Last time:
Froposition: Let m in Z;, m >= 1. Then every solution to the egquation x°3 «
wh3d e om {x, ¥ in Z} satisfies max{ix|, |v]l} <= Z2*roct{mf3).

Conslder the integer solutions aof X*3 + y¥°3 = m, counting {x,y¥) and (v, x)
as one solution {(symmetry).

Questionr How many solutions are there for sach m?

l€<=m <= 1728: 1 50l'n 1o pozitive integers
m= 1729y 2 zso0l'na in positive integars
3, 4,... solutiona?

Proposition: For every integer N»>=1, there i= a integer m»]l s5.t,. the cubic
curve x"3 + y¥°3 = m has at least N points with integer coordinates,

EFroof:

Claim: x*3 + "2 = 9 haszs infinitely many rat'l solutions.
Froof:
Ch. 1, sect. 3: There i3z eszsentially & cne-to-one correspondence between
rational points on %3 - ¥*3 = 2 and an Y*2 = X*31 — 4B given by
X o= 1275 (%+¥%), ¥ = 12[(x-v} /S {x+y)
iWe're basically converting our og'n to Welerstrass normal form. )

Consider (2, 1) on x*3 + y"3 = &,

(X, %} = (2, 1) on x*3 + y*3 =9 —> 0 = (1273, 12*]/3) = {4, 4} on ¥*2 =
X~3 — 48.

Compute:; 20 = (28, -148), 30 = {7379, 595/27), =8¢ by Nagell-Lutz Q has
infinite order. nd is rational, so ¥"2 = X"3 - 4B and x*3 *» yv"3 = 9 have
infinitely many rat'l pts.

Sinca ther are infintely many rat'l pts on x*3 + v*3 = 9, we can pick N of
them: P_1, ..., P_M.
Let P = {a/b, c/d} be a P_1i given in lowest terms.
Plug in: a*3/b*3 +» ¢~3/d*3 = &
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8o b 31a~3*d*3, d"3|c*3*b"3. godia,b) = gedic,d) = 1, so b 3(d*3, d*2|b"3,
and B3 = +-d™3, Taking positive denominators, we have b=d, 30 we can
write (From abowve) P_i = {a_i/d_1i, o_1i/d_1i}.

Fick m tp clear denominatcrs of P_i'"s.

Let m = 9 {d_1=d_2*..,"'d_M)"*3. Then multiplyling the coordinates of any P_i
by d_1*d_2+*..."d_N gives an integer point gn x*3 » v=3 = m. That is, let
P_i' = {a_i=*d_l=..,°d_i=-1*d_i+l"...>d_ M, c_i*d_1*...=c_4-1"d i+1*...~d_HN).
Then P_1',..., F_N' are integer points on x*3 + y=3 = &
(d_l*d_2*...*d_HN)}*3. QED



The proposition is still true if we consider only x,y>0.
Claim: If %3 + y"3 = m (m>0) has infinitely many rational solutions, it
has infinitely many rational solutions with x,y>0.

Sketchy Proof:

The set of real points on this curve looks like the group of complex #'s
on unit circle under multiplication (the circle group). Thus a subgroup
generated by a point of infinite order is dense in the set of real points
on the curve. Since there are real points with x,y>0, an open set of such
points will contain infinitely many rational points with x,y>0.

Next question: Given an integer N, is it possible to find an integer m>=1
s.t. x*3 + y*3 = m has at least N solutions with gcd(x,y) = 1 and x>y?
Answer: unknown

For N=3, m=3242197 works, and there's an m for x,y>0.
For N=4, we don't know.

Theorem (Silverman): Let m>=1 be an integer, and let C_m be the cubic
curve C_m: x*3 + yv*3 = m. Then there is a constant k>1 independent of m
s.t.

#{(x,y) in C_m(Q) | x,y in Z, gcd(x,y)=1} <= k~(l+rank C_m(Q)).
Interpretation: Integer pts w/ gcd(x,y)=1 "tend to be somewhat linearly
independent." Find lots of these ==> rank is large. So if we find a
sequence of m's s.t. the number of int points in C_m(Q) w/ gcd(x,y)=1 ——>
infinity, we'll have shown that there are cubics of arbitrarily large rank
(open question).

X"3+y"3=(xt+y) (x"2-xy+y”"2), so finding all integer sol'ns for x*3 + y*3 = m
is easy (consider factorizations). But hard to tell when eqn's that don't
factor have infinitely many solutions. For example, x*2-2y*2=m often does.

Theorem (Thue): Let a,b,c, be non-zero integers. Then the equation
ax”3+bx”"3=c has only finitely many solutions in integers x,y. [Proof to be
finished next time.]

(x,y) solves ax"3+bx"3=c ==> (ax,y) solves X"3 + a”2*b*¥*3 = a™2*c, so it
is enough to prove Thue's theorem for a=1l.

By replacing y by -y and/or b by —b if necessary, it is enough to look at
the equation x"3-b*y"3=c with b,c positive integers.

Let beta = cube root (b).
x"3 - by"3=(x - beta*y) (x"2 + beta*xy + beta”2*y"2)

beta an integer ==> done, so take beta not an integer.
X,y large ==> |x/y-betal small:
x"2 + beta*xy + beta”2*y"2 = (x + (1/2)beta*y)"2 + (3/4)*betar2*y"2 >=

(3/4) *beta~2*y~2, so

lc| >= |x - beta*y| * (3/4)*beta”2*y"2.

Dividing by (3/4) *beta™~2*y"3, we get |x/y-betal<=
(41c|/3*beta™2)*(1/|yl"3).

(x,y) sol'n w/ |yl large ==> |x/y-betal small, so x/y is close to beta.

To prove that finitely many integer sol'ns, prove that finitely many
rat'ls w/ this approximation propery.



Next time:

Diophantine Approximation Theorem: Let b>0 be an integer which is not a
perfect cube, and let beta = cube root(b). Let C be a fixed positive
constant. Then tehre are only finitely many pairs of integers (p,q) w/ g>0
which satisfy |p/g-betal<= C/g"3.





