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Random Vectors: Expectation and Variance

U (k x 1) and V (/ x 1) are random vectors
o If A (m x k), B (m x [) are nonrandom, and
then
E(AU + BV) = AE(U) + BE(V)
If U = c with probability 1 E(U) =
For a random vector U, if E(|U|?) = Z LE(U?) <
define the variance of U by
Var(U) = E[(U- EQU))(U - E(U))T]
— I Cou(Un Ul (k x 0
e For A (m x k) as above:
Var(AU) = AVar(U)AT  (m x m)
For ¢ (k x 1) a constant vector
Var(U + c) = Var(U)
@ For a (k x 1) a constant vector,
Var(a™U) = Var(zj 1 ajUj)v~
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Random Vectors: Expectation and Variance

Proposition B.5.1 If E[|U[?] < co then
Var(U) is positive definite
if and only if
Pla’U+b=0] < 1,
for every a# 0, and b € R.
Proof. Var(U) is not positive definite iff AT Var(Y)a = 0 for some
a # 0 which is equivalent to Var(a”U) = 0.
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Random Vectors: Covariance

Definition: For random vectors U (k x 1) and V (/ x 1) define
the Covariance of U (k x 1) and V (/ x 1) by
Cov(U,V) = E[(U—-EMU))V-EWNV)T] (kx1I)
(must assume: E|U|2 < oo and E|V|? < 0)

o If U and V are independent
Cov(U,V) = 0.
@ For nonrandom A, a, B, b,
Cov(AU + a, BV + b) = ACov(U,V)BT
e If U and W are random (k x 1) vectors, then
Var(U + W) = Var(U) + Cov(U, W)+
Cov(W,U) + Var(W)
and if U and W are independent
Var(U + W) = Var(U) + Var(W)
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Random Vectors: Moment Generating Functions

Moment-Generating Function of a Random Vector

Let T=(Tq, To,..., Tk)T be a (k x 1) random vector.

o Fors = (s1,%,...,5¢)" € R¥, define
M(s) = E[es'T]
M(s) is the moment-generating function (mgf) of T

The mgf may not exist for a given T. If it does exist, it is
defined for s in some ball centered at s = 0.

Define the characteristic function (cf) of T:
¢(s) = E[e’"T] = E[cos(sTT)] + iE[sin(sT T)]

The cf always exists.
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Random Vectors: Moment Generating Functions

Theorem B.5.1 Let S = {s: M(s) < co}. Then

@ S is convex.
e If S has a nonempty interior S°, (contains a sphere
S(0,¢),¢e > 0), then M is analytic on S°.
o If S £ (), and E[|T|P] < oo for all p, then
ifin+i+---+ix=p,

oPM

| %—ﬁf(sﬂ)ll = HE ) || = ET]

125t (s=0)l| = ||ETT) || = ETT7]
o If 8% is nonempty, then M(s) determines the distribution of U

uniquely.
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Random Vectors: Moment Generating Functions

Definition: The Cumulant Generating Function of the random
vector T with mgf My (s) is
K(s) = Kr(s) = log Mr(s).

ap
Cipyo i = Ciyor i (T) = O

P
@ In the bivariate case (k = 2) where ' '
p=E[T],and 7;j = E[(T1 — p1)"(T2 — p2)]

cGilo = M

1 = M2

C270 = T20= var( Tl)
C072 = T02 = var( T2)
€1 = T11 = COV( Tl, Tg)

o = T30=E[(T1— 1)’
3 = 703=E[(T2— p2)’]
o = Ta0— 373,
Coa = Toa— 378,
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Sums of Independent Random Vectors

If U and V are independent (k x 1) random vectors, then
Mu+v(5) = Mu(s) X M\/(S)
KU+V(S) = Ku(S) + K\/(S)
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Multivariate Normal Distributions

Definition B.6.1: A random vector U (k x 1) has a k-variate
normal distribution iff U can be written as

U=pnpn+AZ
where p, A are constant and Z = (Z1,...,2Z)"; Z; iid N(0,1).

Definition B.6.2: A random vector U (k x 1) has a k-variate

normal distribution iff for every (k x 1) nonrandom a:
k

a'u= Za,-U,- has a univariate normal distribution
i=1

The moment generating function of U is
My(s) = exp {s"p + 3s7 Ts}

where p1 = E[U], and ¥ = Cov(U) = AAT.
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Properties of Exponential Families

Theorem 1.6.3 Let P be a canonical k-parameter exponential
family generated by (T, h), with corresponding natural parameter
space £ and function A(n). Then

e & is convex

@ A: & — R is convex

e If £ has nonempty interior £2 C R¥, and 79 € £°, then T(X)
has under ny a mgf given by

M(s) = exp {A(no + s) — A(no)}
valid for all s such that ny+s € €.
(this set of s includes a ball about 7))

Corollary 1.6.1 Under the conditions of the theorem
En[T(X)] = Almo)
Varn,[T(X)] = A(no) 2
where A(ng) = | §5:(no)| and A(no) = || 504 (o) |
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Example: Multinomial Distribution

Multinomial Distribution
X = (X1, X2,...,Xq) ~ Multinomial(n, 8 = (61,02, ...,0q))
p(x|0) = 071032 - - - 03" where

x11-xg! x'
g is a given positive integer,
0= (01,...,0q):> 76, =1.
n is a given positive integer

SIXi =n.
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Example: Multinomial Distribution

p(X|9) = - X‘9x19><2 : exq
= T X, x exp{log(61)x1 + - - - + log(0g—1)xg—1
+log(1 — 31 ;)[n —Zi"lXj]}
hx)exp( S (8) Ti(x) - B(6))
h(x)exp{ S0 n Ti(x) — A(n)}
where:
® h(x)= oyl
o 7(0) = (m(0), n2(6), .-, ng-1(0))
0(0) = log(6;/(1 =320 6;)). i =1.....q - 1

] T(X) = ()(1,)(27 A Xq 1) = (Tl(X), TQ(X), ey Tq_l(X)).
® B(0) = —nlog(1—>7"1 ;) and A(n) = +nlog(1 + Z;-:ll e')

J— e'i _ 0;/(1=327" D)
(n); = n1+27§11 el 1+Z‘7 1‘9k/(1 97160

(m)ij = —n0;0;, (i #j) and A(n);; = nb;(1 — 6,),
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Rank of Exponential Family

Defining the Rank of an Exponential Family

@ Every k-parameter exponential family is also a k*-parameter
exponential family for any k* > k.

@ The minimal value of k defines the rank of the exponential
family. Define minimal k as the rank when the generating
statistic T(X) is k-dimentional, and the collection

{17 Tl(X)a T2(X)7 SRR Tk(X)}
are linearly independent with positive probability, i.e.,
P[Zjl-;l ajTj(X) = ak41 | n] < 1, unless all a; = 0.
Note: the set of positive support on X does not depend on 7.
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Rank of Exponential Family

Theorem 1.6.4 Let P = {q(x | n),n € £} be a canonical
exponential family generated by (T(X), h(X)) with natural
parameter space £ such that £ is open. Then the following
statements are equivalent

@ P is of rank k.
@ 7 is an identifiable parameter.

Var(T | n) is positive defnite

n— /2\(17) is 1-to-1 on €.
A(m) is strictly convex on E.

Note: £ open = A defined on all £.
Corollary 1.6.2 If P is of rank k under Theorem 1.6.4, then

@ P may be uniquely parametrized by
p(n) = E[T(X) | n].
e log[q(x,m)] is strictly concave in n on €.
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p-Variate Gaussian Family

Let Y be a (p x 1) random vector with a p-variate Gaussian
distribution
Y ~ Nk(ua Z)
where p = E[Y] and ¥ = Var(Y) is positive definite, rank p.
The density of Y is
_1 e .
ply. 1, T) = |det()| 2 (2m) 3 exp{—1(Y — i) TE (Y — )}

Taking logs:

loglp(y, 11, X)] = —3Y =Y 4+ [Ty
- X~ ;logldet(X)] — Slog[2n]]
Defining ¥ =1 = [|o"J||, we can write the first 2 terms as

(i Y+ E Y0V LS oY,
1<Jj J 2 i i i=1 j=1 J
@ The parameter space dimension is

k=p+p(p+1)/2=p(p+3)/2
@ The sufficient statistics are

(Y1, Vo), {YiYj 1 < i <j < pj],
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e h(Y)=1
° 0= (:U’? Z)
o B(0) = 1 (loglldet(S)[] + uTE 1)
For a sample Yi,..., Y, of iid N,(uX) r.vectors, the data
X=(Y1,Y2...,Yn)
follows the k = p(p + 3)/2 parameter exponential family with
T = (3, Y, LowerTriangle(3; Y, Y]))
(LowerTriangle(-) refers to matrix elements along and below the
diagonal)
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Conjugate Families of Prior Distributions

Let Xi,...,X, be a sample from the k-parameter exponential
family
p(x | 0) = [TT=y hOx)lexp{321y 1i(0) Sy Ti(xi) — nB(0)}
where 6 is k-dimensional.
@ Treat 0 as the variable of interest in p(x | 6)
@ Treat n and T; as parameters in p(x | 0)
@ Find a normalizing function:
w(t) = [+ [ exp {51 4m(0) — ti1B0) } o0y - db
and set
Q={(t1,..., tkr1) 1 0 < w(t,..., tyky1) < 00}
Proposition 1.6.1 The (k + 1)-parameter exponential family given
by
m(6) = exp { 4 5(0) — tis1 B(0) — loglu(1)] }
where t = (t1,...,tk+1) € Q, is a conjugate prior to p(x | ).
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