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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Decision Problems of Statistical Inference 

Estimation: estimating a real parameter θ ∈ Θ using data X 
with conditional distribution Pθ. 

Testing: Given data X ∼ Pθ, choosing between two 
hypotheses (deciding whether to accept or reject H0)
 

H0 : Pθ ∈ P0 (a set of special Ps)
 
H1 : Pθ  ∈ P0
 

Ranking: rank a collection of items from best to worst 

Products evaluated by consumer interest group 
Sports betting (horse race, team tournament, division 
championship, etc.) 

Prediction: predict response variable Y given explanatory 
variables Z = (Z1, Z2, . . . , Zd ). 

If know joint distribution of (Z , Y ), use µ(Z ) = E [Y | Z ] 
With data {(zi , yi ), i = 1, 2, . . . , n}, estimate µ(Z ). 

If µ(Z ) = g(β, Z ), then use µ̂(Z ) = g(β̂, Z ) 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Basic Elements of a Decision Problem 

Θ = {θ} : The “State Space” 

θ = state of nature (unknown uncertainty element in the 
problem) 

A = {a} : The ”Action Space” 

a = action taken by statistician 

L(θ, a) : The “Loss Function” 

L(θ, a) = loss incurred when state is θ and action a taken 
L : Θ ×A → R 

Example: Investing money in an uncertain world 

Θ = {θ1, θ2} where θ1 = good economy/market 
θ2 = bad economy/market 

A = {a1, a2, . . . , a5} (different investment programs) 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Loss function:
 
L(θ, a) : a1 a2 a3 a4 a5 

θ1 (good economy) -4 -4 -1 2 4 
θ2 (bad economy) 4 0 -1 -6 -4 

Note: 
a1 does well in good market (negative loss) 
a5 does well in bad market (negative loss) 
a3 gains in either market (e.g., risk-free bond) 

Problem: How to choose among investments? 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Additional Elements of a Statistical Decision Problem 

X ∼ Pθ: Random Variable (Statistical Observation) 

Conditional distribution of X given θ 
Sample space X = {x}
Density/pmf function of conditional distribution: 

f (x | θ) or fX (x | θ) 
δ(X ): A “Decision Procedure” 

Observe data X = x and take action a ∈ A 
δ(·): X → A. 

D: Decision Space (class of decision procedures) 

D = {decision procedures δ : X → A} 

R(θ, δ) : Risk Function (performance measure of δ(·) | θ) 
R(θ, δ) = EX [L(θ, δ(X )) | θ] 
Expectation of loss incurred by decision 
procedure δ(X ) when θ is true.
 
For no-data problem (no X ), R(θ, a) = L(θ, a)
 

6 MIT 18.655 Decision Theoretic Framework 



Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Examples of Statistical Decision Problems
 

Statistical Estimation Problem 

X ∼ Pθ = N(θ, 1), −∞ < θ < ∞. 

A = Θ = R. 

Squared-error loss:
 
L(θ, a) = (a − θ)2
 

Decision procedure: for finite constant c : 0 < c ≤ 1 
δc (X ) = cX . 

Risk function: 
R(θ, δc ) = EX [(δ(X ) − θ)2 | θ] 

= Var(δ(x)) + [EX [δ(x) | θ] − θ]2 

= c2 + (c − 1)2θ2 

1Special cases: consider c = 1, 0, 2 
• δ1(X ) = X : R(θ, δ1) = 1 (independent of θ) 
• δ0(X ) ≡ 0 : R(θ, δ0) = θ2 (zero at θ = 0, unbounded) 
• δ0.5(X ) = X /2 : R(θ, δ.5) = 1 × (1 + θ2).4 

What about δc for c > 1? (or for c < 0)? 

7 MIT 18.655 Decision Theoretic Framework 



Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Statistical Estimation Problem (continued)
 

Mean-Squared Error: Estimation Risk (Squared-Error Loss) 

X ∼ Pθ, θ ∈ Θ. 

Parameter of interest: ν(θ) (some function of θ) 

Action Space: A = {ν = ν(θ), θ ∈ Θ} 

Decision procedure/estimator: ν̂(X ) : X → A 

Squared Error Loss: L(θ, a) = [a − ν(θ)]2 

Risk equal to Mean-Squared Error: 
R(θ, ν̂(X )) = E [L(θ, ν̂(X )) | θ] 

= E [(ν̂(X ) − ν(θ))2 | θ] = MSE (ν̂) 

Proposition 1.3.1 For an estimator ν̂(X ) of ν(θ), the 
mean-squared error is 

MSE (ν̂) = Var [ν̂(X ) | θ] + [Bias(ν̂ | θ)]2 

where Bias(ν̂ | θ) = E [ν̂(X ) | θ] − ν(θ) 
Definition: ν̂ is Unbiased if Bias(ν̂ | θ) = 0 for all θ ∈ Θ. 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Examples of Statistical Decision Problems 

Statistical Testing Problem (Two-Sample Problem) 

X1, . . . , Xm iid N(µ, σ2), (response under control treatment) 
Y1, . . . , Yn iid N(µ +Δ, σ2) (response under test treatment) 

where µ ∈ R, σ2 ∈ R+ unknown 
and Δ ∈ R, is unknown treatment effect. 

Let P(X , Y | µ, Δ, σ2) denote the joint distribution of 
X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) 

Define two hypotheses: 
H0 : P ∈ {P : Δ = 0} = {Pθ, θ ∈ Θ0}
H1 : P ∈ {P : Δ = 0} = {Pθ, θ  ∈ Θ0}

A = {0, 1} with 0 corresponding to accepting H0 and 1 to 
rejecting H0. 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Statistical Testing Problem 

Construct decision rule accepting H0 if estimate of Δ is 
significantly different from zero, e.g.,
 

ˆ ¯
Δ = Y − X̄ (difference in sample means) 
σ̂: an estimate of σ 

Δ̂0 if | | < c (critical value) 
δ(X , Y ) = σ̂

Δ̂1 if | | ≥ cσ̂
Apply decision theory to specify c (and σ̂) 

Zero-One Loss function  
0 if θ ∈ Θa (correct action) L(θ, a) =
1 if θ  ∈ Θa (wrong action) 

Risk function 
R(θ, δ) = L(θ, 0)Pθ(δ(X , Y ) = 0) + L(θ, 1)Pθ(δ(X , Y ) = 1) 

= Pθ(δ(X , Y ) = 1), if θ ∈ Θ0 

= Pθ(δ(X , Y ) = 0), if θ  ∈ Θ0 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Statistical Testing Problem (continued) 

Terminology of Statistical Testing 
Using r.v. X ∼ Pθ with sample space X and parameter space 
Θ, to test H0 : θ ∈ Θ0 vs H1 : θ  ∈ Θ0 

Critical Region of a test δ(·)
 
C = {x : δ(x) = 1}


Type I Error: δ(X ) rejects H0 when H0 is true 
Type II Error: δ(X ) accepts H0 when H0 is false 
Risk under zero-one loss:
 

R(θ, δ) = Pθ(δ(X ) = 1 | θ), if θ ∈ Θ0
 

= Probability of Type I Error
 
and R(θ, δ) = Pθ(δ(X ) = 0 | θ), if θ  ∈ Θ0 

= Probability of Type II Error (function of θ) 
Neyman-Pearson framework: 
Constrained optimization of risks: 

Minimize: P(Type II Error) 
subject to: P(Type I Error ) ≤ α (“significance level”) 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Interval Estimation and Confidence Bounds 

VAR: Value-at-Risk 

Let X1, X2, . . . be the change in value of an asset over 
independent fixed holding periods and suppose they are i.i.d. 
X ∼ Pθ for some fixed θ ∈ Θ. 

For α = .05, say, define VARα (the level−α Value-at-Risk) by 
P(X ≤ −VARα | θ) = α 

Consider estimating the VAR of Xn+1 given X = (X1, . . . , Xn) 
Determine an estimator VVAR(X ):
 

Pθ(X ≤ − V
VAR(X)) ≤ α, for all θ ∈ Θ. 

The outcome Xn+1 exceeds VARα to the downside with 
probability no greater than α (= 0.05). 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Lower-Bound Estimation 

X ∼ Pθ, θ ∈ Θ.
 

Parameter of interest: ν(θ) (some function of θ)
 

Action Space: A = {ν = ν(θ), θ ∈ Θ}


Estimator: ν̂(X ) : X → A
 

Objective: bounding ν(θ) from below
 

Lower-Bound Estimator: ν̂(X ) is good if
 
Pθ(ν̂(X ) ≤ ν(θ)) has high probability
 
Pθ(ν̂(X ) > ν(θ)) has low probability
 

=⇒ Define the loss function
 
L(θ, a) = 1, if a > ν(θ); zero otherwise
 

Risk function under zero-one loss L(θ, a):
 
R(θ, ν̂(X )) = E [L(θ, ν̂(X )) | θ] = Pθ(ν̂(X ) > ν(θ)). 

The Lower-Bound Estimator ν̂(X ) has Confidence Level 
(1 − α) if 

Pθ(ν̂(X ) ≤ ν(θ)) ≥ 1 − α, for all θ ∈ Θ. 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Interval (Lower and Upper Bound) Estimation 

X ∼ Pθ, θ ∈ Θ.
 

Parameter of interest: ν(θ) (some function of θ)
 

Define V = {ν = ν(θ), θ ∈ Θ}
 

Objective: Interval estimation of ν(θ)
 

Action Space: A = {a = [a, ̄a] : a < ā ∈ V}
 

Estimator: ν̂(X ) : X → A
 
ν̂(X ) = [ν̂LOWER (X ), ν̂UPPER (X )] 

Interval Estimator: ν̂(X ) is good if 
Pθ(ν̂LOWER (X ) ≤ ν(θ) ≤ ν̂UPPER (X )) is high 
Pθ(ν̂LOWER (X ) > ν(θ) or ν̂UPPER (X ) < ν(θ)) is low 

NOTE: θ is non-random; the interval is random given θ. 
We need Bayesian models to compute: 

P(ν(θ) ∈ [ν̂LOWER (X ), ν̂UPPER (X )] | X = x) 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Interval Estimation (continued) 

Define the loss function 
L(θ, (a, ̄a)) = 1, if a > ν(θ) or ā < ν(θ) 

= 0, otherwise. 

Risk function under zero-one loss L(θ, a): 
R(θ, ν̂(X ))	 = E [L(θ, ν̂(X )) | θ] 

= Pθ(ν̂LOWER (X ) > ν(θ) or ν̂UPPER (X ) < ν(θ)) 
= 1 − Pθ(ν̂LOWER (X ) ≤ ν(θ) ≤ ν̂UPPER (X ) | θ) 

The Interval Estimator ν̂(X ) has Confidence Level (1 − α) if 
Pθ(ν̂LOWER (X ) ≤ ν(θ) ≤ ν̂UPPER (X ) | θ) ≥ (1 − α) 

for all θ ∈ Θ 
Equivalently:
 

R(θ, ν̂(X )) ≤ α, for all θ ∈ Θ.
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Choosing Among Decision Procedures
 

Admissible/Inadmissible Decision Procedures 

On basis of performance measured by the Risk function 
R(θ, δ), some rules obviously bad 
A decision procedure δ(·) is inadmissible if ∃δ' such that 

R(θ, δ') ≤ R(θ, δ) for all θ ∈ Θ 
with strict inequality for some θ. 

Examples: 
In no-data investment problem: actions a1, and a5 are 
inadmissible 
In N(θ, 1) estimation problem: decisions δc (·) with c  ∈ [0, 1] 
are inadmissible 

Objectives: 

Restrict D to exclude inadmissible decision procedures 
Characterize “Complete Class” (all admissible procedures) 
Formalize ‘best’ choice amongst all admissible procedures 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Selection Criteria for Decision Procedures 

Approaches to Decision Selection 

Compare risk functions by global criteria 

Bayes risk 
Maximum risk (Minimax approach) 

Apply sensible constraint on the class of procedures: 

Unbiasedness (estimators and tests) 
Upper limit for level of significance (tests) 
Invariance under scale transformations 
E.g., Given X ∼ Pθ where θ = E [X | θ], 

If δ(X ) is used to estimate θ 
Then δ(·) should satisfy 

δ(cX ) = cδ(X ). 
(same estimator applied if transform X to Y = cX .) 

See e.g., Ferguson (1967), Lehmann (1997) 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Bayes Criterion for Selecting a Decision Procedure 

Basic Elements of Decision Problem (as before) 
X ∼ Pθ: Random Variable (Statistical Observation) 

Distribution of X given θ with sample space X = {x} 

δ(X ): A “Decision Procedure” δ(·): X → A. 
D: Decision Space (class of decision procedures) 

D = {decision procedures δ : X → A}
 

R(θ, δ): Risk Function (performance measure of δ(·) | θ)
 
R(θ, δ) = EX [L(θ, δ(X )) | θ] 

Additional Elements of Bayesian Decision Problem 

θ ∼ π : Prior Distribution for parameter θ ∈ Θ. 
r(π, δ) : Bayes Risk of δ given prior distribution π 

r(π, δ) = Eθ∗ R(θ∗, δ(X )), 
taking expectation with respect to θ∗ ∼ π. 

Bayes rule δ∗ : Decision procedure that minimizes the Bayes risk 
r(π, δ∗) =min r(π, δ) 

δ∈D 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Bayesian Decision Problem: Oil Wildcatter 

Problem: An oil wildcatter owns rights to drill for oil at a 
location. He/she must decide whether to Drill, Sell the rights, or 
Sell partial rights. 

State Space: Θ = {θ1, θ2}
A location either contains oil (θ1) or not (θ2). 

Action Space: A = {a1(Drill), a2(Sell), a3(PartialRights)} 

Loss Function: L(θ, a) : Θ ×A → R given by the following table: 

L(θ, a) : 
θ\a 

(Drill) 
a1 

(Sell) 
a2 

(Partial Rights ) 
a3 

(Oil) θ1 0 10 5 
(No Oil) θ2 12 1 6 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Oil Wildcatter Problem 

Random Variable: Rock formation X ∼ Pθ 

Sample Space: X ={0, 1}
Conditional pmf function: 

p(x | θ) : x 
θ\x 0 1 

(Oil) θ1 0.3 0.7 
(No Oil) θ2 0.6 0.4 

Note: 

rows sum to 1 (conditional distributions!)
 
X = 1 supports θ1 (Oil)
 
X = 0 supports θ0 (No Oil)
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Oil Wildcatter Problem 

D : Class of all possible Decision Rules
 

δ δ(X = 0) δ(X = 1) 
δ1 a1 a1 

δ2 a1 a2 

δ3 a1 a3 

δ4 a2 a1 

δ5 a2 a2 

δ6 a2 a3 

δ7 a3 a1 

δ8 a3 a2 

δ9 a3 a3 

Note: 
δ4 Drills or Sells consistent with X 
δ2 Drills or Sells discordant with X 
δ1, δ5 and δ9 ignore X . 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Oil Wildcatter Problem 

Risk Function: R(θ, δ) = E [L(θ, δ(X ) | θ][3 = L(θ, ai )P(δ(X ) = ai | θ)i=1 

Risk Set: S = { risk points (R(θ1, δ), R(θ2, δ)), for δ ∈ D} 

δ δ(X = 0) δ(X = 1) R(θ1, δ) R(θ2, δ) 
δ1 a1 a1 0 12 
δ2 a1 a2 7 7.6 
δ3 a1 a3 3.5 9.6 
δ4 a2 a1 3 5.4 
δ5 a2 a2 10 1 
δ6 a2 a3 6.5 3 
δ7 a3 a1 1.5 8.4 
δ8 a3 a2 8.5 4.0 
δ9 a3 a3 5 6 

Note: When Θ is finite with k elements, the whole risk function of a 
procedure δ is represented by a point in k-dimensional space. 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Oil Wildcatter Problem [
Bayes Risk: For prior distribution π : r(π, δ) = θ π(θ)R(θ, δ) 

Consider e.g., π(θ1) = 0.2 and π(θ2) = 0.8 
r(π, δ) = π(θ1) × R(θ1, δ) + π(θ2) × R(θ2, δ) 

= 0.2 × R(θ1, δ) + 0.8 × R(θ2, δ) 
Risk Points, Bayes Risk (and Maximum Risk): 

δ δ(X = 0) δ(X = 1) R(θ1, δ) R(θ2, δ) r(π, δ) maxθ R(θ, δ) 

δ1 a1 a1 0 12 9.6 12 
δ2 a1 a2 7 7.6 7.48 7.6 
δ3 a1 a3 3.5 9.6 8.38 9.6 
δ4 a2 a1 3 5.4 4.92 5.4 
δ5 a2 a2 10 1 2.8 10 
δ6 a2 a3 6.5 3 3.7 6.5 
δ7 a3 a1 1.5 8.4 7.02 8.4 
δ8 a3 a2 8.5 4.0 4.9 8.4 
δ9 a3 a3 5 6 5.8 6 

Note: δ5 is Bayes rule for prior π – it achieves the minimum Bayes risk. 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Computing Bayes Risks and Identifying Bayes Procedures 

Computing Bayes Risks 

Bayes risk for discrete priors: [
r(π, δ) = θ π(θ)R(θ, δ) 

Bayes risk for continuous priors: o 
r(π, δ) = Θ π(θ)R(θ, δ)dθ 

Identifying Bayes Procedures 
Identification of Bayes rule does not require exhaustive search 
Posterior analysis specifies Bayes rule(s) directly 
Apply Posterior Distribution of θ given X
 
to minimize risk a posteriori.
 

Limits of Bayes Procedures 

Bayes-risk comparisons can be useful when π(θ) improper o 
i.e., π(θ)dθ = ∞ (e.g., uniform prior on R)Θ 

Such comparisons relate to the consideration of limits of 
Bayes procedures. 
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Minimax strategy protects Statistician against worst
outcomes.
Use of minimax procedures depends on conservatism of
Statistician (or malevolence of Nature)

von Neumann)

Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Minimax Criterion for Selecting a Decision Procedure 

Minimax Criterion: 

Prefer δ to δ ' if
 
sup R(θ, δ) < sup R(θ, δ ' )
 
θ∈Θ θ∈Θ 

A procedure δ∗ is called minimax if
 
sup R(θ, δ ∗ ) = inf sup R(θ, δ)
 

δ∈Dθ∈Θ θ∈Θ 

Game-Theoretic Framework: Two-Person Games 
Player I (Nature chooses θ) 
Player II (Statistician chooses δ) 
Player II pays Player I R(θ, δ). 
Minimax Theorem: von Neumann (1928)
 
Subject to regularity conditions (e.g., “perfect information”
 
and “zero-sum” payoffs), there exists a pair of strategies:
 

π∗ for nature and 
δ∗ for the Statistician 

which allows each to minimize his/her maximum losses. 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Elements of Decision Problems: Randomization
 

Randomized States of Nature 

State of Nature: θ ∼ π(·) 
Prior Distribution for θ ∈ Θ. 

Randomized Decision Rules 

D = Class of all (non-randomized) decision procedures. 
D∗ = Class of randomized decision procedures. 
Consider δ∗ ∈ D∗ : 

Set of non-randomized procedures: {δ1, δ2, . . . , δq}[q
δ∗ : P(δ∗ = δi ) = λi , i = 1, . . . , q (with i=1 λi = 1) 

Extend definitions of Risk and Bayes risk: 
qq 

R(θ, δ∗) = R(θ, δi ) 
i=1 
qq 

r(π, δ∗) = r(π, δi ) 
i=1 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Elements of Decision Problems: Randomization 

Risk Set S∗ 

k−dimensional parameter space Θ = {(θ1, . . . , θk ) ∈ Rk }
The risk set of non-randomized procedures D = {δ} is 

S = {(R(θ1, δ), R(θ2, δ), . . . , R(θk , δ)), δ ∈ D} 
The risk set of randomized procedures D∗ = {δ∗} is 

S∗ = {(R(θ1, δ∗), R(θ2, δ∗), . . . , R(θk , δ
∗)), δ∗ ∈ D∗}

S∗ is the convex hull of S 

Example: Oil Wildcatter Problem 

Θ = {θ1(Oil), θ2(No Oil)}

Prior distribution π : π(θ1) = γ and π(θ2) = 1 − γ
 
Contour of constant Bayes risk (= r0)
 
S∗∗ = {(R(θ1, δ), R(θ2, δ)) : γR(θ1, δ) + (1 − γ)R(θ2, δ) = r0}r0 

= {(x , y) : γx + (1 − γ)y = r0}
r0 γ = {(x , y) : y = − x}1−γ 1−γ 

(Line with slope −γ/(1 − γ)) 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Bayes and Minimax Procedures in Risk Sets
 

Bayes Procedures 

Bayes rule(s): find risk point s ∈ S∗ that intersects S∗∗ withr0 

the smallest value of Bayes risk r0. 
Lower-left convex hull of S identifies all Bayes procedures. 
(Points with tangents having negative slope, including −∞) 
If the tangent/intersection is a single point, the Bayes rule is 
unique and non-randomized. 
If the tangent/intersecton is a line, then the Bayes rules are 
any whose risk point lies on the line. 

Such points correspond to randomized procedures 
between two non-randomized procedures 

For any prior, there is a non-randomized Bayes rule. 

Minimax Procedures 

Minimax rule(s): find risk point s ∈ S∗ that intersects 
∗Q(c ∗) = {(x , y) : x ≤ c and y 

. 
≤ c ∗}
∗lower-left quadrant with smallest value c 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Theoretical Results of Decision Theory 

Results for Finite Θ 

If minimax procedures exist, then they are Bayes procedures. 
All admissible procedure are Bayes procedures for some prior. 
If a Bayes prior has π(θi ) > 0 for all i then any Bayes 
procedure corresonding to π is admissible. 

Results for Non-Finite Θ 

If a Bayes prior π has density π(θ) > 0 for all θ ∈ Θ, then any 
Bayes procedure corresponding to π is admissible. 
Under additional conditions, all admissible procedures are 
either Bayes procedures, or limits of Bayes procedures. 

Key References: 
Wald, A. (1950). Statistical Decision Functions 
Savage, L.J. (1954). The Foundations of Statistics (covers 
Wald’s results). 
Ferguson, T.S. (1967) Mathematical Statistics. 
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Decision Theoretic Framework I. Basic Elements of a Decision Problem 

Problems 

Problem 1.3.3 Testing problem with three hypotheses. 

Problem 1.3.4 Stratified sampling – evaluating MSEs of different 
estimators. 

Problem 1.3.8 Variance estimation: deriving unbiased estimator; 
lowering MSE with biased estimator. 

Problem 1.3.14 Convexity of the risk set. 

Problem 1.3.18 Sampling inspection example 1.1.1 with 
asymmetric loss function. 
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