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Prediction
Prediction Problems

Targets of Prediction

Change in value of portfolio over fixed holding period.
Long-term interest rate in 3 months

Survival time of patients being treated for cancer
Liability exposures of a drug company

Sales of a new prescription drug

Landfall zone of developing hurricane

Total snowfall for next winter season

First-year college grade point average given SAT test scores
General Setup

e Random Variable Y: response variable (target of prediction).
e Random Vector Z = (Zy, 2>, ..., Zp): explanatory variables
e Joint distribution: (Z,Y) ~ Py,0 € ©.
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Prediction
Prediction Problem

General Setup (continued)

e Predictor function: g(Z) € {g(:): Z2 - R}
Z = sample space of explanatory-variables vector Z
R = sample space of response variable Y.

@ Performance Measures

e Mean Squared Prediction Error
MSPE(g(2)) = E[(Y — g(2))?]
e Mean Absolute Prediction Error
MAPE(g(2)) = E[|Y — g(2)I]
where E[-] is expectation under joint distribution of (Z,Y).
@ Classes of possible predictor functions

o Non-parametric class Gyp = {g : RP — R}
e Linear-predictor class
Gr={g:g(2) =a+ >}, bz, forfixed a, by,..., b, € R}
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Prediction
Optimal Predictors

Case 1: No Covariates

e With no covariates, g(Z) = c, a constant

Lemma 1.4.1 Suppose EY? < co. Then

Proof

(a) E(Y —¢)? < oo forall ¢
(b) E(Y — c)?is minimized uniquely by ¢ = u = E(Y).
() E(Y — c)2) = Var(Y) + (i — c)?

(a): See Exercise 1.4.25. Hint: Whatever Y and c:
Y22 < (Y =) <2(Y2+c?)
(b): E(Y?) < 0o = p exists.
E[(Y — ¢)?] = E[Y?] — 2¢cE[Y] + ¢? = f(c)
f(c) is a concave-up parabola in ¢
with minimum at ¢ = E[Y]
(©): EN(Y — )] = E[Y?] - 1 = Var(Y)
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Prediction
Optimal Predictors

Case 2: Covariates Z
o Find the function g that minimizes E[(Y — g(Z))?]

Theorem 1.4.1 If Z is any random vector and Y is any random
variable and pu(Z) = E[Y | Z], then either

(a). E(Y — g(2))?) = oo for every function g or
(b). E(Y —u(2))? < E(Y — g(2))? for every g and
@ Strict inequalty holds unless g(Z) = u(2)
e u(Z) = E[Y | Z] is unique best MSPE predictor.
o E(Y—g(2))?) = E(Y —u(2))* + E(g(Z) — 1(2))?
Proof By substitution theorem for cond. expectations (B.1.16)
E[(Y —g(2)? 1 Z=2]=E[(Y —g(2))*| Z=1]
for any function g(-). By Lemma 1.4.1, since g(z) is a constant
E(Y—-g(2))*| Z=2) = E(Y - u(2))? | Z = 2)+(g(2) — u(2))?
Result (b) follows by B.1.20 taking expectations of both sides
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Prediction
Optimal Predictors

By Theorem 1.4.1 If E(Y?) < co then
E(Y —g(2))* = E(Y — u(2))* + E(g(2) — (2))?
where u(Z) = E[Y | Z]
Special Case: g(z) = p = E(Y) (no dependence on z)
E(Y —p)? = E(Y = u(2))* + E(u — n(2))?
ie., Var(Y) = E(Var(Y | Z)) + Var(E(Y | 2))

Definition: Random variables U and V with E[UV] < oo are
uncorrelated if £ ([V — E(V)][U—-E(U)])=0

General Prediction Problem
@ Predict Y given Z = z using the joint distribution of (Z,Y).
o Let u(Z) = E(Y | Z) be predictor of Y
o Let e =Y — u(Z) be random prediction error
Y =u(Z)+¢
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Prediction

General Prediction Problem (again)
@ Predict Y given Z = z using the joint distribution of (Z,Y).
o Let u(Z) = E(Y | Z) be predictor of Y
@ Let e = Y — u(Z) be random prediction error
Y =u(Z) +¢
Proposition 1.4.1 Suppose that Var(Y') < oo, then
(a) € is uncorrelated with every function of Z
(b) u(Z) and € are uncorrelated
(c) Var(Y) = Var(u(Z)) + Var(e)
Proof (a). Let h(Z) be any function of Z, then
E{h(Z)e} = E{E[h(Z)e| 2]}
= E{hZ)E[Y —u(2)| 2]} =0
(b) follows from (a), and (c) follows from (a) given Y = u(Z) + ¢
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Prediction

Theorem 1.4.2 If E(]Y]|) < co but Z and Y are arbitrary random
variables, then
Var(E(Y | Z)) < Var(Y).
If Var(Y') < oo then strict inequality holds unless
Y =E(Y | Z),ie., Y is a function of Z.
Proof Recall the special case of Theorem 1.4.1

Special Case: g(z) = = E(Y) (no dependence on z)
E(Y — u)? = E(Y = u(2))* + E(u — n(2))?

ie., Var(Y) = E(Var(Y | Z)) + Var(E(Y | 2))

The first part follows immediately. The second part follows iff
E(Var(Y | Z2)) = E(Y —E(Y | 2))?> =0.
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Prediction
Prediction Example

Example 1.4.1 Assembly line operating at varying capacity,
month-by-month. Every day, the assembly line is susceptible to
shutdowns due to mechanical failure.

e 7 = capacity state, Z € {%, %, 1} (fraction of full capacity)
@ Y: number of shutdowns on a given day
sample space ) = {0,1,2, 3]

e Joint distribution of (Z, Y') given by the pmf function:
p(z,y) =P(Z=2Y =y)
z\y 0 | 1 | 2] 3 |[pz2)]
0.10 | 0.05 | 0.05 | 0.05 || 0.25
0.025 | 0.025 | 0.10 | 0.10 || 0.25
0.025 | 0.025 | 0.15 | 0.30 || 0.50

py(y) | 0.15 | 0.10 [ 0.30 [ 0.45 | 1.00 |
Note: marginal pmf of Z (Y) given by row (col) sums

= NS [ | —
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Prediction Example

@ pz(z) gives marginal distribution of capacity states

e py(y) gives marginal distribution of the number of
failures/shutdowns per day.

Goal: Predict the number of failures per day given the
capacity state of the assembly line for the month.

Solution: The best MSPE predictor function is E[Y | Z]
Using the joint distribution for (Z, Y’) we can

compute:
wWz)=EY|Z=2 = ¥ _oyp(z.y)/ ;:OP(Z,)/)
iv
27
1

120, if Z=
= 210, if Z=
Z:

2.45, if
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Prediction Example

Two ways to compute the MSPE of y(z):
ElY-E(Y| 2P = Y -0y —u2)p(z,y) = 0.088625

or

E[Y —E(Y|2)? = Var(Y)— Var(E(Y | 2))
= E(Y?)-E[(E(Y] 2))?]

= > Vpy(y) =D _ElY|Z=2)pz(2)
— 0.088625 ’
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Prediction

Regression Toward the Mean

Bivariate Normal Distribution (See Section B.4)

[ (] m)

4 Hz]
here E =
were | 3] = 12

and 5 — [ Cov(Z,Z) Cov(Z,Y) } _ [ 02 pozoy
Cov(Y,Z) Cov(Y,Y) pozoy 0%
e Conditional Distribution
Y| Z=x~N(py +ploy/oz)(z = pz),09(1—p?).
@ Best Predictor of Y given Z: u(z) = E[Y | Z = Z]
w(z) = py +ploy/oz)(z — pz)
“Regression toward the mean”
e MSPE of p(z):
MSPE = E[(Y — u(2))2] = 03 (1 - p2)
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Bivariate Normal: Bivariate Regression

@ Special Cases:

e p=1: Y is perfectly predicted given Z:

w(Z) = py + ploy/oz)(z — pz2).
e p = 0: Best predictor of Y is its mean:
#(Z) = py (constant, independent of Z)

@ Measure of dependence of Y on Z:
p? =1 MSPE

Y
Ranges from 0 (no dependence) to 1 (if p = +1 or —1)

o Galton: studied distributions of heights for fathers and sons.
Will taller parents have taller children?
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Multivariate Normal Distribution

Joint Distribution of (Z,Y) is

4 pz
~ N , X here
{Y] "“([uv] )Wr

@ Z is now d-variate
Z=(Z,2s,...,2Z4)"
@ Scalar 7z is now a vector: pz = (1, pto, - - - ftq)

@ The covariance matrix ¥ is now of dimension
(d+1)x(d+1):
s _ < z7z Yzy

2
, where oyy = 0%, and
Yyz oyy > Y

Y zz is d x d matrix with ||Xzz||;; = Cov(Z;, Z;)
Yzv =2y ;= (Cov(Z,Y),Cov(Z,Y),...,Cov(Zy, Y))T

See Section B.6 for derivation of density function.
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Multivariate Normal Distribution

Conditional Distribution: [Y | Z = z|. By Theorem B.6.5:
Y ‘ L=2znr~ N(N(Z)7UYY\Z)
where
o u(Z)=py +(Z—-pz)"B
with 8 = X,2% 7y
® Oyy|, =0yy — YyvzE 3% 7y
Note:
e u(Z) = E[Y | Z] is the best predictor of Y
e The MSPE of p(2) is
MSPE = E{E[Y - u(Z)P | Z]} = E(ovyp)
= oyy — TyzEaYzy

o Measure of dependence of Y on Z (analagous to p?)
2 _ 1 _ MSPE
Pzy = o2
e Terms for p%,: “coefficient of determination”, “squared

multiple-correlation coefficient”
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Prediction
Linear Prediction

Objective: Predict Y Given Z

e Joint distribution of (Z, Y) may be complex
w(Z) = E[Y | Z] may be hard to compute

@ Alternative: consider class of simple predictors

Linear Predictors: 1-Dimensional Case

o Linear predictor: g(Z) = a+ bZ, with constants a (intercept)
and b (slope).

@ Zero-Intercept linear predictor: g(Z) = a+ bZ with a=0

o Identify best linear predictors based on MSPE
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Linear Prediction

Theorem 1.4.3 Suppose that £(Z2) and E(Y?) are finite and Z
and Y are not constant. Then

(a). The unique best zero-intercept linear predictor is
obtained by taking

b - 520

(b). The unique best linear predictor is

ML(Z) = a1 + b1 Z, where
Cov(Z,Y
by = Va(r(z)), and
a1 = E(Y) — biE(2).

Proof (a). E[(Y — bZ)?] = E[Y?] — 2bE[ZY] + b?E[Z?] = h(b).
h(b) is a parabola in b: achieves minimum when H'(b) =0, i.e.,

~2E[ZY] +2bE[2%] = 0 = b= £Z)

In this case: MSPE = E(Y — bOZ)2 — E(Y2) _ %
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Proof (b). By Lemma 1.4.1
E(Y —a— bZ)?> = Var(Y — bZ) + [E(Y) — bE(Z) — a]?
For any fixed value of b, this is minimized by taking
a=E(Y)—bE(Z).
Substituting for a, we find b minimizing
E(Y —a—bZ)> = E([Y - E(Y)] - blZ - E(2)])?
= E[Y — E(Y)]? + b*E[Z — E(Z)]?
—2bE([Z = E(2)][Y — E(Y)))
= Var(Y) —2bCov(Z,Y) + b?Var(Z) = h.(b)
h.(b) is a parabola in b which is minimized when h.(b) =0

~2bCov(Z, Y) +2bVar(Z) =0 = b= by = GALD

In this case: MSPE = E[Y — a; — by Z]? = Var(Y) — %
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Linear Prediction

Notes
o If the best predictor is linear (E(Y | Z) is linear in Z) it must
coincide with the best linear predictor.

o If the best predictor is non-linear (E(Y | Z) is not linear in Z)
then the best linear predictor will not have optimal MSPE.
See Example 1.4.1

Multivariate Linear Predictor For (Z,Y'), where
Z=(Z,...,Zy)" is d-dimensional covariate vector, linear
predictors of Y are given by

d

p(Z)=a+Y bZ=a+Z'b
j=1
where b = (bl, b2, ey bd)T
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Linear Prediction

20

Definition/Notation:

e E(Y)=py, (scalar) uz = E(Z) (column d-vector)

0 Y;7=E(Z-E(2)[Z-E(Z)]T) (dx d matrix)

e Yy =E([Z—-E2)][Y —E(Y)] (column d-vector)
Theorem 1.4.4 If EY? < ~o and ZE} exists, then the unique best
linear MSPE predictor is

u(Z) = py +(Z — pz) "B where B = £575 7y.
Proof The MSPE of the linear predictor y is

MSPE = Ep|Y — ui(Z2)]?, where P is the joint
distribution of X = (ZT, Y)T. This expression depends only on the
first and second moments of X, equivalently ;. = E[X], and
Y = Cov(X).
If the distribution P were Py, the multivariate normal distribution
with this expectation and covariance, then MSPE is minimized by
Ep[Y | Z] = uy +(Z — 1z) "B = pr(Z). Since P and Py have
the same p and X, if p; is best MSPE for Py it is also best for P.
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Linear Prediction

@ Defining the multiple correlation coefficient or coefficient of
determination
Py = Corr?(Y . i (2))
e Remark 1.4.4 Suppose the model for ;(Z) is linear:
WZ)=E(Y|2Z)=a+278
for unknown o € R, and B € RY.
Solving for & and B minimizing
MSPE = E[Y — u(2)]?
is solving for parameters minimizing a quadratic form in
first/second moments of (Z, Y'). These yield the same
solution as Theorem 1.4.4.
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@ Remark 1.4.5 Consider a Bayesian estimation problem where
X ~ Py and 0 ~ 7, and the loss function is squared-error loss:
L(6,a) = (a— 0)>.
Identify Y with 8, and X with Z, then the Bayes risk of an
estimator §(X) of 4 is:
r(6) = E[(6 — 6(X))?] = MSPE(§) which is
minimized by 6(X) = E[6 | X].
e Remark 1.4.6 Connections to Hilbert Spaces (Sectin B.10)

e Space H with inner product < -,- >:'H X H — R.
(bilinear, symmetric, and < h, h >= 0 iff h = 0)

o ||h|[> =< h,h > is a norm
l|ch|| = |c| - ||h]| for scalar ¢, and
[|h1 + h2|| < ||h1]| + ||h2]| (triangle inequality)

o H is complete: (contains limits)
If {hm,m>1}: ||hm — hp|| = 0, as m, n — oo then there
exists h € H: ||h, — h|| — 0.
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Connections to Hilbert Spaces (continued)
@ Projections on Linear Spaces

e L C H, a closed linear subspace of H.
e Project operator Ne|L):H—L:
M(h| L) =~H € L: achieves min{||h — K'||,h € L}
which has the property
h—T(h| L) LH, forall i e L.
o M is idempotent (MN? = N).
o [1is norm-reducing: ||N(h)|| < ||h]]
e From Pythagoras’ Theorem:
Al =N | LI+ (1A —N(h | £)|]
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e Hilbert Space Example:
o Lo(P)={ All r.v.'s X on a probability space:EX? < oo}
o <Z,Y >=E(XY)
o If E(Z)=E(Y)=0and E(ZY) =0, then
Var(X + Y) = Var(X) + Var(Y) (Pythagoras’ Therem)
e L is the linear span of 1, 7y,...,2Zy4
N(Y [ £) = E(Y) + (E2552)T(Z - E(2).
See 1.4.14.
o L is the space of all X = g(Z) for some g (measurable). This
is a linear space that can be shown to be closed and
ny | £)=E(Y|2).
See 1.4.6.
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Problem 1.4.4 Determining dependence between random variables.

Problem 1.4.7 Minimizing mean-absolute prediction error — the
role of the median.

Problem 1.4.11 Best estimators of Y given Z when (Y, Z) are
bivariate normal considering MSPE vs considering
mean abolute prediction error.

Problem 1.4.19 Minimizing a convex risk function R(a, b) by
solving for (a, b)

Problem 1.4.20 Binomial mixture model.

Problem 1.4.25 Mutual bounding of E[Y?] and E(Y — ¢)°.
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