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Minimum Contrast Estimates

XeX, X~PecP={Py,0c0O}.
Problem: Finding a function A(X) which is “close” to 6.
Consider
p.: X X0 —=>R.
and define D(6p, 0) to measure the discrepancy between 6 and the
true value 6.
D(6o,0) = Eg,p(X, ).
As a discrepancy measure, D makes sense if the value of §
minimizing the function is 6 = 6.
If Py, were true, and we knew D(6p, #), we could obtain 6y as the
minimizer.
Instead of observing D(fg, 6), we observe p(X, ).
@ p(-,-) is a contrast function
e A(X) is a minimum-contrast estimate.

3 MIT 18.655 Methods of Estimation



Minimum Contrast Estimates
Least Squares and Weighted Least Squares

Methods of Estimation | Gauss-Markov Theorem

Generalized Least Squares (GLS)
Maximum Likelihood

The definition extends to
Euclidean © ¢ RY.

@ 6y an interior point of ©.
@ Smooth mapping: 0 — D(6p,0).
°

6 = 6y solves
VgD(Qo, 9) =0.

where 7y = (8%1, e %)T

Substitute p(X, 6) for D(6o, 0) and solve
Vop(X,0)=0at 0 =0.
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Estimating Equations:

o V: X x Rd—>Rd,wherelll:(d)l,...,wd)T.

@ For every 6y € ©, the expectation of W given Py, has a unique
solution
V(6o,0) = Ep,[V(X,0)] =0
at 0 = 6.
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Example 2.1.1 Least Squares.

o u(z) =g(B,2),8 € RY.
o x ={(z,Yi):1<i<n}, where Y1,...,Y, are independent.
o Define p(X, 8) = |Y — 2 = 0, - g(B. 2)]2.
e Consider Y; = u(z) + €;, where u(z;) = g(5, z;) and the ¢;
are iid N(0,03).
Then, B parametrizes the model and we can write:
D(Bo,B) = Egp(X,B)

= nog + 3.1 1le(Bo. z) — &(B, z)?].
This is minimized by 8 = By and uniquely so iff 3 identifiable.
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o The least-squares estimate /3 minimizes (X, B).
Conditions to guarantee existence of [3:
o Continuity of g(+, z).
e Minimum of p(X, ) existing on compact set {3}
e.g., lim |g(B,z)| = 0.

|B]—00
o If g(B, z) is differentiable in 3, then 3 satisfies the Normal
Equations obtained by taking partial derivatives of

p(X,8) =Y — pu> = 327, [Vi — g(B, )] and solving:

op(X.8) _

0B,
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p(X,8) =Y — p? = 1Y — g(8, z))?
Solve:

dp(X, B) _ 0
n aﬁ"

og(B, z;
> alvi - g5,z ggg )y = o

Zaga%z,)y Zagﬂ,z, (B.z) — 0
J

i=1
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@ Linear case:
g(B,z) =Y, ziB =2/ B
Ip(X, B)
aB;
8g(ﬁ,z, ag ﬁazl
Y — ) =
; o Z % g(B,z) = 0

ZZUYI'—ZZ:',J'(Z,'T[’) =0
ZZUY ZZZ,Jz,kﬁk =0, j=1,...,d

k=1 i=1
zly -zlzpB = 0
where Zp is the (n x d) design matrix with (i, j) element z; ;
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Note:
@ Least Squares exemplifies minimum contrast and estimating
equation methodology.

@ Distribution assumptions are not necessary to motivate the
estimate as a mathematical approximation.
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Method of Moments

Method of Moments
@ Xi,...,X,iid X ~ Py, 0 € RY.

o p1(0), u2(0),. ... pna(0):
wi(0) = pj = E[X7 | 0] the jth moment of X.

@ Sample moments:
n

pi= X ,j=1,....d
i=1
@ Method of Moments: Solve for 6 in the system of equations
pi(f) =
p2(8) = fo
pa(0) = g
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Note: .
@ 6 must be identifiable
e Existence of y;: nI|_>n;o fij = pj with |pj] < oo.

e If g(0) = h(u1, ..., i1d), then the Method-of-Moments
Estimate of g(0) is
§(0) = h(fi1, ..., fid)-
@ The MOM estimate of 6 may not be unique!
(See Problem 2.1.11)
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Plug-In and Extension Principles

Frequency Plug-In
@ Multinomial Sample: Xi,..., X, with K values vy, ..., vk
P(X,': Vj):pjj:].,...,K
o Plug in estimates: p; = N;/n where N; = count({i : X; = v;})
e Apply to any function q(p1,. .., pk):
g=q(p1,-,Pk)
@ Equivalent to substituting the true distribution function
Po(t)=P(X <t]|0)
underlying an iid sample with the empirical distribution
function:

P(t) = %zn: 1{x <t}
i=1

A ~

P is an estimate of P, and v(P) is an estimate of v(P).
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@ Example: ath population quantile
Va(P) = 3[F(a) + Fal(a)], with 0 < a < 1:
where
F~l(a) = inf{x:F(x)>a}
Fal(a) = sup{x: F(x) < a}
The plug-in estimate is
a(P) = va(P) = 3[F~}(0) + F (0]
@ Example: Method of Moments Estimates of jth Moment
v(P) = j = E(X)) |
P(P) = iy = v(P) = 1 0,
Extension Principle

@ Objective: estimate g(6), a function of 6.
e Assume q(0) = h(p1(0),...,pk(0)), where h() is continuous.
@ The extension principle estimates g(6) with
§(0) = h(p1, ..., Pk)
@ h() may not be unigue: what h() is optimal?

MIT 18.655 Methods of Estimation



Minimum Contrast Estimates
Least Squares and Weighted Least Squares
Methods of Estimation | Gau rkov Theorem

Generalized Least Squares (GLS)
Maximum Likelihood

Notes on Method-of-Moments/Frequency Plug-In Estimates
o Easy to compute
@ Valuable as initial estimates in iterative algorithms.

e Consistent estimates (close to true parameter in large

samples).

@ Best Frequency Plug-In Estimates are Maximum-Likelihood
Estimates.

@ In some cases, MOM estimators are foolish (See Example
2.1.7).
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Least Squares

General Model: Only Y Random

e X ={(z,Y;):1<i<n}, where
Y1,..., Y, are independent.
Z1,...,2y € R are fixed, non-random.

@ Forcasesi=1,...,n
Y: = u(z;) + €, where

w(z) = g(B,2),8 € RY.
€; are independent with E[e;] = 0.

@ The Least-Squares Contrast function is
p(X.B) =Y — uf> =X, [Yi — g(8, 2)]*.
@ (3 parametrizes the model and we can write the discrepancy
function

D(Bo,B) = Egp(X,B)
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Least Squares: Only Y Random

Contrast Function:
p(X,8) =Y —ul? = 3L,V — g(6,2)]*
Discrepancy Function:
D(Bo,B) = Ep,p(X,B)
= Yry Var(e)+ X7 1[e(Bo, z1) — g(B, zi)°].

@ The model is semiparametric with unknown parameter 5 and
unknown (joint) distribution Pe of €= (e1,...,¢€p).

Gauss-Markov Assumptions
@ Assume that the distribution of € satisfy:
E(er) =0
Var(e;) = o?
Cov(ej,ej) = 0 fori#j
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General Model: (Y,Z) Both Random
o (Y1,21),...,(Yn, Zp) areiid. as X =(Y,Z)~ P
@ Define u(z) = E[Y | Z = z] = g(B, z), where
g(+,-) is a known function and
B € R is unknown parameter

o Given Z; = z;, define ¢, = Y; — u(z;) for i=1,...,n

e Conditioning on the z; we can write:
Y; :g(ﬁ,z,-)+e,-, i=1,2,...,n
where € = (€1, ..., €p) has (joint) distribution Pe

@ The Lefst—Squares Estimate ofB is the plug-in estimate B(ﬁ’),
where P is the empirical distribution for the sample
{(Z,Y:),i=1,...,n}

@ The function g(8, z) can be linear in 5 and z or nonlinear.

@ Closed-form solutions exist for BA when g is linear in .
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Gauss-Markov Theorem: Assumptions

y1 X1,1 X12 0 Xip

Y2 X21 Xo2 -+ Xop
Datay = ) and X = ) i )

Yn Xnl Xn2 - Xpn

follow a linear model satisfying the Gauss-Markov Assumptions
if y is an observation of random vector Y = (Y1, Y,... Yy)' and

o E(Y | X,8) =X, where B = (B1,052,...0p)" is the
p-vector of regression parameters.

o Cov(Y | X,3) = o°l,, for some o2 > 0.
l.e., the random variables generating the observations are
uncorrelated and have constant variance o2 (conditional on X,

and 3).
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Gauss-Markov Theorem

22

For known constants ¢y, ¢, . .., Cp, Cp+1, consider the problem of
estimating
0=cfr+ B2+ cpfp+ Cpt1.
Under the Gauss-Markov assumptions, the estimator
O=apr+ bt by + i1,
where 81, 32, ... Bp are the least squares estimates is

1) An Unbiased Estimator of 6

2) A Linear Estimator of 0, that is
6 = >""_, biyi, for some known (given X) constants b;.

=
Theorem: Under the Gauss-Markov Assumptions, the estimator
6 has the smallest (Best) variance among all Linear Unbiased
Estimators of 0, i.e., 0 is BLUE.
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Gauss-Markov Theorem: Proof

Proof: Without loss of generality, assume c,4+1 = 0 and

define ¢ =(c1,¢2,...,¢5) 7.

The Least Squares Estimate of § = ¢’ 3 is:
0=cTB=c"(XTX)"XTy=d"y

a linear estimate in y given by coefficients d = (di, da, ..., d,)".

Consider an alternative linear estimate of 6:
6 = bTy
with fixed coefficients given by b = (by,...,b,)7.
Define f = b — d and note that
G=bTy=d~+HTy=0+f"y
o If § is unbiased then because 0 is unbiased

0=E(fTy) =fTE(y) = fT(XB) for all B € RP
—> f is orthogonal to column space of X

= f is orthogonal to d = X(XTX)~!
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If § is unbiased then
@ The orthogonality of f to d implies

Var(d) = Var(bTy) = Var(dTy +fTy)
= Var(d"y) + Var(f" )+2Cov(dTy,fT )
= Var() + Var(fTy) +2d7 Cov( )f
= Var(bz) + Var(fTy) +2d7 (021,,)f
Var(0) + Var(fTy) 4+ 202d"f
= Var(0) + Var(fTy) + 20 x 0
> Var(0)
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Generalized Least Squares (GLS) Estimates
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Consider generalizing the Gauss-Markov assumptions for the linear
regression model to

Y=X3+¢€
where the random n-vector €: E[e] = 0, and E[ee”] = 0?%.

@ 02 is an unknown scale parameter

@ Y is a known (n x n) positive definite matrix specifying the
relative variances and correlations of the component
observations.

Transform the data (Y, X) to Y* = ¥~2Y and X* = ¥2X and
the model becomes

Y* = X*3 + €*, where E[e*] = 0, and E[e*(e*)"] = o?I,
By the Gauss-Markov Theorem, the BLUE (‘GLS’) of 3 is

5= [(X)T (X)X T(Y) = XTE X H(XTE 1Y)
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Maximum Likelihood Estimation
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@ X ~ Py,0 € © with density or pmf function

p(x | 0).
@ Given an observation X = x, define the likelihood function
L(6) = p(x | 0) :

a mapplng © — R.
o Oy = HML( ): the Maximum-Likelihood Estimate of @ is the
value making L,(-) a maximum
0 is the MLE if
L (0) = L.(0).
(¢) = max L.(0)

o The MLE 0y (x) identifies the distribution making x “most
likely”

@ The MLE coincides with the mode of the Posterior
Distribution if the Prior Distribution on © is uniform:

(0 | x) o< p(x | 8)w(0) o< p(x | ).
MIT 18.655 Methods of Estimation



Minimum Contrast Estimates
es and Weighted Least Squares
Methods of Estimation | E ov Theorem
Least Squares (GLS)
Maximum Likelihood

Maximum Likelihood

Examples

@ Example 2.2.4: Normal Distribution with Known Variance

@ Example 2.2.5: Size of a Population
Xiy.oo, Xp areiid U{1,2,...,0}, with 6 € {1,2,...}.
For x = (x1,...,Xn),
L) = [I,0711(1<x <0)
= 07" x I(max(xy,...,xp)) < 6)
_ 0 , if0=0,1,...,max(x;)) — 1
N { =" if 0 > max(x;)
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Maximum Likelihood As a Minimum Contrast Method

Define ,(6) = log Lx(0) = log p(x | 0)
Because —log(+) is monotone decreasing,
O (x) minimizes —/(6)
e For an iid sample X = (Xi,...,X,) with densities p(x; | 6),
Ix(0) = logp(xi,...,xn | theta)
= log[[TiLy p(xi | 0)]
= Yit1logp(xi | 0)
@ As a minimum contrast function ,
p(X,0) =—Ix(0)
yields the MLE HML(X)
The discrepancy function corresonding to the contrast
function p(X,8) is
D(6o,0) = E[p(X,0) | 0o] = —Ellog p(x | 6) | bo]
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@ Suppose that 6 = 6y uniquely minimizes D(6p, ). Then

D(0o,0) — D(0o,00) = —E[logp(x|0) |6o] — (—E[logp(x | 6o) | o]
x|6
= —E[log ,f((xﬂgo)) | 6o]

> 0, unless 6 = 6.
This difference is the Kullback-Leibler Information Divergence
between distribution Py, and Py:

x|0
K(Pay, Po) = —E[log(Z&5%) | 6]
Lemma 2.2.1 (Shannon, 1948) The mutual entropy K(P,, Py)

is always well defined and
o K(Py,, Pg) >0

e Equality holds if and only if {x : p(x | 8) = p(x | 60)} has
probability 1 under both Py, and Py.

Proof Apply Jensen's Inequality (B.9.3)
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Likelihood Equations
Suppose:
@ X ~ Py, with # € ©, an open parameter space
e the likelihood function Ix(#) is differentiable in 6
o Opi(x) exists
Then: Ay (x) must satisfy the Likelihood Equation(s)
V@/x(e) =0.
Important Cases
For independent X; with densities/pmfs p;(x; | 9),
Volx(0) = >>1; Velog pi(xi | #) =0
NOTE: p;i(- | #) may vary with i.
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Examples

e Hardy-Weinberg Proportions (Example 2.2.6)

@ Queues: Poisson Process Models (Exponential Arrival Times
and Poisson Counts) (Example 2.2.7)

e Multinomial Trials (Example 2.2.8)
o Normal Regression Models (Example 2.2.9).
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