MIT 18.655

Dr. Kempthorne

Spring 2016

æ

P

Statistical Decision Problem

- $X \sim P_{\theta}, \theta \in \Theta$.
- Action space \mathcal{A}
- Loss function: $L(\theta, a)$
- Decision procedures: $\delta(\cdot): \mathcal{X} \to \mathcal{A}$

Issue

- δ(X) may be inefficient ignoring important information in X that is relevant to θ.
- δ(X) may be needlessly complex using information from X that is irrelevant to θ.
- Suppose a statistic T(X) summarized all the relevant information in X
- We could limit focus to decision procedures $\delta_T(t): T(\mathcal{X}) \to R.$

Sufficiency: Examples

Example 1 Bernoulli Trials Let $X = (X_1, ..., X_n)$ be the outcome of *n* i.i.d *Bernoulli*(θ) random variables

• The pmf function of X is:

$$p(X \mid \theta) = P(X_1 = x_1 \mid \theta) \times P(X_2 = x_2 \mid \theta) \times \dots \times P(X_n = x_n)$$

= $\theta^{x_1}(1-\theta)^{1-x_1} \times \theta^{x_2}(1-\theta)^{1-x_2} \times \dots \theta^{x_n}(1-\theta)^{1-x_n}$
= $\theta^{\sum x_i}(1-\theta)^{(n-\sum x_i)}$

• Consider $T(X) = \sum_{i=1} X_i$ whose distribution has pmf: $\binom{n}{t} \theta^t (1-\theta)^{n-t}, 0 \le t \le n.$

MIT 18.655

- The distribution of X given T(X) = t is uniform over the *n*-tuples X: T(X) = t.

Sufficiency

- Given T(X) = t, the choice of tuple X does not require knowledge of θ.
- After knowing T(X) = t, the additional information in X is the sequence/order information which does not depend on θ.
- To make decision concerning θ, we should only need the information of T(X) = t, since the value of X given t reflects only the order information in X which is independent of θ.

Definition Let $X \sim P_{\theta}, \theta \in \Theta$ and $T(X) : \mathcal{X} \to \mathcal{T}$ is a statistic of X. The statistic T is *sufficient* for θ if the conditional distribution of X given T = t is independent of θ (almost everywhere wrt $P_T(\cdot)$).

Sufficiency Examples

Example 1. Bernoulli Trials

- $X = (X_1, \ldots, X_n)$: X_i iid Bernoulli(θ)
- $T(X) = \sum_{i=1}^{n} X_i \sim Binomial(n, \theta)$
- Prove that T(X) is sufficient for X by deriving the distribution of X | T(X) = t.

Example 2. Normal Sample Let X_1, \ldots, X_n be iid $N(\theta, \sigma_0^2)$ r.v.'s where σ_0^2 is known. Evaluate whether $T(X) = (\sum_{i=1}^{n} X_i)$ is sufficient for θ .

• Consider the transformation of

$$X = (X_1, X_2, ..., X_n)$$
 to $Y = (T, Y_2, Y_3, ..., Y_n)$

where

$$T = \sum X_i$$
 and
 $Y_2 = X_2 - X_1, Y_3 = X_3 - X_1, \dots, Y_n = X_n - X_1$

(The transformation is 1-1, and the Jacobian of the transformation is 1.)

- The joint distribution of $X \mid \theta$ is $N_n(\mu \times \mathbf{1}, \sigma_0^2 I_n)$.
- The joint distribution of $Y \mid \theta$ is $N_n(\mu_Y, \Sigma_{YY})$

$$\Sigma_{YY} = \begin{pmatrix} n\theta, 0, 0, \dots, 0 \end{pmatrix}^{T} \\ \begin{bmatrix} n\sigma_{0}^{2} & 0 & 0 & 0 & \cdots & 0 \\ \hline 0 & 2\sigma_{0}^{2} & \sigma_{0}^{2} & \sigma_{0}^{2} & \cdots & \sigma_{0}^{2} \\ 0 & \sigma_{0}^{2} & 2\sigma_{0}^{2} & \sigma_{0}^{2} & \cdots & \sigma_{0}^{2} \\ 0 & \sigma_{0}^{2} & \sigma_{0}^{2} & 2\sigma_{0}^{2} & \cdots & \sigma_{0}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \sigma_{0}^{2} & \sigma_{0}^{2} & \sigma_{0}^{2} & \sigma_{0}^{2} & 2\sigma_{0}^{2} \end{bmatrix}$$

- T and (Y_2, \ldots, Y_n) are independent $\implies (Y_2, \ldots, Y_n)$ given T = t is the unconditional distribution $\implies T$ is a sufficient statistic for θ .
- Note: all functions of (Y₂,..., Y_n) are independent of θ and T, which yields independence of X and s²:

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n} \sum_{i=1}^{n} [\frac{1}{n} \sum_{j=1}^{n} (X_{i} - X_{j})]^{2}$$

Sufficiency Examples

Example 1.5.2 Customers arrive at a service counter according to a Poisson process with arrival rate parmaeter θ .

Let X_1 and X_2 be the inter-arrival times of first two customers. (From time 0, customer 1 arrives at time X_1 and customer 2 at time $X_1 + X_2$. Prove that $T(X_1, X_2) = X_1 + X_2$ is sufficient for θ .

- X_1 and X_2 are iid *Exponential*(θ) r.v.'s (by A.16.4).
- The *Exponential*(θ) r.v. is the special case of the *Gamma*(p, θ) distribution with density with p = 1 $f(x \mid \theta, p) = \frac{\theta^{p} x^{p-1} e^{-\theta x}}{\Gamma(p)}, 0 < x < \infty$
- Theorem B.2.3: If X_1 and X_2 are independent random variables with $\Gamma(p, \lambda)$ and $\Gamma(q, \lambda)$ distributions,
 - $Y_1 = X_1 + X_2$ and $Y_2 = X_1/(X_1 + X_2)$ are independent and $Y_1 \sim Gamma(p + r, \theta)$ and $Y_2 \sim Beta(p, q)$.
- So, with p = q = 1, $Y_1 \sim Gamma(2, \theta)$ and $Y_2 \sim Uniform(0, 1)$, independently.
- $[(X_1, X_2) \mid T = t] \sim (X, Y)$ with $X \sim Uniform(0, t); Y = t X$

Sufficiency: Factorization Theorem

Theorem 1.5.1 (Factorization Theorem Due to Fisher and Neyman). In a regular model, a statistic T(X) with range T is sufficient for $\theta \in \Theta$, iff there exists functions

$$g(t, heta): \mathcal{T} imes \Theta o R$$
 and $h: \mathcal{X} o R_{s}$

such that

 $p(x \mid \theta) = g(T(x), \theta)h(x)$, for all $x \in \mathcal{X}$ and $\theta \in \Theta$. **Proof:** Consider the discrete case where $p(x \mid \theta) = P_{\theta}(X = x)$. First, suppose T is sufficient for θ . Then, the conditional distribution of X given T is independent of θ and we can write

$$P_{\theta}(x) = P_{\theta}(X = x, T = t(x))$$

=
$$[P_{\theta}(T = t(x))] \times [P(X = x \mid T = t(x))]$$

=
$$[g(T(x), \theta)] \times [h(x)]$$

$$g(t, \theta) = P_{\theta}(T = t)$$

where

and
$$h(x) = \begin{cases} 0, & \text{if } P_{\theta}(x) = 0, \text{ for all } \theta \\ P_{\theta}(X = x \mid T = t(x)), & \text{if } P_{\theta}(X = x) > 0 \text{ for some } \theta \end{cases}$$

Sufficiency: Factorization Theorem

Proof (continued). Second, suppose that $P_{\theta}(x)$ satisfies the factorization:

$$P_{\theta}(x) = g(t(x), \theta)h(x).$$

Fix $t_0 : P_{\theta}(T = t_0) > 0$, for some $\theta \in \Theta$. Then
 $P_{\theta}(X = x \mid T = t_0) = \frac{P_{\theta}(X = x, T = t_0)}{P_{\theta}(T = t_0)}.$

The numerator is $P_{\theta}(X = x)$ when $t(X) = t_0$ and 0 when $t(X) \neq t_0$

• The denominator is

$$P_{\theta}(T = t_0) = \sum_{\{x:t(x)=t_0\}} P_{\theta}(X = x) = \sum_{\{x:t(x)=t_0\}} g(t(x), \theta)h(x)$$

$$P_{\theta}(X = x \mid T = t_0) = \begin{cases} 0 & \text{if } t(x) \neq t_0 \\ \frac{g(t_0, \theta)h(x)}{g(t_0, \theta)\sum_{\{x':t(x)=t_0\}}h(x')}, & \text{if } t(x) = t_0 \end{cases}$$
(This is independent of θ as g-factors cancel)

Sufficiency: Factorization Theorem

More advanced proofs:

- Ferguson (1967) details proof for absolutely continuous X under regularity conditions of Neyman (1935).
- Lehmann (1959) *Testing Statistical Hypotheses* (Theorem 8 and corollary 1, Chapter 2) details general measure-theoretic proof.

Example 1.5.2 (continued) Let $X_1, X_2, ..., X_n$ be inter-arrival times for *n* customers which are iid *Exponential*(θ) r.v.'s

 $p(x_1, \ldots, x_n \mid \theta) = \theta^n e^{-\theta \sum_{i=1}^n x_i}$, where $0 < x_i, i = 1, \ldots, n$

• $T(X_1,...,X_n) = \sum_{i=1}^n X_i$ is sufficient by factorizaton theorem.

•
$$g(t,\theta) = \theta^n exp(-\theta \sum_{i=1}^n x_i)$$
 and $h(x_1,\ldots,x_n) = 1$.

Sufficiency: Applying Factorization Theorem

Example: Sample from Uniform Distribution Let $X_1, ..., X_n$ be a sample from the $Uniform(\alpha, \beta)$ distribution: $p(x_1, ..., x_n \mid \alpha, \beta) = \frac{1}{(\beta - \alpha)^n} \prod_{i=1}^n l_{(\alpha,\beta)}(x)$ • The statistic $T(x_1, ..., x_n) = (min x_i, max x_i)$ is sufficient for $\theta = (\alpha, \beta)$ $\prod_{i=1}^n l_{(\alpha,\beta)}(x_i) = l_{(\alpha,\beta)}(min x_i) l_{(\alpha,\beta)}(max x_i)$ • If α is known, then $T = max x_i$ is sufficient for β

• If β is known, then $T = \min x_i$ is sufficient for α

Sufficiency: Applying Factorization Theorem

Example 1.5.4 Normal Sample. Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$, with unknown $\theta = (\mu, \sigma^2) \in R \times R_+$ The joint density is $p(x_1,...,x_n \mid \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{1}{2\sigma^2}(x_i - \mu)^2)$ $= (2\pi\sigma^2)^{-n/2} exp(-\frac{n\mu^2}{2\sigma^2}) \times$ $exp\left\{-\frac{1}{2\sigma^2}\left(\sum_{i=1}^{n}x_i^2-2\mu\sum_{i=1}^{n}x_i\right)\right\}$ $= g(\sum_{i=1}^{n} x_i^2, \sum_{i=1}^{n} x_i; \theta)$ • $T(X_1,\ldots,X_n) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ is sufficient. • $T^*(X_1, \ldots, X_n) = (\bar{X}, s^2)$ is sufficient, where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, s^2 = \frac{1}{(n-1)} \sum_{i=1}^{n} (X_i - \bar{X})^2$ are sufficient.

Note: Sufficient statistics are not unique (their level sets are !!).

Sufficiency: Applying Factorization Theorem

Example 1.5.5 Normal linear regression model. Let Y_1, \ldots, Y_n be independent with $Y_i \sim N(\mu_i, \sigma^2)$, where $\mu_i = \beta_1 + \beta_2 z_i, i = 1, 2, \ldots, n$

and z_i are constants.

- Under what conditions is $\theta = (\beta_1, \beta_2, \sigma^2)$ identifiable?
- Under those conditions, the joint density for $(Y_1, ..., Y_n)$ is $p(y_1, ..., y_n \mid \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{1}{2\sigma^2}(y_i - \mu_i)^2)$ $= (2\pi\sigma^2)^{-n/2} exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_1 - \beta_2 z_i)^2)$ $= (2\pi\sigma^2)^{-n/2} exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n (\beta_1 + \beta_2 z_i)^2)$ $\times exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2(\beta_1 + \beta_2 z_i)y_i))$

which equals

$$(2\pi\sigma^{2})^{-n/2}exp(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(\beta_{1}+\beta_{2}z_{i})^{2}) \\ \times exp(-\frac{1}{2\sigma^{2}}[(\sum_{i=1}^{n}y_{i}^{2})-2\beta_{1}(\sum_{i=1}^{n}y_{i})-2\beta_{2}(\sum_{i=1}^{n}z_{i}y_{i})) \\ T = (\sum_{i=1}^{n}Y_{i}^{2},\sum_{i=1}^{n}Y_{i},\sum_{i=1}^{n}z_{i}Y_{i})$$
 is sufficient for θ

۰

Sufficiency and Decision Theory

Theorem: Consider a statistical decision problem with:

- $X \sim P_{ heta}, heta \in \Theta$ with sample space $\mathcal X$ and parameter space Θ
- $\mathcal{A} = \{actions \ a\}$
- $L(\theta, a) : \Theta \times \mathcal{A} \to R$, loss function
- $\delta(X): \mathcal{X} \to \mathcal{A}$, a decision procedure
- $R(\theta, \delta(X)) = E[L(\theta, \delta(X)) | \theta]$, risk function

If T(X) is sufficient for θ , where $X \sim P_{\theta}, \theta \in \Theta$, then we we can find a decision rule $\delta^*(T(X))$ depending only on T(X) that does as well as $\delta(X)$

Proof 1: Consider randomized decision rule based on $(T(X), X^*)$, where X^* is the random variable with conditional distribution:

$$X^* \sim [X \mid T(X) = t_0]$$

Note:

- δ^* will typically be randomized (due to X^*)
- δ^* specified by value T(X) = t and conditionally random X^*

Proof 2:

- By sufficiency of T(X), the distribution of $\delta(X)$ given T(X) = t does not depend on θ .
- Draw δ^* randomly from this conditional distribution.

• The risk of
$$\delta^*$$
 satisfies:

$$R(\theta, \delta^*) = E_T \{ E_{X|T}[L(\theta, \delta^*(T)) \mid T] \}$$

$$= E_T \{ E_{X|T}[L(\theta, \delta(X)) \mid T] \} = R(\theta, \delta(X))$$

Example 1.5.6 Suppose $\mathbf{X} = (X_1, \dots, X_n)$ consists of iid $N(\theta, 1)$ r.v.'s. By the factorization theorem $T(\mathbf{X}) = \prod_{i=1}^{n} X_i$ is sufficient. Let $\delta(X) = X_1$. Define $\delta^*(T(X))$ as follows $\delta^*(T(X)) = T(X) + \sqrt{rac{N-1}{N}}Z$, where $Z \sim N(0,1)$,

independent of X.

- Given $T(X) = t_0, \, \delta^*(T(X)) \sim N(t_0, \frac{(n-1)}{n})$
- Unconditionally $\delta^*(T(X)) \sim N(\theta, 1)$ (identical to X_1)

Sufficiency and Bayes Models

Definition: Let $X \sim P_{\theta}, \theta \in \Theta$ and let Π be the Prior distribution on Θ . The statistic T(X) is *Bayes sufficient* for Π if

 $\Pi(\theta \mid X = x)$, the Posterior distribution of θ given X is the same as

 $\Pi(\theta \mid T(X) = t(x))$, the Posterior distribution of θ given T(X) for all x.

Theorem 1.5.2 (Kolmogorov). If T(X) is sufficient for θ , then it is Bayes sufficient for every prior distribution Π . **Proof** Problem 1.5.14. Issue: Probability models often admit many sufficient statistics. Suppose $X = (X_1, \ldots, X_n)$ where X_i are iid $P_{\theta}, \theta \in \Theta$.

- $T(X) = (X_1, \dots, X_n)$ is (trivially) sufficient
- $T'(X) = (X_{[1]}, X_{[2]}, \dots, X_{[n]})$ where $X_{[j]} = j$ -th smallest $\{X_i\}$ (*j*-th order statistic) is sufficient
- T'(X) provides a greater reduction of the data.
- If the X_i are iid $N(\theta, 1)$ then $T'' = \bar{X}$ is sufficient.

Definition A statistic T(X) is *minimally sufficient* if it is sufficient and provides a greater reduction of the data than any other sufficient statistic. If S(X) is any sufficient statistic, then there exists a mapping r:

T(X) = r(S(X))

Minimal Sufficiency: Example

Example 1.5.1 (continued). X_1, \ldots, X_n are iid *Bernoulli*(θ) and $T = \sum_{i=1}^{n} X_i$ is sufficient.

Let S(X) be any other sufficient statistic. By the factorization therem:

 $p(x \mid \theta) = g(S(x), \theta)h(x),$

for some functions $g(\cdot, \cdot)$ and $h(\cdot)$. Using the pmf of X we have $\theta^T (1-\theta)^{(n-T)} = g(S(x), \theta)h(x)$, for all $\theta \in [0, 1]$

Fix any two values of θ , say θ_1 and θ_2 and take the ratio of the pmfs:

$$\begin{aligned} &(\theta_1/\theta_2)^T [(1-\theta_1)/(1-\theta_2)]^{n-T} = g(S(x),\theta_1)/g(S(x),\theta_2) \\ &\text{Take logarithm of both sides and solve for } T. \text{ E.g., } \theta_1 = 2/3 \text{ and} \\ &\theta_2 = 1/3 \\ &T = r(S(X)) = \log[2^n g(S(x),\theta_1)/g(S(x),\theta_2)]/2\log 2. \end{aligned}$$

The Likelihood Function

Definition For $X \sim P_{\theta}, \theta \in \Theta$ let $p(x \mid \theta)$ be the pmf or density function. The *likelihood function L* for a given observed data value X = x is

 $L_{x}(\theta) = p(x \mid \theta), \theta \in \Theta$ The function $L: \mathcal{X}$ to \mathcal{T} , the function class $\mathcal{T} = \{ f : \theta \to p(x \mid \theta), x \in \mathcal{X} \}$

Theorem (Dynkin, Lehmann, and Scheffe)

Suppose there exists θ_0 :

 $\{x: p(x \mid \theta) > 0\} \subset \{x: p(x \mid \theta_0) > 0\}$ for all θ .

 $\Lambda_{x}(\cdot) = \frac{L_{x}(\cdot)}{L_{x}(\theta_{0})} : \Theta \to R.$ Define:

Then $\Lambda_{x}(\cdot)$ is the function-valued statistic that is minimal sufficient.

Proof Problem 1.5.12

Note: As a function, $\Lambda_x(\cdot)$ at θ has value $p(x \mid \theta)/p(x \mid \theta_0)$, the ratio of likelihoods at θ and at θ_0 .

Sufficient Statistics and Ancillary Statistics

Suppose $X \sim P_{\theta}, \theta \in \Theta$ and that T(X) is a sufficient statistic. Consider a 1:1 mapping of X which includes the sufficient statistic $X \rightarrow (T(X), S(X)).$

Because the mapping is 1:1, we can recover X given T(X) = t and S(X) = s.

- T(X) is sufficient for θ , so S(X) is irrelevant so long as $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ is valid.
- Using S(X) to Evaluate Validity of \mathcal{P}

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.