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1 Spectral theorem 

Here is the definition of selfadjoint, more or less exactly as in the text. 

Definition 1.1. Suppose V is a (real or complex) inner product space. A 
linear transformation S ∈ L(V ) is selfadjoint if 

(Sv, w) = (v, Sw) (v, w ∈ V ). 

The point of these notes is to explain a proof (somewhat different from 
the one in the book) of 

Theorem 1.2 (Spectral theorem). Suppose V is a finite-dimensional real 
or complex vector space. The linear operator S ∈ L(V ) is selfadjoint if 
and only if V is the orthogonal direct sum of the eigenspaces of S for real 
eigenvalues:  

V = Vλ. 
λ∈R 

Here by definition 
Vλ = {v ∈ V | Sv = λv} 

is the eigenspace for the eigenvalue λ. The orthogonality requirement means 

(v, w) = 0 (v ∈ Vλ, w ∈ Vµ  , λ = µ). 

The theorem says first of all that a selfadjoint operator is diagonalizable, 
and that all the eigenvalues are real. 

The orthogonality of the eigenspaces is important as well. Orthogonal 
decompositions are easy to compute with, and they are in a certain sense 
very “rigid” and stable. If L1 and L2 are distinct lines in R2, then automat
ically R2 = L1 ⊕ L2. That is, any vector v ∈ R2 can be written uniquely 
as 

v =  1 +  2, ( i ∈ Li). (1.3) 
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If the two lines point in nearly the same direction, then writing a small 
vector v may require large vectors in L1 and L2. For example, if 

L1 = x axis = R · (1, 0), L2 = R · (1, 1/10), (1.4) 

then 
(0, 1/10) = (−1, 0) + (1, 1/10). 

In a computational world, this means that small errors in v may correspond 
to large errors in the “coordinates” i. If on the other hand the lines Li are 
orthogonal, then

 v 2 =  1 2 +  2 2 , (1.5) 

so that small v correspond to small i. 
The proof that the conditions in the theorem imply selfadjointness is 

straightforward, and I won’t do it. What’s interesting and difficult is the 
proof that selfadjointness implies the eigenspace decomposition. This is 
based on the next two lemmas. 

Lemma 1.6 (Orthogonal invariants). Suppose S is a selfadjoint operator 
on an inner product space V , and U ⊂ V is an S-invariant subspace: 

Su ∈ U, (u ∈ U). 

Then the orthogonal complement U⊥ is also S-invariant. 

Lemma 1.7 (Maximal eigenspaces). Suppose S is a selfadjoint operator on 
a finite-dimensional inner product space V . The function 

s(v) = (Sv, v) 

takes real values on on V . If v0 is a maximum for s on the unit sphere 

sphere = {v ∈ V | (v, v) = 1}, 

then v0 is an eigenvector of S with (real) eigenvalue s(v0). 

We postpone the proofs of these two lemmas for a moment. Assuming 
them. . . 

Proof of Spectral Theorem. Recall that we are proving only that a selfad
joint operator has the orthogonal eigenspace decomposition described. We 
proceed by induction on dim V . If dim V = 0, then S = 0 and there are no 
eigenvalues; the theorem says that the zero vector space is an empty direct 
sum, which is true by definition. 
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So suppose dim V > 0, and that the theorem is known for spaces of lower 

dimension. Because V = 0, there are nonzero vectors, so there are vectors of 
length one, and the unit sphere in Lemma 1.7 is not empty. The function s(v) 
is continuous (if we choose a basis for V , s is a quadratic polynomial function 
of the coordinates). Any continuous function must have a maximum on a 
closed bounded set like the unit sphere, so s has a maximum at some point 
v0. (This is a hard fact, proved in 18.100; you’re not necessarily supposed 
to know it to understand this course. But the Spectral Theorem is a hard 
theorem, so you need to do something difficult somewhere. The proof in 
the text uses the existence of eigenvalues on complex vector spaces, which 
amounts to the Fundamental Theorem of Algebra. That’s hard too.) 

According to Lemma 1.7, 

v0 ∈ Vs(v0); (1.8) 

so the eigenspace is not zero. Because an eigenspace is obviously an invariant 
subspace, Lemma 1.6 implies that 

V = Vs(v0) ⊕ V s
⊥ 
(v0)

, (1.9) 

an orthogonal direct sum of S-invariant subspaces. Because Vs(v0) is not 
zero, it has positive dimension, so 

dim V ⊥ = dim V − dim Vs(v0) < dim V. (1.10)s(v0) 

By inductive hypothesis, V ⊥ is an orthogonal direct sum of eigenspaces s(v0) 

of S. Inserting this orthogonal decomposition in (1.9) gives the complete 
orthogonal decomposition into eigenspaces that we want. 

The proof of Lemma 1.6 is extremely easy: you just write down what 
the lemma says is true, and see (using the definition of selfadjoint) that it’s 
obviously true. 

Proof of Lemma 1.7. Assume that v0 is a maximum for s on the unit sphere. 
We are going to show that 

if (v0, u) = 0, then Re(S(v0), u) = 0. (1.11) 

If we can prove this, then (applying it in the complex case to all the vectors 
eiθu) we will know also that 

if (v0, u) = 0, then (S(v0), u) = 0. 
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This says that everything orthogonal to the line F · v0 is also orthogonal to 
S(v0): that is 

u ∈ (F · v0)⊥ =⇒ (u, S(v0)) = 0. 

That is,   ⊥ 
S(v0) ∈ (F · v0)⊥ = F · v0.
 

This last equation is precisely the statement that v0 is an eigenvector of S:
 

S(v0) = λv0 (some λ ∈ F ).
 

The eigenvalue λ is 

(S(v0), v0) 
= (S(v0), v0) = s(v0),(v0, v0) 

as we wished to show. 
It remains to prove (1.11). This condition is true for u if and only if it is 

true for any multiple of u, and it is true for u = 0; so it is enough to prove it 
for vectors u of length 1. We want to use the fact that v0 is a maximum for 
s on the unit sphere, so we need to cook up more vectors on the unit sphere. 
Because u and v0 are orthogonal unit vectors, the Pythagorean Theorem 
says that 

vt = cos(t)v0 + sin(t)u (t ∈ R) (1.12) 

are all unit vectors. The notation is chosen so that the new definition of v0 

is equal to the old definition of v0; so the function of one real variable 

f(t) = s(vt) = (Svt, vt) (1.13) 

has a maximum at t = 0. We’re going to use calculus on the function f . 
The formula is 

f(t) = (Svt, vt) 
= cos 2(t)(Sv0, v0) + sin2(t)(Su, u) + cos(t) sin(t) [(Sv0, u) + (Su, v0)] . 

The selfadjointness of S says that 

(Su, v0) = (Sv0, u), 
so we get 

f(t) = cos2(t)(Sv0, v0) + sin2(t)(Su, u) + 2 cos(t) sin(t) [Re(Sv0, u)] . 
Consequently f is differentiable, and 

f /(0) = 2[Re(Sv0, u)]. 
Since 0 is a maximum for the differentiable function f , the derivative must 
be zero at 0; and this is (1.11). 
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