
On 1-dimensional Group Variety 

Abstract 
We discuss abelian variety and use it to generalize the concept of elliptic curve we 
discussed in the class. We state some of the basic properties of abelian variety and 

in particular 1-dimensional abelian variety. The main result of this report is to 
show that elliptic curve is that the only 1-dimensional abelian variety. 

1. Introduction 

The main purpose of this paper is to characterize elliptic curve. In the class, we 
discuss the properties of elliptic curves, especially rational points on elliptic curves 
where we define elliptic curves to be curves on projective spaces over complex 
numbers or finite fields which is the vanishing set of homogeneous polynomial of 
degree 3. The main tool we use to study elliptic curve is that we define a group 
structure on all the points of an non-singular elliptic curve of which rational points 
are a subset. We also show that the group is isomorphic to torus. We also see 
that on a singular elliptic curve, we can define a group structure on all points 
except the points of singularity. We see that the fact that non-singular elliptic 
curve have a everywhere defined group structure make it different from singular 
elliptic curves. For example, the rational points on non-singular elliptic curves are 
finitely generated but it is not true for singular elliptic curves. As a result, we 
would like to know if non-singular elliptic curves are the only curves with a group 
structure for all points on the curve. The purpose of this paper is to show that in 
fact, this characterized elliptic curves. In this paper, we study some property of 
group variety and generalize concept of curves to be 1-dimensional group variety. 
In this more generalized treatment, we give a new definition of elliptic curves which 
is equivalent to the old definition if we restrict ourselves to the special case we 
considered in the class. Then we end our paper with the main theorem that elliptic 
curves is the only complete 1-dimensional group variety, which if we restrict ourself 
to curve on complex numbers, will implies that torus is the only compact curve 
with (everywhere defined) group structure. 

The organization of the paper is as follows. In the second section, we introduce 
the notion of variety following the approach of Hartshorne [2]. In third section, 
we discuss some basic properties of group variety which are varieties with a group 
structure following Serge Lang’s book [1]. Afterward, we spend the rest of paper 
on curve, which is 1-dimensional group variety. In the fourth section, we introduce 
the divisors on a 1-dimensional variety and use it to define the genus of a curve 
which is a important invariant of curve. In the fifth section, we construct. the 
Jacobi variety for a curve. In the the last section, we use the universal property 
of Jacobi variety for a curve to prove that elliptic curve is the only 1-dimensional 
abelian variety. 

Throughout the paper the underlying field K is assumed to be of characteristic 
zero and is algebraically closed. We will use the notation An

K for the direct sum of 
n copy of K. 

2. Algebraic Variety 

In this section, we define what is an algebraic variety. First, we consider the spe
cial case of affine variety. Roughly speaking, an affine variety is the space common 
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roots of a collection of polynomials of n variables. However, to be precise, we need 
to specify what kind of topology we have one the space and what kind of maps we 
allow between the spaces. 

Let R be the polynomial ring over K with n variable. 

Definition 1. Given an ideal I of R, define the vanishing set V(I) to be 

V(I) = {x → An
K≥f (x) = 0�f → I}(1) 

It is not hard to see that if we let I range from all ideals of R {V(I)} satisfies the 
axiom of closed subset for a topology and forms a topology on An

K . More precisely, 
we can show that: 

(i) An
K and α are of the form V(I) for some I 

(2) V({0}) = A

(3) V(R) = � 

n
K 

(ii)the collection is closed under finite union since 

(4) V(I) 

 

V(I) = V(IJ ) 

(iii) the collection is closed under arbitrary intersection since 

(5) 
� 

V(Is) = V(I) 
s�S 

where I is the ideal generated by {Is}. 

Definition 2. The Zariski topology of An
K is the topological space An

K with closed 
sets {V(I)} 

Definition 3. An affine variety is a subset V(I) of An
K whose topology is induced 

by Zariski topology of An
K . 

Now that we define the topology of affine variety, we want to specify the maps 
between affine variety we want to consider. Notice that we define the variety and 
the topology on it by vanishing set of collection of polynomials. As a result, we 
would like to restrict maps between affine varieties to be polynomial maps. 

Definition 4. Given a affine variety V which is contained in An
K for some n, a map 

G : V ∗⊕ K is regular if and only if it is restriction of a polynomial F : An
K ∗⊕ K 

Definition 5. Given two affine variety U and V , a map F : U ∗⊕ V is regular if 
and only if for every regular map G : V ∗⊕ K, the composition F · G is regular. 

Notice that regular maps are continuous maps under Zariski topology. 
Similarly, we can define regular maps. 

Definition 6. Given a affine variety V which is contained in An
K for some n, a 

map G : V ∗⊕ K is regular if and only if around every point p of V , the map is 
restriction of it is restriction of a map F : U ∗⊕ K , U open set of An

K contains p 
and F is f1/f2 where fi are polynomials. 

Definition 7. We say that a map F between two affine varieties X and Y is rational 
if and only for any ration for every rational map G : V ∗⊕ K, the composition G · F 
is rational. 
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We defined the affine varieties as above. Now we are ready to define algebraic 
varieties, which roughly speaking, are spaces that are locally the same as affine 
variety. The idea is similar to that of gluing Euclidean spaces together to get 
manifolds. 

Definition 8. A topological space X is an algebraic variety if there exists an 
index set I and an open covering of X by {Ui}, i → I and affine varieties {Vi} and 
homeomorphisms {αi : Vi ∗⊕ Ui} such that on intersection Uij of Ui and Uj 

(6) α−j 
1αi : α

−

i 
1(Uij ) ∗⊕ α−j 

1(Uij ) 

are regular functions. We say that Ui are the open affine subset of X . 

Definition 9. Given two algebraic varieties X and Y , a map F : X ∗⊕ Y is a 
rational morphism if for every open affine Ui of X and Uj 

� of Y so that F (Ui) is 

contained in Uj 
� the composition of αi, F and α −1 between affine variety Vi and V � j j 

is rational map of affine variety. 

Example 
(i)As an example, we may notice that the projective plane P 2 is an algebraic K 

variety since it is covered by three copy of A2 where the i-th copy is the subset of K 
P 2 whose i-th coordinate is non-zero. K 

(ii) An elliptic curve on P 2 is an algebraic variety since it is covered by three K 
subset that are affine variety defined by the vanishing point of a degree 3 polynomial 
of two variables. 

Definition 10. An algebraic variety is irreducible if it cannot be expressed as union 
of proper closed subset of itself. 

We will state the following lemma without proof: 

Lemma 1. Product of two algebraic varieties is an algebraic variety 

3. Group Variety and Abelian Variety 

We show in class that we can define a group structure on non-singular elliptic 
curves. We see in the previous section that elliptic curves are special examples of 
algebraic variety. The purpose of this section is to generalize this idea to arbitrary 
algebraic variety. 

Recall that a group is a set G with an associative operation G × G ∗⊕ G so that 
the unit and inverse element exists. 

A group variety is an irreducible algebraic variety with a group structure such 
that the group structure is compatible with the structure of variety. Moreover, we 
have the following definition: 

Definition 11. A group variety is an irreducible algebraic variety A with a rational 
map F : A × A ∗⊕ A such that F gives a group structure on A. In addition we 
require that the map 

(7) � : A ∗⊕ A x ∗⊕ x −1 

is an rational map from A to A 

Lemma 2. A group variety is non-singular. 
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Proof. Given g → A, define the map Tg from A to A to be multiplied by g from 
the left. Tg and Tg−1 are isomorphism of an open set around the identity and an 
open set around g. Thus, if g is singular if and only if identity is. However, we can 
not have a algebraic variety which is everywhere singular. Thus A group variety is 
non-singular. � 

Definition 12. We say that a group variety is commutative if the group is a 
commutative group 

Example A non-singular elliptic curve (in the sense we discussed in class) is a 
example of a group variety of dimension 1 since we defined a group structure on 
the curve that is defined by quotient of polynomials. Notice that we defined similar 
structure on a singular elliptic curve but the product is defined only for non-singular 
points of the curve. Thus, non-singular points on a singular elliptic curve also form 
a group variety. The two examples here are distinguished by the fact that a non-
singular elliptic curve is a complete space (under the induced topology of Zariski 
topology) but the non-singular points on a singular elliptic curve is not a complete 
space. We see in the class that the properties of non-singular elliptic curve and 
singular elliptic are very different. As a result, we have the following definition of 
abelian variety. 

Definition 13. A group variety A is an abelian variety if A is complete as a variety. 

At first, the word ”abelian” might seems to be confusing since we usually use 
abelian to mean that a group is commutative. However, this is somewhat justified 
by the following theorem: 

Theorem 3. (Theorem 1, Ch. 2 [1]) An abelian variety A is a commutative group 
variety. 

We omit the proof of the theorem. 

4. divisors and genus of curves 

We said previously that the main topics of interests is 1-dimensional group vari
ety. In the following of the report, we call ”a 1-dimensional group variety” a curve. 
Notice that if the underlying field is the complex number, then a curve is of complex 
dimension 1 or equivalently real dimension 2. In fact, we show in the class in the 
class that an elliptic curve over C is the torus. Moreover, we know that we can 
associate a bi-rational invariant number g, called the genus, to each affine curve 
over C which if visualized geometrically is the number if holes of the curves. For 
example, a torus is of genus 1. Genus is an important number associated to affine 
curve over C since we know that it classify the affine curve over C. The purpose 
of this section is to generalize the definition of genus to all curves using divisors on 
curves. 

First, we will state a theorem from [2] which allow us to consider only curves 
that are subset of projective spaces P n . 

Theorem 4. (Corollary 3.6. Ch. 6 [2]) Every curve can be embedded into P 3 
K 

We will first define the a divisor on a curve C 
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Definition 14. A divisor D on a curve C is a formal sum of the form 

nipi 

pi �C 

where all but finitely many ni are zero. If we have two divisor 

Di = 
� 

nj,ipj , i = 1, 2 
pj�C 

then we can naturally define the sum of the two divisors to be 

(8)	 D1 + D2 = 
� 

(ni,1 + ni,2)pi 

pi �C 

In this sense, the sets of all divisors D of C is the free abelian group generated by 
points of the curve C 

In particular, 0 is a divisor. We can define the degree of an divisor to be: 

Definition 15. The degree of a divisor Dis defined by the following equation 

(9)	 deg(D) = 
� 

ni D = 
� 

nipi 

pi �C 

Definition 16. Given a rational function f on C, we want to associate a divisors 
of C to f . Notice that locally, f is defined by a quotient of two polynomials. Thus, 
locally, around a point p → C, we have f = g1/g2 where gi are polynomials. Thus, 
if g1(p) = 0 we can define the multiplicity of f at p to be the multiplicity of the 
polynomial g1 at p, if g2(p) = 0 we define it to be negative of multiplicity of the 
polynomial g2 at p and we define the multiplicity to be 0 otherwise. Denote by 
vp(f ) the multiplicity of f at p. 

We have the following lemma 

Lemma 5. For all but finitely many points p → C, vp(f ) = 0 if f is not 0. 

Since only finite points have non-zero multiplicity for a given function f we can 
associate a divisor to f as follows. 

Definition 17. Given a rational function f on C, 

(10)	 div(f ) = 
� 

vp(f )p 
p�C 

We have the following lemma 

Lemma 6. Divisors correspond to a rational function is of degree 0. That is 

(11)	 deg(div(f )) = 0 

Definition 18. We say that two divisors D1 and D2 are linear dependent if there 
exists a rational function f such that 

(12)	 D1 − D2 = div(f ) 

It follows that linear dependent divisors have the same degree 
We can define an ordering on the set of divisor, by 

Definition 19. D1 ∀ D2 if np,1 ∀ np,2 for every p → C. We say that a divisor D 
is positive if D ∀ 0 and D is not 0. 
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Conversely, to every divisors D, we can associate a subspace of rational function 
on C denoted by L(D). 

Definition 20. L(D) consists of function 0 alone with all functions f so that 

(13) div(f ) + D ∀ 0 

as divisors on C 

It is straight-forward to see the following lemma: 

Lemma 7. L(D) is a K-vector space. 

Thus we can define 

(14) l(D) = dimK (L(D)) 

We have the following theorem: 

Theorem 8. (Ch. 3, theorem 5 [3]) L(D) is finite dimensional vector space, i.e, 
l(D) is finite. 

We would like to relate differential 1-forms on C with divisors on C. Given a 
differential forms �, locally in a affine open affine set Ui of C, it can be expressed 
as 

(15) � = gi ∅ dxi 

Moreover, on intersection of two sets Ui and Uj , gi and gj is related by the 
det(xi/dxj ) which is non-zero since this is the transformation function on the in
tersection. As a result, gi and gj have same multiplicity on points p → Uij . As 
a result, � defines a divisor on C. There is one form � that generates generates 
1-form module exact 1-forms. We call the divisor KC correspond to such � to be 
canonical divisor of C . And we define the genus of C to be l(KC ). which is finite 
since for every D, l(D) is finite. 

Example Although this definition of genus seems to be very different to what we 
had for real surfaces. However, they are in fact the same definition. For example, in 
chapter 6.4 [3] it is proved that a curve in projective plane defined by homogeneous 
polynomial of degree d has genus (d−1)(d−2)/2 in the new definition. In particular, 
elliptic (torus) is defined by homogeneous polynomial of degree 3 thus has genus 1 
as we expected. 

Since when they underlying field is C, elliptic curve is the (unique) curve of genus 
1 and we know that an elliptic curve is an abelian variety. Thus, it is reasonable 
for us to generalize elliptic curve in the following way: 

Definition 21. An elliptic curve is an 1-dimensional abelian variety of genus 1. 

We would like to show that, in fact, a 1-dimensional abelian variety is an elliptic 
curve. That is, we want to show that an 1-dimensional abelian variety always has 
genus 1. 

Although this might seems to be redundant, this conclusion is useful. For ex
ample, this shows that there does not exist a everywhere defined group structure 
on double torus since it has genus 2. More generally, since the only complex curve 
of genus 1 is torus, thus the only complex curve with a everywhere defined group 
structure is a non-singular torus. 
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5. Jacobi variety for curves 

We will construct the Jacobi variety for curves(group variety of dimension 1) in 
this section and use it to prove that a 1-dimensional abelian variety is an elliptic 
curve. We follow the construction in section 1 chapter 2 of [1] 

Before we do the construction, let us first see the universal property that char
acterized the Jacobi variety for a curve. 

Given a curve C, the Jacobi variety is an abelian variety J with a rational map 
F : C ∗⊕ J having the universal property that for any ration map from C to 
abelian varieties factor through F , that is, for any abelian variety V and rational 
map g : C ∗⊕ V , there exists an unique homomorphism of abelian variety h : J ∗⊕ V 
such that g = h(F ) 

Notice that given a curve C, the Jacobi variety of C, if exists will be unique, since 
if there are two abelian variety J1 and J2 with Fi : C ∗⊕ Ji both have the universal 
property. Then using the universal property for the pair (F1, J1) to F2 : C ∗⊕ J2, 
we have a homomorphism from �1 : J2 ∗⊕ J1 with F2 = �1(F1). Similarly there are 
�2 : J1 ∗⊕ J2 with F1 = �2(F2). Then notice that 

(16) F1 = �2(�1(F1)) 

However, apply universal property for the pair (F1, J1) to F1 : C ∗⊕ J1, we conclude 
that �2(�1) is identity map on J1. Similarly �1(�2) is identity map on J2. Thus 
�2 and �1 are inverse isomorphism to each other, so we have that J1 is isomorphic 
to J2. Thus we proved the uniqueness. As a result, given a curve C, we can, in 
fact just take the universal property as the definition of Jacobi variety. We want to 
show that Jacobi variety for any curve exists. We will construct it as follows. 

Fix a curve C with genus g We will have state the following lemma that is 
important to the construction: 

Lemma 9. (Lemma 5 Ch. 2 [1]) Suppose we have a curve C of genus g and a 
divisor D of degree 0 on C. For any positive divisor p of degree g, that is 

(17) p = 
g � 

i=1 

Pi 

There is an unique positive divisor q such that q is linear dependent to a + p In 
particular, since q is also positive divisor of degree g, we have 

(18) q = 
g � 

i=1 

Qi 

The proof of the above lemma use the following equation for a divisor b on C 

(19) l(b) = deg(b) + 1 − g + ω(b) 

where 

(20) ω(b) = l(Kc − b) 

The equation is resulted from Riemann-Roch Theorem but we will not prove the 
lemma or Riemann-Roch Theorem here. 

However, we will use the lemma to construct a group structure on the set J of 
positive divisor of C with degree g, which as a set is C g , the ordinary product of g 
copies of C. 
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Fix an element O → J . For two elements p and q of J , applying Lemma (9) 
where p is a positive divisor with degree g and q − O is an divisor of degree 0, we 
conclude that there is a unique divisor m of degree g linear dependent to p + q − O. 
By definition, we have m → J . Thus since m is unique, we define the product of p 
and q to be m. Thus we define a operation 

(21) � : J × J ∗⊕ J 

we use the notation � so that we do not confuse it with the ordinary addition of 
divisors. 

We claim that (J, �) is a commutative group. 
First, clearly, O is the identity since p + O − O is p for any p and thus 

p � O = p 

Given three elements of J , p1, p2 and p3, notice that both (p1 � p2) � p3 and 
p1 � (p2 � p3) are linearly dependent to 

p1 + p2 + p3 − 2O 

and thus we have the associativity that 

(p1 � p2) � p3 = p1 � (p2 � p3) 

The inverse of an element p exists since by Lemma (9), there is unique element q 
of J linear dependent to 

(O − p) + O 

thus (p − O) + q is linearly dependent to O. Thus 

p � q = O 

� is commutative since given p and q, both p � q and q � p are linear dependent to 
p + q − O, and thus 

p � q = q � p 

Also, we have the map F : C ∗⊕ V defined by 

F = id × id × · · · × id 

where id is the identity map from C to C. 
In fact, J is a abelian variety of dimension g and that the map F from C to J 

satisfy the universal property of Jacobi variety. We do not prove it in this report 
and refer the reader to chapter 2 of [1]. By the uniqueness of Jacobi variety variety 
of curve, this is the Jacobi variety of C and we conclude the following theorem: 

Theorem 10. Given a curve C of genus g, the Jacobi variety J of C is of dimension 
g. 

6. Main Theorem of Elliptic Curve


Now, it is very easy for us prove the following theorem


Theorem 11. Every 1-dimensional abelian variety is of genus 1, that is, an elliptic 
curve. 
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Proof. Given a 1-dimensional abelian variety V of genus g, V is a curve with genus 
g and thus we conclude from Theorem (10) that the Jacobi variety of V is g-
dimensional. However, since V is itself abelian, we can easily see that the identity 
map id : V ∗⊕ V has the universal property, i.e. V with identity map is the Jacobi 
variety of V and by definition, V is 1-dimensional. Thus g = 1 and V is an elliptic 
curve. � 
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