delta)$
 - δ is the difference in response with Treatment *B* instead of Treatment *A*.

Definitions Examples Modeling Issues Regression Models Time Series Models

1 Statistical Models

- Definitions
- Examples
- Modeling Issues
- Regression Models
- Time Series Models

< 1 → <

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Modeling Issues

Issues

- Non-uniqueness of parametrization.
- Varying complexity of equivalent parametrizations
- Possible Non-Identifiability of parameters

Does $\theta_1 \neq \theta_2$ but $P_{\theta_1} = P_{\theta_2}$?

- Parameters "of interest" vs "Nuisance "parameters
- A vector parametrization that is unidentifiable may have identifiable components.
- Data-based model selection How does using the data to select among models affect statistical inference?
- Data-based sampling procedures How does the protocol for collecting data observations affect statistical inference?

Definitions Examples Modeling Issues Regression Models Time Series Models

Regular Models

Notation:

- θ : a parameter specifying a probability distribution P_{θ} .
- $F(\cdot \mid \theta)$: Distributon function of P_{θ}
- E_θ[·]: Expectation under the assumption X ~ P_θ. For a measurable function g(X),
 E_θ[g(X)] = ∫_Y g(x)dF(x | θ).

• $p(x \mid \theta) = p(x; \theta)$: density or probability-mass function of X Assumptions:

- Either All of the P_θ are continuous with densities p(x | θ),
 Or All of the P_θ are discrete with pmf's p(x | θ)
- The set $\{x : p(x \mid \theta) > 0\}$ is the same for all $\theta \in \Theta$.

Definitions Examples Modeling Issues Regression Models Time Series Models

1 Statistical Models

- Definitions
- Examples
- Modeling Issues
- Regression Models
- Time Series Models

< □ > <

Definitions Examples Modeling Issues Regression Models Time Series Models

Regression Models

- *n* cases $i = 1, 2, \ldots, n$
 - 1 Response (dependent) variable y_i, i = 1, 2, ..., n
 - *p* Explanatory (independent) variables $\mathbf{x}_i = (x_{i,1}, x_{i,2}, \dots, x_{i,p})^T, i = 1, 2, \dots, n$

Goal of Regression Analysis:

• Extract/exploit relationship between y_i and \mathbf{x}_i .

Examples

- Prediction
- Causal Inference
- Approximation
- Functional Relationships

Definitions Examples Modeling Issues **Regression Models** Time Series Models

General Linear Model: For each case *i*, the conditional distribution $[y_i | x_i]$ is given by $y_i = \hat{y}_i + \epsilon_i$

where

- $\hat{y}_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_{i,p} x_{i,p}$
- β = (β₁, β₂,..., β_p)^T are p regression parameters (constant over all cases)
- *ϵ_i* Residual (error) variable (varies over all cases)

Extensive breadth of possible models

- Polynomial approximation (x_{i,j} = (x_i)^j, explanatory variables are different powers of the same variable x = x_i)
- Fourier Series: (x_{i,j} = sin(jx_i) or cos(jx_i), explanatory variables are different sin/cos terms of a Fourier series expansion)
- Time series regressions: time indexed by *i*, and explanatory variables include lagged response values.

Note: Linearity of \hat{y}_i (in regression parameters) maintained with non-linear x.

Definitions Examples Modeling Issues Regression Models Time Series Models

Steps for Fitting a Model

- (1) Propose a model in terms of
 - Response variable Y (specify the scale)
 - Explanatory variables $X_1, X_2, \dots X_p$ (include different functions of explanatory variables if appropriate)
 - Assumptions about the distribution of $\boldsymbol{\epsilon}$ over the cases
- (2) Specify/define a criterion for judging different estimators.
- (3) Characterize the best estimator and apply it to the given data.
- (4) Check the assumptions in (1).
- (5) If necessary modify model and/or assumptions and go to (1).

Specifying Assumptions in (1) for Residual Distribution

- Gauss-Markov: zero mean, constant variance, uncorrelated
- Normal-linear models: ϵ_i are i.i.d. $N(0, \sigma^2)$ r.v.s
- Generalized Gauss-Markov: zero mean, and general covariance matrix (possibly correlated, possibly heteroscedastic)
- Non-normal/non-Gaussian distributions (e.g., Laplace, Pareto, Contaminated normal: some fraction (1 – δ) of the ε_i are i.i.d. N(0, σ²) r.v.s the remaining fraction (δ) follows some contamination distribution).

Definitions Examples Modeling Issues Regression Models Time Series Models

Normal Linear Regression Model

$$\mathbf{Y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{\epsilon}$$

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{p,n} \end{bmatrix} \boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

$$\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, \dots, \epsilon_n)^T$$
 and ϵ_j are i.i.d. $N(0, \sigma^2)$
with density $f(\epsilon) = (2\pi\sigma^2)^{-\frac{1}{2}} exp(-\frac{1}{2\sigma^2} \cdot \epsilon^2)$

Multivariate Normal Probability Model $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ where $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$ and $\sigma^2 > 0$. $p(Y_1, Y_2, \dots, Y_n \mid \theta) = \prod_{i=1}^n f(Y_i - \mathbf{x}_j^T \boldsymbol{\beta})$, with parameter $\theta = (\boldsymbol{\beta}, \sigma^2) \in \Theta = R^{p_1} \times R_{\frac{1}{2}}$, with parameter $\theta = (\mathbf{\beta}, \sigma^2) \in \Theta = R^{p_2} \times R_{\frac{1}{2}}$, where $\boldsymbol{\mu} = \mathbf{X} \in \mathbb{R}$ and $\boldsymbol{\mu} = \mathbf{X} \in \mathbb{R}$.

Definitions Examples Modeling Issues Regression Models Time Series Models

1 Statistical Models

- Definitions
- Examples
- Modeling Issues
- Regression Models
- Time Series Models

< 1 → <

Definitions Examples Modeling Issues Regression Models Time Series Models

Statistical Models: Dependent Responses

Example 1.1.5 Measurement Model with Autoregressive Errors

X₁, X₂,..., X_n are n successive measurements of a physical constant μ

•
$$X_i = \mu + e_i, i = 1, 2, ..., n$$

•
$$e_i = \beta e_{i-1} + \epsilon_i$$
, $i = 2, 3, ..., n$, and $e_0 = 0$
where ϵ_i are i.i.d. with density $f(\cdot)$.

Note:

- The *e_i* are not i.i.d. (they are dependent).
- The X_i are dependent

$$X_i = \mu(1-\beta) + \beta X_{i-1} + \epsilon_i, \ i = 2, \dots, n$$

$$X_1 = \mu + \epsilon_1$$

Apply conditional probability theory to compute

$$p(e_1,...,e_n) = p(e_1)p(e_2 | e_1)p(e_3 | e_1, e_2)\cdots p(e_n | e_1,..., e_{n-1}) = p(e_1)p(e_2 | e_1)p(e_3 | e_2)\cdots p(e_n | e_{n-1}) = f(e_1)f(e_2 - \beta e_1)f(e_3 - \beta e_2)\cdots f(e_n - \beta e_{n-1})$$

Transform (e_1, \ldots, e_n) to (X_1, \ldots, X_n) where $e_i = X_i - \mu$

$$p(x_1,...,x_n) = f(e_1)f(e_2 - \beta e_1)f(e_3 - \beta e_2)\cdots f(e_n - \beta e_{n-1}) = f(x_1 - \mu)f(x_2 - \mu - \beta(x_1 - \mu))\cdots f(x_n - \mu - \beta(x_{n-1} - \mu)) = f(x_1 - \mu)\prod_{j=2}^n f(x_j - \beta x_{j-1} - (1 - \beta)\mu)$$

Gaussian AR(1) Model: f is $N(0, \sigma^2)$ density

$$p(x_1,...,x_n) = (2\pi\sigma^2)^{-\frac{n}{2}} exp\left\{-\frac{1}{2\sigma^2}\left[(x_1-\mu)^2 + \sum_{j=2}^n (x_j-\beta x_{j-1}-(1-\beta)\mu)^2\right]\right\}$$

Image: A image: A

Definitions Examples Modeling Issues Regression Models Time Series Models

- Problem 1.1.3 Identifiable parametrizations.
- Problem 1.1.4 Stochastically larger distributions in two-sample Models.
- Problem 1.1.7 Symmetric distributions and their properties.
- Problem 1.1.9 Collinearity: What conditions on X are required for the regression parameter β to be identifiable?
- Problem 1.1.11 Scale Models and Shift Models.
- Problem 1.1.12 Hazard rates and Cox proportional hazard model.
- Problem 1.1.14 The Pareto distribution.

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.