Exponential Families II

MIT 18.655

Dr. Kempthorne

Spring 2016

Outline

- Exponential Families II
 - Random Vectors
 - Properties of Exponential Families

Random Vectors: Expectation and Variance

U $(k \times 1)$ and **V** $(l \times 1)$ are random vectors

• If **A** $(m \times k)$, **B** $(m \times l)$ are nonrandom, and then

$$E(AU + BV) = AE(U) + BE(V)$$

- If $\mathbf{U} = \mathbf{c}$ with probability $1 E(\mathbf{U}) = \mathbf{c}$.
- For a random vector \mathbf{U} , if $E(|\mathbf{U}|^2) = \sum_{i=1}^k E(U_i^2) < \infty$ define the *variance* of \mathbf{U} by

$$Var(\mathbf{U}) = E[(\mathbf{U} - E(\mathbf{U}))(\mathbf{U} - E(\mathbf{U}))^T]$$

= $||Cov(U_i, U_j)|| (k \times k)$

• For **A** $(m \times k)$ as above:

$$Var(\mathbf{A}U) = \mathbf{A}Var(\mathbf{U})\mathbf{A}^T \quad (m \times m)$$

• For \mathbf{c} $(k \times 1)$ a constant vector

$$Var(\mathbf{U} + \mathbf{c}) = Var(\mathbf{U})$$

• For \mathbf{a} $(k \times 1)$ a constant vector,

$$Var(\mathbf{a}^{T}\mathbf{U}) = Var(\sum_{j=1}^{k} a_{j}U_{j})$$

= $\mathbf{a}^{T}Var(\mathbf{U})\mathbf{a} = \sum_{i,j} a_{i}a_{j}Cov(U_{i}, U_{j})$

Random Vectors: Expectation and Variance

Proposition B.5.1 If $E[|\mathbf{U}|^2] < \infty$ then $Var(\mathbf{U})$ is positive definite if and only if_

$$P[\mathbf{a}^T\mathbf{U} + b = 0] < 1,$$
 for every $\mathbf{a} \neq \mathbf{0}$, and $b \in R$.

Proof. Var(U) is not positive definite iff $\mathbf{A}^T Var(\mathbf{Y})\mathbf{a} = 0$ for some $\mathbf{a} \neq 0$ which is equivalent to $Var(\mathbf{a}^T \mathbf{U}) = 0$.

Random Vectors: Covariance

Definition: For random vectors \mathbf{U} ($k \times 1$) and \mathbf{V} ($l \times 1$) define the *Covariance* of U ($k \times 1$) and \mathbf{V} ($l \times 1$) by $Cov(\mathbf{U}, \mathbf{V}) = E\left[(\mathbf{U} - E(\mathbf{U}))(\mathbf{V} - E(\mathbf{V}))^T\right] \quad (k \times l)$ (must assume: $E|\mathbf{U}|^2 < \infty$ and $E|\mathbf{V}|^2 < \infty$)

• If **U** and **V** are independent $Cov(\mathbf{U}, \mathbf{V}) = 0$.

• For nonrandom
$$A, a, B, b$$
,

$$Cov(A\mathbf{U} + a, B\mathbf{V} + b) = ACov(\mathbf{U}, \mathbf{V})B^T$$

• If **U** and **W** are random $(k \times 1)$ vectors, then

$$Var(\mathbf{U} + \mathbf{W}) = Var(\mathbf{U}) + Cov(\mathbf{U}, \mathbf{W}) + Cov(\mathbf{W}, \mathbf{U}) + Var(\mathbf{W})$$

and if **U** and **W** are independent

$$Var(\mathbf{U} + \mathbf{W}) = Var(\mathbf{U}) + Var(\mathbf{W})$$

Random Vectors: Moment Generating Functions

Moment-Generating Function of a Random Vector

Let $\mathbf{T} = (T_1, T_2, \dots, T_k)^T$ be a $(k \times 1)$ random vector.

- For $\mathbf{s} = (s_1, s_2, \dots, s_k)^T \in R^k$, define $M(s) \equiv E[e^{\mathbf{s}^T \mathbf{T}}]$
- M(s) is the moment-generating function (mgf) of T
- The mgf may not exist for a given T. If it does exist, it is defined for s in some ball centered at s = 0.
- Define the **characteristic function (cf)** of **T**: $\phi(\mathbf{s}) = E[e^{i\mathbf{s}^T\mathbf{T}}] = E[\cos(\mathbf{s}^T\mathbf{T})] + iE[\sin(\mathbf{s}^T\mathbf{T})]$
- The cf always exists.

Random Vectors: Moment Generating Functions

Theorem B.5.1 Let $S = \{s : M(s) < \infty\}$. Then

- S is convex.
- If S has a nonempty interior S^0 , (contains a sphere $S(\mathbf{0}, \epsilon), \epsilon > 0$), then M is analytic on S^0 .
- If $S^0 \neq \emptyset$, and $E[|\mathbf{T}|^p] < \infty$ for all p, then if $i_1 + i_2 + \cdots + i_k = p$,

$$\frac{\partial^{p} M(\mathbf{s})}{\partial s_{1}^{i_{1}} \cdots \partial s_{k}^{i_{k}}} \Big|_{\mathbf{s}=\mathbf{0}} = E[T_{1}^{i_{1}} \cdots T_{k}^{i_{j}}]$$
$$\left| \left| \frac{\partial M}{\partial s_{j}} (\mathbf{s} = \mathbf{0}) \right| \right| = \left| \left| E(\mathbf{T}_{j}) \right| \right| = E[\mathbf{T}]$$

$$\left|\left|\frac{\partial^2 M}{\partial s_i \partial s_j}(\mathbf{s} = \mathbf{0})\right|\right| = \left|\left|E(\mathbf{T}_i \mathbf{T}_j)\right|\right| = E[\mathbf{T}\mathbf{T}^T]$$

• If S^0 is nonempty, then $M(\mathbf{s})$ determines the distribution of \mathbf{U} uniquely.

Random Vectors: Moment Generating Functions

Definition: The Cumulant Generating Function of the random vector \mathbf{T} with mgf $M_{\mathbf{T}}(\mathbf{s})$ is

$$K(\mathbf{s}) = K_{\mathbf{T}}(\mathbf{s}) = \log M_{\mathbf{T}}(\mathbf{s}).$$

$$c_{i_1,\dots,i_k} = c_{i_1,\dots,i_k}(\mathbf{T}) = \frac{\partial^p}{\partial s_1^{i_1}\dots\partial s_k^{i_k}} K(\mathbf{s})\big|_{\mathbf{s}=\mathbf{0}}$$

• In the bivariate case (k = 2) where

$$\mu = E[\mathbf{T}], \text{ and } \tau_{i,j} = E[(T_1 - \mu_1)^i (T_2 - \mu_2)^j]$$
 $c_{10} = \mu_1$
 $c_{01} = \mu_2$
 $c_{2,0} = \tau_{2,0} = var(T_1)$
 $c_{0,2} = \tau_{0,2} = var(T_2)$
 $c_{1,1} = \tau_{1,1} = cov(T_1, T_2)$
 $c_{3,0} = \tau_{3,0} = E[(T_1 - \mu_1)^3]$
 $c_{0,3} = \tau_{0,3} = E[(T_2 - \mu_2)^3]$
 $c_{4,0} = \tau_{4,0} - 3\tau_{2,0}^2$
 $c_{0,4} = \tau_{0,4} - 3\tau_{0,2}^2$

Sums of Independent Random Vectors

If **U** and **V** are independent $(k \times 1)$ random vectors, then $M_{U+V}(\mathbf{s}) = M_U(\mathbf{s}) \times M_V(\mathbf{s})$ $K_{U+V}(\mathbf{s}) = K_U(\mathbf{s}) + K_V(\mathbf{s})$

Multivariate Normal Distributions

Definition B.6.1: A random vector \mathbf{U} ($k \times 1$) has a k-variate normal distribution iff \mathbf{U} can be written as

$$U = \mu + AZ$$

where μ , **A** are constant and $\mathbf{Z} = (Z_1, \dots, Z_k)^T$; Z_i iid N(0,1).

Definition B.6.2: A random vector \mathbf{U} ($k \times 1$) has a k-variate normal distribution iff for every ($k \times 1$) nonrandom \mathbf{a} :

$$\mathbf{a}^T \mathbf{U} = \sum_{i=1}^{\kappa} a_i U_i$$
 has a univariate normal distribution

The moment generating function of U is

$$M_{\mathsf{U}}(\mathbf{s}) = exp\left\{\mathbf{s}^{\mathsf{T}}\boldsymbol{\mu} + \frac{1}{2}\mathbf{s}^{\mathsf{T}}\boldsymbol{\Sigma}\mathbf{s}\right\}$$

where $\mu = E[\mathbf{U}]$, and $\Sigma = Cov(\mathbf{U}) = \mathbf{A}\mathbf{A}^T$.

Outline

- Exponential Families II
 - Random Vectors
 - Properties of Exponential Families

Properties of Exponential Families

Properties of Exponential Families

Theorem 1.6.3 Let \mathcal{P} be a canonical k-parameter exponential family generated by (\mathbf{T}, h) , with corresponding natural parameter space \mathcal{E} and function $A(\eta)$. Then

- \bullet \mathcal{E} is convex
- $A: \mathcal{E} \to R$ is convex
- If \mathcal{E} has nonempty interior $\mathcal{E}^0 \subset R^k$, and $\eta_0 \in \mathcal{E}^0$, then $\mathbf{T}(X)$ has under η_0 a mgf given by

$$M(\mathbf{s}) = \exp \left\{ A(\boldsymbol{\eta}_0 + \boldsymbol{s}) - A(\boldsymbol{\eta}_0) \right\}$$

valid for all ${f s}$ such that ${m \eta}_0 + {f s} \in {\mathcal E}.$

(this set of **s** includes a ball about η_0)

Corollary 1.6.1 Under the conditions of the theorem

$$E_{\eta_0}[\mathbf{T}(X)] = A(\eta_0)$$

 $Var_{\eta_0}[\mathbf{T}(X)] = A(\eta_0)$

where
$$A(\eta_0) = \left| \frac{\partial A}{\partial \eta_i}(\eta_0) \right|$$
 and $A(\eta_0) = \left| \left| \frac{\partial^2 A}{\partial \eta_i \partial \eta_i}(\eta_0) \right| \right|$

Example: Multinomial Distribution

Multinomial Distribution

$$X = (X_1, X_2, \dots, X_q) \sim Multinomial(n, \theta = (\theta_1, \theta_2, \dots, \theta_q))$$

 $p(x \mid \theta) = \frac{n}{x_1! \cdots x_q!} \theta_1^{x_1} \theta_2^{x_2} \cdots \theta_q^{x_q}$ where

- q is a given positive integer,
- $\theta = (\theta_1, \dots, \theta_q) : \sum_{1}^{q} \theta_j = 1.$
- n is a given positive integer
- $\bullet \ \sum_{1}^{q} X_{i} = n.$

Example: Multinomial Distribution

$$\begin{array}{lcl} \rho(x \mid \theta) & = & \frac{n}{x_1! \cdots x_q!} \theta_1^{x_1} \theta_2^{x_2} \cdots \theta_q^{x_q} \\ & = & \frac{n}{x_1! \cdots x_q!} \times \exp\{\log(\theta_1) x_1 + \cdots + \log(\theta_{q-1}) x_{q-1} \\ & & + \log(1 - \sum_1^{q-1} \theta_j) [n - \sum_1^{q-1} x_j] \} \\ & = & h(x) \exp\{\sum_{j=1}^{q-1} \eta_j(\theta) T_j(x) - B(\theta) \} \\ & = & h(x) \exp\{\sum_{j=1}^{q-1} \eta_j T_j(x) - A(\eta) \} \end{array}$$

where:

$$h(x) = \frac{n}{x_1! \cdots x_q!}$$

$$\eta(\theta) = (\eta_1(\theta), \eta_2(\theta), \dots, \eta_{q-1}(\theta))$$

$$\eta_j(\theta) = \log(\theta_j/(1 - \sum_1^{q-1} \theta_j)), j = 1, \dots, q-1$$

•
$$T(x) = (X_1, X_2, \dots, X_{q-1}) = (T_1(x), T_2(x), \dots, T_{q-1}(x)).$$

•
$$B(\theta) = -nlog(1 - \sum_{j=1}^{q-1} \theta_j)$$
 and $A(\eta) = +nlog(1 + \sum_{j=1}^{q-1} e^{\eta_j})$

$$\overset{\bullet}{A}(\boldsymbol{\eta})_{j} = n \frac{e^{\eta_{j}}}{1 + \sum_{j=1}^{q-1} e^{\eta_{j}}} = n \frac{\theta_{j}/(1 - \sum_{1}^{q-1} \theta_{k})}{1 + \sum_{1}^{q-1} \theta_{k}/(1 - \sum_{1}^{q-1} \theta_{k})} = n\theta_{j}$$

$$\overset{\bullet}{A}(\boldsymbol{\eta})_{i,j} = -n\theta_{i}\theta_{i}, \quad (i \neq j) \text{ and } \overset{\bullet}{A}(\boldsymbol{\eta})_{i,j} = n\theta_{i}(1 = \theta_{i})$$

Rank of Exponential Family

Defining the Rank of an Exponential Family

- Every k-parameter exponential family is also a k^* -parameter exponential family for any $k^* > k$.
- The *minimal* value of k defines the rank of the exponential family. Define *minimal* k as the rank when the generating statistic T(X) is k-dimentional, and the collection

$$\{1, T_1(X), T_2(X), \ldots, T_k(X)\}$$

are linearly independent with positive probability, i.e.,

$$P[\sum_{j=1}^{k} a_j T_j(X) = a_{k+1} | \eta] < 1$$
, unless all $a_j = 0$.

Note: the set of positive support on $\mathcal X$ does not depend on η .

Rank of Exponential Family

Theorem 1.6.4 Let $\mathcal{P} = \{q(x \mid \eta), \eta \in \mathcal{E}\}$ be a canonical exponential family generated by $(\mathbf{T}(X), h(X))$ with natural parameter space \mathcal{E} such that \mathcal{E} is open. Then the following statements are equivalent

- \mathcal{P} is of rank k.
- $oldsymbol{ heta}$ is an identifiable parameter.
- $Var(\mathbf{T} \mid \eta)$ is positive definite
- ullet $\eta
 ightarrow \dot{\mathcal{A}}(\eta)$ is 1-to-1 on $\mathcal{E}.$
- $A(\eta)$ is strictly convex on \mathcal{E} .

Note: \mathcal{E} open $\Longrightarrow \mathring{A}$ defined on all \mathcal{E} .

Corollary 1.6.2 If \mathcal{P} is of rank k under Theorem 1.6.4, then

- \mathcal{P} may be uniquely parametrized by $\mu(\eta) \equiv E[\mathbf{T}(X) \mid \eta].$
- $\log[q(x, \eta)]$ is strictly concave in η on \mathcal{E} .

p-Variate Gaussian Family

Let \mathbf{Y} be a $(p \times 1)$ random vector with a p-variate Gaussian distribution

$$\mathbf{Y} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

where $\mu = E[Y]$ and $\Sigma = Var(Y)$ is positive definite, rank p.

The density of Y is

$$p(\mathbf{y}, \mu, \Sigma) = |\det(\Sigma)|^{-\frac{1}{2}} (2\pi)^{-\frac{\rho}{2}} \exp\{-\frac{1}{2} (\mathbf{Y} - \mu)^T \Sigma^{-1} (\mathbf{Y} - \mu)\}$$

Taking logs:

$$\log[p(\mathbf{y}, \mu, \Sigma)] = -\frac{1}{2}\mathbf{Y}^{T}\Sigma^{-1}\mathbf{Y} + [\Sigma^{-1}\mu]^{T}\mathbf{Y} - \frac{1}{2}\mu^{T}\Sigma^{-1}\mu - \frac{1}{2}log[det(\Sigma)] - \frac{p}{2}log[2\pi]]$$

Defining $\Sigma^{-1} = ||\sigma^{i,j}||$, we can write the first 2 terms as $-[\sum_{i < i} \sigma^{i,j} Y_i Y_i + \frac{1}{2} \sum_i \sigma^{i,i} Y_i^2] + \sum_{i=1}^p [\sum_{j=1}^p \sigma^{i,j} \mu_i] Y_i$

• The parameter space dimension is

$$k = p + p(p+1)/2 = p(p+3)/2$$

• The sufficient statistics are

$$[(Y_1,\ldots,Y_p),\{Y_iY_j,1\leq i\leq j\leq p\}],$$

- $h(Y) \equiv 1$
- $\theta = (\mu, \Sigma)$
- $B(\theta) = \frac{1}{2} \left(log[|det(\Sigma)|] + \mu^T \Sigma^{-1} \mu \right)$

For a sample Y_1,\ldots,Y_n of iid $N_p(\mu\Sigma)$ r.vectors, the data

$$\mathbf{X}=(Y_1,Y_2,\ldots,Y_n)$$

follows the k = p(p+3)/2 parameter exponential family with

$$\mathbf{T} = (\sum_{i} \mathbf{Y}_{i}, LowerTriangle(\sum_{i} \mathbf{Y}_{i} \mathbf{Y}_{i}^{T}))$$

(LowerTriangle(\cdot) refers to matrix elements along and below the diagonal)

Conjugate Families of Prior Distributions

Let X_1, \ldots, X_n be a sample from the k-parameter exponential family

$$p(x \mid \theta) = \left[\prod_{i=1}^{n} h(x_i)\right] \exp\left\{\sum_{j=1}^{k} \eta_j(\theta) \sum_{i=1}^{n} T_j(x_i) - nB(\theta)\right\}$$
 where θ is k -dimensional.

- Treat θ as the variable of interest in $p(x \mid \theta)$
- Treat *n* and T_i as parameters in $p(x \mid \theta)$
- Find a normalizing function:

$$\omega(\mathbf{t}) = \int \cdots \int \exp\left\{\sum_{j=1}^{k} t_j \eta_j(\theta) - t_{k+1} B(\theta)\right\} d\theta_1 \cdots d\theta_k$$
 and set

$$\Omega = \{(t_1,\ldots,t_{k+1}): 0 < \omega(t_1,\ldots,t_{k+1}) < \infty\}$$

Proposition 1.6.1 The (k+1)-parameter exponential family given by

$$\pi_t(\theta) = \exp\left\{\sum_{j=1}^k t_j \eta_j(\theta) - t_{k+1} B(\theta) - \log[\omega(t)]\right\}$$
 where $t = (t_1, \dots, t_{k+1}) \in \Omega$, is a conjugate prior to $p(x \mid \theta)$.

MIT OpenCourseWare http://ocw.mit.edu

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.