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Statistical Decision Problem 

X ∼ Pθ, θ ∈ Θ. 

Action space A 

Loss function: L(θ, a) 

Decision procedures: δ(·) : X → A 

Issue 

δ(X ) may be inefficient ignoring important information in X 
that is relevant to θ. 

δ(X ) may be needlessly complex using information from X 
that is irrelevant to θ. 

Suppose a statistic T (X ) summarized all the relevant 
information in X 

We could limit focus to decision procedures
 
δT (t) : T (X ) → R.
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Sufficiency: Examples 

Example 1 Bernoulli Trials Let X = (X1, . . . , Xn) be the 
outcome of n i.i.d Bernoulli(θ) random variables 

The pmf function of X is: 
p(X | θ) = P(X1 = x1 | θ) × P(X2 = x2 | θ) × · · · × P(Xn = xn 

= θx1 (1 − θ)1−x1 × θx2 (1 − θ)1−x2 × · · · θxn (1 − θ)1−xn   
= θ xi (1 − θ)(n− xi ) 

nn 
Consider T (X ) = Xi whose distribution has pmf:


i=1
  
n 

θt (1 − θ)n−t , 0 ≤ t ≤ n. 
t

The distribution of X given T (X ) = t is uniform over the 
n-tuples X : T (X ) = t. 
The unconditional distribution of X is given by generating 
T ∼ Binomial(n, θ), and then choosing X randomly according 
to the uniform distribution over all tuples 

| 
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{x = (x1, . . . , xn) : T (x) = t
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Given T (X ) = t, the choice of tuple X does not require 
knowledge of θ. 

After knowing T (X ) = t, the additional information in X is 
the sequence/order information which does not depend on θ. 

To make decision concerning θ, we should only need the 
information of T (X ) = t, since the value of X given t reflects 
only the order information in X which is independent of θ. 

Definition Let X ∼ Pθ, θ ∈ Θ and T (X ) : X → T is a statistic of 
X . The statistic T is sufficient for θ if the conditional distribution 
of X given T = t is independent of θ (almost everywhere wrt 
PT (·)). 
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Sufficiency Examples 

Example 1. Bernoulli Trials 

X = (X1, . . . , Xn): Xi iid Bernoulli(θ) nT (X ) = Xi ∼ Binomial(n, θ)1 

Prove that T (X ) is sufficient for X by deriving the 
distribution of X | T (X ) = t. 

Example 2. Normal Sample Let X1, . . . , Xn be iid N(θ, σ0
2) r.v.’s  nwhere σ2 is known. Evaluate whether T (X ) = ( Xi ) is 0 1 

sufficient for θ. 

Consider the transformation of 
X = (X1, X2, . . . , Xn) to Y = (T , Y2, Y3, . . . , Yn) 

where  
T = Xi and 
Y2 = X2 − X1, Y3 = X3 − X1, . . . , Yn = Xn − X1 

(The transformation is 1-1, and the Jacobian of the 
transformation is 1.) 
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2
0In).The joint distribution of X | θ is Nn(µ × 1, σ

The joint distribution of Y | θ is Nn

= (nθ, 0, 0, . . . , 0)T ⎡ 

(µY , ΣYY ) 
µY ⎤
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T and (Y2, . . . , Yn) are independent 
=⇒ (Y2, . . . , Yn) given T = t is 

the unconditional distribution 
=⇒ T is a sufficient statistic for θ. 

Note: all functions of (Y2, . . . , Yn) are independent of θ and 
¯T , which yields independence of X and s2 : 

(Xi − X̄ )2 =
 1 1 [ 1 
n 

n 
j=1(Xi − Xj )]

22 n n s
 =
 i=1 i=1n n 
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Sufficiency Examples 

Example 1.5.2 Customers arrive at a service counter according to
 
a Poisson process with arrival rate parmaeter θ.
 
Let X1 and X2 be the inter-arrival times of first two customers.
 
(From time 0, customer 1 arrives at time X1 and customer 2 at
 
time X1 + X2. Prove that T (X1, X2) = X1 + X2 is sufficient for θ.
 

X1 and X2 are iid Exponential(θ) r.v.’s (by A.16.4).
 
The Exponential(θ) r.v. is the special case of the
 
Gamma(p, θ) distribution with density with p = 1
 

p−1 −θxx ef (x | θ, p) = θ
p 

, 0 < x < ∞Γ(p) 

Theorem B.2.3: If X1 and X2 are independent random 
variables with Γ(p, λ) and Γ(q, λ) distributions, 

Y1 = X1 + X2 and Y2 = X1/(X1 + X2) are independent and 
Y1 ∼ Gamma(p + r , θ) and Y2 ∼ Beta(p, q). 

So, with p = q = 1, Y1 ∼ Gamma(2, θ) and 
Y2 ∼ Uniform(0, 1), independently. 
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[(X1, X2) | T = t] ∼ (X , Y ) with X ∼ Uniform(0, t); Y = t − X 

7



Sufficiency 

Sufficiency: Factorization Theorem 

Theorem 1.5.1 (Factorization Theorem Due to Fisher and 
Neyman). In a regular model, a statistic T (X ) with range T is 
sufficient for θ ∈ Θ, iff there exists functions 

g(t, θ) : T × Θ → R and h : X → R, 
such that 

p(x | θ) = g(T (x), θ)h(x), for all x ∈ X and θ ∈ Θ. 
Proof: Consider the discrete case where p(x | θ) = Pθ(X = x). 
First, suppose T is sufficient for θ. Then, the conditional 
distribution of X given T is independent of θ and we can write 

Pθ(x) = Pθ(X = x , T = t(x)) 
= [Pθ(T = t(x))] × [P(X = x | T = t(x))] 
= [g(T (x), θ)] × [h(x)] 

where g(t, θ) = Pθ(T = t) 
0, if Pθ(x) = 0, for all θ 

and h(x) =
Pθ(X = x | T = t(x)), if Pθ(X = x) > 0 for some θ 

8 MIT 18.655 Sufficiency 



Sufficiency 

Sufficiency: Factorization Theorem
 

Proof (continued). Second, suppose that Pθ(x) satisfies the 
factorization: 

Pθ(x) = g(t(x), θ)h(x). 
Fix t0 : Pθ(T = t0) > 0, for some θ ∈ Θ. Then 

Pθ (X =x ,T =t0)Pθ(X = x | T = t0) = .Pθ (T =t0) 

The numerator is 
Pθ(X = x) when t(X ) = t0 and 0 when t(X ) = t0 

The denominator is
 
Pθ(T = t0) = Pθ(X = x) = g(t(x), θ)h(x)
 

n n 

n 

{x :t(x)=t0} {x :t(x)=t0} 

0 if t(x)  = t0 

g(t0, θ)h(x) 

⎧ ⎪⎪⎨ 
if t(x) = t0Pθ(X = x | T = t0) = , 

h(x _)⎪⎪⎩
 g (t0, θ) 

{x ':t(x)=t0}
(This is independent of θ as g -factors cancel) 
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Sufficiency: Factorization Theorem 

More advanced proofs: 

Ferguson (1967) details proof for absolutely continuous X 
under regularity conditions of Neyman (1935). 

Lehmann (1959) Testing Statistical Hypotheses (Theorem 8 
and corollary 1, Chapter 2) details general measure-theoretic 
proof. 

Example 1.5.2 (continued) Let X1, X2, . . . , Xn be inter-arrival 
times for n customers which are iid Exponential(θ) r.v.’s 

−θp(x1, . . . , xn | θ) = θne i
n 
=1 xi , where 0 < xi , i = 1, . . . , n 

nT (X1, . . . , Xn) = i=1 Xi is sufficient by factorizaton 
theorem. 

n g(t, θ) = θnexp(−θ 1 xi ) and h(x1, . . . , xn) = 1. 
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Sufficiency: Applying Factorization Theorem 

Example: Sample from Uniform Distribution Let X1, . . . , Xn be 
a sample from the Uniform(α, β) distribution: e

p(x1, . . . , xn | α, β) = 1 
(β−α)n 

n 
i=1 I(α,β)(x) 

The statistic 
T (x1, . . . , xn) = (min xi , max xi ) 

is sufficient for θ = (α, β)e n I(α,β)(xi ) = I(α,β)(min xi )I(α,β)(max xi )i=1 

If α is known, then T = max xi is sufficient for β 

If β is known, then T = min xi is sufficient for α 

11 MIT 18.655 Sufficiency 



      
  

Sufficiency 

Sufficiency: Applying Factorization Theorem 

Example 1.5.4 Normal Sample. Let X1, . . . , Xn be iid N(µ, σ2),
 
with unknown θ = (µ, σ2) ∈ R × R+
 

The joint density is
 e n √ 1 1p(x1, . . . , xn | θ) = exp(− (xi − µ)2)i=1 2σ22πσ2 

= (2πσ2)−n/2exp(−nµ2) 2σ2 )×  
1 n 2 n exp − − 2µ

2σ2 ( i=1 xi i=1 xi )
n n = g( 2 
i=1 xi , i=1 xi ; θ) 

n nT (X1, . . . , Xn) = ( Xi , X 2) is sufficient. i=1 i=1 i 

T ∗(X1, . . . , Xn) = ( X̄ , s2) is sufficient, where 
1 n 2 1 nX̄ = Xi , s = (Xi − X̄ )2) are sufficient. n i=1 (n−1) i=1

Note: Sufficient statistics are not unique (their level sets are!!). 
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Sufficiency: Applying Factorization Theorem 

Example 1.5.5 Normal linear regression model. Let Y1, . . . , Yn be 
independent with Yi ∼ N(µi , σ

2), where 
µi = β1 + β2zi , i = 1, 2, . . . , n 

and zi are constants. 

Under what conditions is θ = (β1, β2, σ
2) identifiable? 

Under those conditions, the joint density for (Y1, . . . , Yn) is e n √ 1 1 p(y1, . . . , yn | θ) = exp(−
2σ2 (yi − µi )

2)i=1 2πσ2 

1 n = (2πσ2)−n/2exp(− (yi − β1 − β2zi )2 
2σ2 i=1
1 n = (2πσ2)−n/2exp(− (β1 + β2zi )2)2σ2 i=1

1 n 2×exp(− (y − 2(β1 + β2zi )yi ))2σ2 i=1 i 
which equals 

1 n(2πσ2)−n/2exp(− (β1 + β2zi )2)2σ2 i=1
1 n 2 n n×exp(− [( ) − 2β1(2σ2 i=1 yi i=1 yi ) − 2β2( i=1 zi yi )) 

n n nT = ( Y 2 , Yi , i=1 zi Yi ) is sufficient for θi=1 i i=1 
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Sufficiency and Decision Theory 

Theorem: Consider a statistical decision problem with: 

X ∼ Pθ, θ ∈ Θ with sample space X and parameter space Θ 

A = {actions a}
L(θ, a) : Θ ×A → R, loss function 

δ(X ) : X → A, a decision procedure 

R(θ, δ(X )) = E [L(θ, δ(X )) | θ], risk function 

If T (X ) is sufficient for θ, where X ∼ Pθ, θ ∈ Θ, then we we can 
find a decision rule δ∗(T (X )) depending only on T (X ) that does 
as well as δ(X ) 
Proof 1: Consider randomized decision rule based on (T (X ), X ∗), 
where X ∗ is the random variable with conditional distribution: 

X ∗ ∼ [X | T (X ) = t0] 
Note: 

δ∗ will typically be randomized (due to X ∗) 

δ∗ specified by value T (X ) = t and conditionally random X ∗ 
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Proof 2: 

By sufficiency of T (X ), the distribution of δ(X ) given
 
T (X ) = t does not depend on θ.
 

Draw δ∗ randomly from this conditional distribution. 

The risk of δ∗ satisfies: 
R(θ, δ∗) = ET {EX |T [L(θ, δ

∗(T )) | T ]}
= ET {EX |T [L(θ, δ(X )) | T ]} = R(θ, δ(X )) 

Example 1.5.6 Suppose X = (X1, . . . , Xn) consists of iid N(θ, 1) 
nr.v.’s. By the factorization theorem T (X) = Xi is sufficient. 1 

Let δ(X ) = X1.
 
Define δ∗(T (X )) as follows
  

N−1δ∗(T (X )) = T (X ) + Z , where Z ∼ N(0, 1),N 
independent of X . 

(n−1)Given T (X ) = t0, δ∗(T (X )) ∼ N(t0, )n 

Unconditionally δ∗(T (X )) ∼ N(θ, 1) ( identical to X1) 
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Sufficiency and Bayes Models 

Definition: Let X ∼ Pθ, θ ∈ Θ and let Π be the Prior distribution 
on Θ. The statistic T (X ) is Bayes sufficient for Π if 

Π(θ | X = x), the Posterior distribution of θ given X 
is the same as 

Π(θ | T (X ) = t(x)), the Posterior distribution of θ given T (X ) 
for all x . 

Theorem 1.5.2 (Kolmogorov). If T (X ) is sufficient for θ, then it
 
is Bayes sufficient for every prior distribution Π.
 
Proof Problem 1.5.14.
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Minimal Sufficiency 

Issue: Probability models often admit many sufficient statistics. 
Suppose X = (X1, . . . , Xn) where Xi are iid Pθ, θ ∈ Θ. 

T (X ) = (X1, . . . , Xn) is (trivially) sufficient 

T _(X ) = (X[1], X[2], . . . , X[n]) where X[j ] = j-th smallest {Xi }
(j-th order statistic) is sufficient 

T _(X ) provides a greater reduction of the data. 
¯If the Xi are iid N(θ, 1) then T 

'' 
= X is sufficient. 

Definition A statistic T (X ) is minimally sufficient if it is sufficient 
and provides a greater reduction of the data than any other 
sufficient statistic. If S(X ) is any sufficient statistic, then there 
exists a mapping r : 

T (X ) = r(S(X )) 
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Minimal Sufficiency: Example
 

Example 1.5.1 (continued). X1, . . . , Xn are iid Bernoulli(θ) and 
nT = 1 Xi is sufficient.
 

Let S(X ) be any other sufficient statistic. By the factorization
 
therem:
 

p(x | θ) = g(S(x), θ)h(x), 
for some functions g(·, ·) and h(·). Using the pmf of X we have 

θT (1 − θ)(n−T ) = g(S(x), θ)h(x), for all θ ∈ [0, 1] 
Fix any two values of θ, say θ1 and θ2 and take the ratio of the 
pmfs: 

(θ1/θ2)
T [(1 − θ1)/(1 − θ2)]n−T = g(S(x), θ1)/g(S(x), θ2) 

Take logarithm of both sides and solve for T . E.g., θ1 = 2/3 and 
θ2 = 1/3 

T = r(S(X )) = log [2ng(S(x), θ1)/g(S(x), θ2)]/2log2. 
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The Likelihood Function 

Definition For X ∼ Pθ, θ ∈ Θ let p(x | θ) be the pmf or density 
function. The likelihood function L for a given observed data value 
X = x is 

Lx (θ) = p(x | θ), θ ∈ Θ 
The function L : X to T , the function class 

T = {f : θ → p(x | θ), x ∈ X} 

Theorem (Dynkin, Lehmann, and Scheffe) 
Suppose there exists θ0: 

{x : p(x | θ) > 0} ⊂ {x : p(x | θ0) > 0} for all θ. 
Lx (·)Define: Λx (·) = : Θ → R.Lx (θ0) 

Then Λx (·) is the function-valued statistic that is minimal 
sufficient. 
Proof Problem 1.5.12 
Note: As a function, Λx (·) at θ has value p(x | θ)/p(x | θ0), the 
ratio of likelihoods at θ and at θ0. 
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Sufficient Statistics and Ancillary Statistics 

Suppose X ∼ Pθ, θ ∈ Θ and that T (X ) is a sufficient statistic. 
Consider a 1:1 mapping of X which includes the sufficient statistic 

X → (T (X ), S(X )). 
Because the mapping is 1:1, we can recover X given T (X ) = t and 
S(X ) = s. 

T (X ) is sufficient for θ, so S(X ) is irrelevant so long as 
P={Pθ, θ ∈ Θ} is valid. 

Using S(X ) to Evaluate Validity of P 

Example 1.5.5: X = (X1, . . . , Xn) iid N(θ, 1)
 
¯
T (X ) = X and S(X ) = (X1 − X̄ , . . . , Xn − X̄ ) 

To evaluate the validity of Var(Xi ) ≡ 1, we need S(X ). 
Example 1.5.4: X = (X1, . . . , Xn) iid N(θ, σ2) 

n nT (X ) = ( Xi , X 2) or equivalently 1 1 i 
T (X ) = ( X̄ , s2) 
To evaluate the validity of the Normal Assumption, we need 
S(X ). (See Problem 1.5.13) 
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