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Decision Theoretic Framework I. Basic Elements of a Decision Problem

Decision Problems of Statistical Inference

@ Estimation: estimating a real parameter § € © using data X
with conditional distribution Pjy.
o Testing: Given data X ~ Py, choosing between two
hypotheses (deciding whether to accept or reject Hp)
Ho : Py € Py (a set of special Ps)
H1 . Pg Q 7)0
@ Ranking: rank a collection of items from best to worst
e Products evaluated by consumer interest group

o Sports betting (horse race, team tournament, division
championship, etc.)

@ Prediction: predict response variable Y given explanatory
variables Z = (Z1, 25, ..., Zg).

o If know joint distribution of (Z,Y), use u(Z) = E[Y | Z]
o With data {(z,y;),i =1,2,...,n}, estimate p(Z).
If 1(2) = g(8, ), then use 4(Z) = g(5, 2)
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Basic Elements of a Decision Problem

© = {0} : The "State Space”

@ O = state of nature (unknown uncertainty element in the
problem)

A ={a} : The "Action Space”
@ a = action taken by statistician
L(6,a) : The “Loss Function”

@ L(0,a) = loss incurred when state is 6 and action a taken
e [:OxA—R

Example: Investing money in an uncertain world

e © = {0,0,} where §; = good economy/market
6> = bad economy/market

o A=/{a,a,...,as} (different investment programs)
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@ Loss function:
L(9,a) : “31‘32\33‘34‘35‘
01 (good economy) || -4 | 4| -1| 2| 4
6> (bad economy) 41 0|-1|-6|-4

Note:
a1 does well in good market (negative loss)
as does well in bad market (negative loss)
a3 gains in either market (e.g., risk-free bond)

Problem: How to choose among investments?
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Additional Elements of a Statistical Decision Problem

X ~ Py: Random Variable (Statistical Observation)
e Conditional distribution of X given 6
@ Sample space X = {x}
@ Density/pmf function of conditional distribution:
f(x|0)orfx(x|0)
d(X): A "Decision Procedure”
@ Observe data X = x and take action a € A
° () X = A
D: Decision Space (class of decision procedures)
@ D = {decision procedures ¢ : X — A}
R(0,6) : Risk Function (performance measure of §(-) | 0)
e R(6,0) = Ex[L(6,(X)) | 6]
@ Expectation of loss incurred by decision
procedure §(X) when 6 is true.
e For no-data problem (no X), R(6,a) = L(0, a)
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Examples of Statistical Decision Problems

Statistical Estimation Problem

e X ~ Py=N(6,1), —0c0 < 0 < 0.
e A=0=R.
@ Squared-error loss:
L(6,a) = (a— 0)?
@ Decision procedure: for finite constant c: 0 < c <1
0c(X) = cX.
@ Risk function:
R(0,5c) = Ex[(6(X)—6)*16]
= Var(§(x)) + [Ex[0(x) | 8] — 6]?
= c?+(c—1)%0?
Special cases: consider ¢ =1, O,%
e 01(X) = X: R(6,61) =1 (independent of 9)
e 5(X)=0: R(#,00) = 62 (zero at § = 0, unbounded)
o 505(X) = X/2 : R(9755) = % X (1 + 02)
What about d. for ¢ > 1?7 (or for ¢ < 0)?
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Statistical Estimation Problem (continued)

Mean-Squared Error: Estimation Risk (Squared-Error Loss)

o X ~ Py,0 0.
@ Parameter of interest: v(6) (some function of 6)
@ Action Space: A= {v=1v(0),0 € ©}
e Decision procedure/estimator: 7(X): X — A
o Squared Error Loss: L(6,a) = [a — v(0)]?
@ Risk equal to Mean-Squared Error:
R(6,0(X)) = E[L(8,2(X)) | 0]
= E[((X) —v(0))* | 0] = MSE(?)
Proposition 1.3.1 For an estimator 2(X) of v(0), the
mean-squared error is
MSE(D) = Var[p(X) | 0]+ [Bias(? | 6)]?
where Bias(? | 0) = E[0(X) | 6] — v(0)
Definition: © is Unbiased if Bias(? | #) = 0 for all 6 € ©.
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Examples of Statistical Decision Problems

Statistical Testing Problem (Two-Sample Problem)

® Xi,...,Xm iid N(u,02), (response under control treatment)
Yi,..., Yniid N(u+ A, 02) (response under test treatment)
where i € R, 0? € R, unknown
and A € R, is unknown treatment effect.
o Let P(X,Y | u, A, 0?) denote the joint distribution of
X=(Xg,...,Xm)and Y = (Y1,...,Y))
@ Define two hypotheses:
Ho: P e{P:A=0}={Py0c 0}
Hy:Pe{P:A#0}={Py,0 & O}
o A= {0,1} with 0 corresponding to accepting Hp and 1 to
rejecting Hp.
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Statistical Testing Problem

@ Construct decision rule accepting Hy if estimate of A is
S|gn|f|cantly different from zero, e.g.,
A = Y — X (difference in sample means)

~

0: an estimate of o

o if |4 iti )
5(X,Y) = g
(X.Y) {1 if |2]>c

Apply decision theory to specify ¢ (and &)
@ Zero-One Loss function

[ 0 if €O, (correct action)
L(6,2) = { 1 if 6 ¢ ©, (wrong action)
@ Risk function
R(0,9) = ( 0)Py(8(X,Y)=10)+ L(0,1)Py(6(X,Y)=1)
= Py(o(X,Y)=1), if0 €6
= Py(6(X,Y)=0), if 06 £ O
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Statistical Testing Problem (continued)

Terminology of Statistical Testing
@ Using r.v. X ~ Py with sample space X’ and parameter space
©,totest Hy: 0 € ©g vs Hy : 0 £ O
e Critical Region of a test 4(+)
C={x:0(x)=1}
e Type | Error: 6(X) rejects Hy when Hp is true
e Type Il Error: §(X) accepts Hy when Hy is false
@ Risk under zero-one loss:
R(6,0) = Pyp(o(X)=1]86), if 0 €O
= Probability of Type | Error
and R(6,0) = Py(6(X)=0]80), if 0 & O
= Probability of Type Il Error (function of )
o Neyman-Pearson framework:
Constrained optimization of risks:
Minimize: P(Type Il Error)
subject to: P(Type | Error ) < « (“significance level”)
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Interval Estimation and Confidence Bounds

VAR: Value-at-Risk

@ Let Xi, X5, ... be the change in value of an asset over
independent fixed holding periods and suppose they are i.i.d.
X ~ Py for some fixed 6 € ©.

e For a = .05, say, define VAR, (the level—a Value-at-Risk) by
P(X < —VAR, | 0) = a
e Consider estimating the VAR of X,11 given X = (X1,...,Xp)
Determine an estimator \7A\R(X):
Py(X < —VAR(X)) < o, for all § € ©.

@ The outcome X, 11 exceeds VAR, to the downside with
probability no greater than « (= 0.05).
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Lower-Bound Estimation
X ~ Py, 0 € 0.

Parameter of interest: v(6) (some function of 6)
Action Space: A= {v =v(0),0 € O}
Estimator: #(X): X — A

Objective: bounding v(#) from below

Lower-Bound Estimator: #(X) is good if
Po(2(X) < 1v(0)) has high probability
Po(2(X) > v(0)) has low probability

= Define the loss function
L(0,a) =1, if a > v(0); zero otherwise

Risk function under zero-one loss L(6, a):

R(6,2(X)) = E[L(6,2(X)) | 0] = Po(D(X) > v(0)).
@ The Lower-Bound Estimator #(X) has Confidence Level
(1—a)if

Po(2(X) <v(0)) >1—a, forall 0 € ©.

13 MIT 18.655 Decision Theoretic Framework



Decision Theoretic Framework I. Basic Elements of a Decision Problem

Interval (Lower and Upper Bound) Estimation

]
]
]
(]
"]
(]

X ~ Py,0 €0©.
Parameter of interest: v(6) (some function of 6)
Define V = {v =v(0),0 € ©}
Objective: Interval estimation of v(6)
Action Space: A={a=[a,3]:a<3aeV}
Estimator: 7(X): X — A

D(X) = [PLower(X), Dupper (X))
Interval Estimator: 2(X) is good if
Py(DLower(X) < v(0) < Dypper(X)) is high
Po(2rower(X) > v(0) or Dypper(X) < v(0)) is low

NOTE: 0 is non-random; the interval is random given 6.
We need Bayesian models to compute:

P(v(0) € [Prower(X), Dupper(X)] | X = x)
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Interval Estimation (continued)

@ Define the loss function
L(0,(a,3)) = 1,ifa>wv(f)ora<wv(h)
= 0, otherwise.
@ Risk function under zero-one loss L(#, a):
R(6,0(X)) = E[L(8,(X)) | 0]
= PO(IQLOWER(X) > V(G) or lI)UPPER(X) < l/(g))
= 1— Py(Prower(X) < v(0) < Pupper(X) | 0)
@ The Interval Estimator (X) has Confidence Level (1 — «) if
Po(DLower(X) < v(0) < Dupper(X) | 0) > (1 — )
for all § € ©
Equivalently:
R(6,7(X)) < «, for all § € ©.
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Choosing Among Decision Procedures

Admissible /Inadmissible Decision Procedures
@ On basis of performance measured by the Risk function
R(6,9), some rules obviously bad
@ A decision procedure (-) is inadmissible if 3§’ such that
R(6,0") < R(0,6) for all § € ©
with strict inequality for some 6.
@ Examples:

e In no-data investment problem: actions a;, and as are
inadmissible

o In N(6,1) estimation problem: decisions d.(-) with ¢ & [0, 1]
are inadmissible

Objectives:

@ Restrict D to exclude inadmissible decision procedures
@ Characterize “Complete Class” (all admissible procedures)
@ Formalize ‘best’ choice amongst all admissible procedures
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Selection Criteria for Decision Procedures

Approaches to Decision Selection

@ Compare risk functions by global criteria

o Bayes risk
e Maximum risk (Minimax approach)

@ Apply sensible constraint on the class of procedures:

o Unbiasedness (estimators and tests)
o Upper limit for level of significance (tests)
o Invariance under scale transformations
E.g., Given X ~ Py where § = E[X | 6],
If 6(X) is used to estimate 6
Then §(-) should satisfy
d(cX) = cd(X).
(same estimator applied if transform X to Y = cX.)

See e.g., Ferguson (1967), Lehmann (1997)
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Bayes Criterion for Selecting a Decision Procedure

Basic Elements of Decision Problem (as before)
X ~ Py:  Random Variable (Statistical Observation)
@ Distribution of X given 6 with sample space X = {x}
0(X): A “Decision Procedure” §(-): X — A.
D: Decision Space (class of decision procedures)
@ D = {decision procedures § : X — A}
R(0,0): Risk Function (performance measure of §(-) | 0)
@ R(6,8) = Ex[L(6,6(X)) | 6]
Additional Elements of Bayesian Decision Problem
0 ~ 7 : Prior Distribution for parameter § € ©.
r(m,d) : Bayes Risk of 0 given prior distribution 7
o r(m, ) = Eg«R(6%,5(X)),
taking expectation with respect to 0* ~ 7.

Bayes rule §*: Decision procedure that minimizes the Bayes risk
r(m, 0*) =min r(m, o)
0eD
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Bayesian Decision Problem: Oil Wildcatter

Problem: An oil wildcatter owns rights to drill for oil at a
location. He/she must decide whether to Drill, Sell the rights, or
Sell partial rights.

State Space: © = {601,62}

A location either contains oil (1) or not (6>).
Action Space: A = {a1(Drill), ax(Sell), as( PartialRights) }
Loss Function: L(6,a): © x A — R given by the following table:

L(8,a) : (Drill) | (Sell) | (Partial Rights )
0\a ar ao as

(Oil) 01 0 10 5

(No Oil) 6, || 12 1 6
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Oil Wildcatter Problem

Random Variable: Rock formation X ~ Py
e Sample Space: X ={0,1}
@ Conditional pmf function:

p(x|0): X
O\x | 0| 1

(Oil) 6] 03|07

(No Oil) 6> | 0.6 | 0.4

Note:

@ rows sum to 1 (conditional distributions!)
e X =1 supports 07 (Oil)
e X = 0 supports 6y (No Oil)
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Oil Wildcatter Problem

D : Class of all possible Decision Rules

56X =0)|6X=1)
01 a1 a1
02 a1 a2
03 a as
(54 an al
(55 an an
J6 a a3
7 a3 a;
dg a3 a
dg a3 a3

Note:
@ 04 Drills or Sells consistent with X
@ 0, Drills or Sells discordant with X
@ 01, 05 and dg ignore X.
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Oil Wildcatter Problem

Risk Function: R(6,6) = E[L(0,d(X) | 6]
= Y1 L(0.a)P(6(X) = a; | )

Risk Set: & = { risk points (R(61,0), R(62,6)), for 6 € D}

5 | 8(X=0)|d8X=1)]|R(61,8) | R(62,0)
(51 ai ai 0 12
52 dal an 7 7.6
(53 dai as 3.5 9.6
54 an ai 3 5.4
(55 an an 10 1

56 do as 6.5

(57 as ai 1.5 8.4
(53 das an 8.5 4.0
59 as as 5 6

Note: When © is finite with k elements, the whole risk function of a
procedure § is represented by a point in k-dimensional space.
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Oil Wildcatter Problem

Bayes Risk: For prior distribution 7 : r(m,d) = >, m(0)R(6, )
Consider e.g., m(61) = 0.2 and 7(62) = 0.8
r(7r, (5) = 7['(91) X R(Ql, 5) +7T(92) X R(Qz, 5)
=0.2 X R(61,9) + 0.8 x R(62,9)
Risk Points, Bayes Risk (and Maximum Risk):

5 [5(X=0) [3(X=1) [ R(61,0) | R(62,6) ][ r(,0) || maxg R(6,0) |

51 di ai 0 12 9.6 12
52 di an 7 7.6 7.48 7.6
03 a as 3.5 9.6 8.38 9.6
54 an al 3 5.4 4.92 5.4
(55 an an 10 1 2.8 10
66 dn as 6.5 3 3.7 6.5
(57 as ai 1.5 8.4 7.02 8.4
53 as an 8.5 4.0 49 8.4
(59 as as 5 6 5.8 6

Note: ds is Bayes rule for prior m — it achieves the minimum Bayes risk.
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Computing Bayes Risks and ldentifying Bayes Procedures

Computing Bayes Risks

@ Bayes risk for discrete priors:
r(m,8) =Y pm(0)R(6,9)
@ Bayes risk for continuous priors:
r(m,0) = [om(P)R(0,0)db
Identifying Bayes Procedures
@ ldentification of Bayes rule does not require exhaustive search
o Posterior analysis specifies Bayes rule(s) directly
@ Apply Posterior Distribution of 6 given X
to minimize risk a posteriori.
Limits of Bayes Procedures
@ Bayes-risk comparisons can be useful when 7(60) improper
i.e., [om(0)dd = oo (e.g., uniform prior on R)
@ Such comparisons relate to the consideration of limits of
Bayes procedures.
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Minimax Criterion for Selecting a Decision Procedure

Minimax Criterion:

@ Prefer § to &' if

sup R(0,9) < sup R(6,4")
J2e)
@ A procedure 0* is caIIed mmlmax if

sup R(6,0%) = |nf sup R(6,0)

6c© 0eD ge
Game-Theoretic Framework: Two-Person Games
Player | (Nature chooses 6)
Player Il (Statistician chooses )
Player Il pays Player | R(8,0).
Minimax Theorem: von Neumann (1928)
Subject to regularity conditions (e.g., “perfect information”
and “zero-sum” payoffs), there exists a pair of strategies:

* for nature and
0* for the Statistician

which allows each to minimize his/her maximum losses.
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Elements of Decision Problems: Randomization

Randomized States of Nature

o State of Nature: 6 ~ 7(-)
@ Prior Distribution for § € ©.

Randomized Decision Rules

@ D = Class of all (non-randomized) decision procedures.
@ D* = Class of randomized decision procedures.
o Consider §* € D*:

o Set of non-randomized procedures: {d1,0z,...,d4}

o 0*: P(6*=6)=X\,i=1,...,q (with 37 A =1)
@ Extend definitions of Risk and Bayes risk:

R(6,5%) = zq: R(8,5:)
i=1

Q
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Elements of Decision Problems: Randomization

Risk Set &*

o k—dimensional parameter space © = {(f1,...,0x) € R*}
@ The risk set of non-randomized procedures D = {6} is
S ={(R(61,9), R(62,9),...,R(0k,0)),6 € D}
@ The risk set of randomized procedures D* = {§*} is
S* ={(R(01,6), R(02,6%),..., R(Ok, %)), 6" € D*}
@ S* is the convex hull of S
Example: Oil Wildcatter Problem
e ©= {91(0”),92(N0 Oi|)}
@ Prior distribution 7 : w(A1) = v and w(62) =1 —~
e Contour of constant Bayes risk (= rp)
S = {(R(61,0), R(62,6)) : yR(61,6) + (1 — 7)R(62,6) = ro}
= {(oy) ix+ (1 =)y = r}
= {(y)iy=1% 5%}
(Line with slope —v/(1 — 7))
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Bayes and Minimax Procedures in Risk Sets

Bayes Procedures

o Bayes rule(s): find risk point s € S* that intersects S;* with
the smallest value of Bayes risk rp.
o Lower-left convex hull of S identifies all Bayes procedures.
(Points with tangents having negative slope, including —o0)
o If the tangent/intersection is a single point, the Bayes rule is
unique and non-randomized.
o If the tangent/intersecton is a line, then the Bayes rules are
any whose risk point lies on the line.
Such points correspond to randomized procedures
between two non-randomized procedures
@ For any prior, there is a non-randomized Bayes rule.

Minimax Procedures

e Minimax rule(s): find risk point s € S* that intersects
Q(c*) ={(x,y) : x < c* andy<c}

lower-left quadrant with smallest value c*-
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Theoretical Results of Decision Theory

Results for Finite ©

@ If minimax procedures exist, then they are Bayes procedures.
@ All admissible procedure are Bayes procedures for some prior.
e If a Bayes prior has m(6;) > 0 for all j then any Bayes
procedure corresonding to 7 is admissible.
Results for Non-Finite ©
e If a Bayes prior 7 has density w(#) > 0 for all € ©, then any
Bayes procedure corresponding to 7 is admissible.

@ Under additional conditions, all admissible procedures are
either Bayes procedures, or limits of Bayes procedures.
Key References:
e Wald, A. (1950). Statistical Decision Functions
e Savage, L.J. (1954). The Foundations of Statistics (covers
Wald's results).
e Ferguson, T.S. (1967) Mathematical Statistics.
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Problems

30

Problem 1.3.3 Testing problem with three hypotheses.

Problem 1.3.4 Stratified sampling — evaluating MSEs of different
estimators.

Problem 1.3.8 Variance estimation: deriving unbiased estimator;
lowering MSE with biased estimator.

Problem 1.3.14 Convexity of the risk set.

Problem 1.3.18 Sampling inspection example 1.1.1 with
asymmetric loss function.
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